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Abstract: This article proposes a novel damage detection method based on the sensitivity analysis
and chaotic moth-flame-invasive weed optimization (CMF-IWO), which is utilized to simultaneously
identify the damage of structural elements and bearings. First, the sensitivity coefficients of eigenvalues
to the damage factors of structural elements and bearings are deduced, the regularization technology is
used to solve the problem of equation undetermined, meanwhile, the modal strain energy-based index
is utilized to detect the damage locations, and the regularization objective function is constructed to
quantify the damage severity. Then, for the subsequent procedure of damage detection, CMF-IWO is
proposed based on moth-flame optimization and invasive weed optimization as well as chaos theory,
reverse learning, and evolutional strategy. The optimization effectiveness of the hybrid algorithm is
verified by five benchmark functions and a damage identification numerical example of a simply
supported beam; the results demonstrate it is of great global search ability and higher convergence
efficiency. After that, a numerical example of an 8-span continuous beam and an experimental
reinforced concrete plate are both adopted to evaluate the proposed damage identification method.
The results of the numerical example indicate that the proposed method can locate and quantify
the damage of structural elements and bearings with high accuracy. Furthermore, the outcomes
of the experimental example show that despite the existence of some errors and uncertain factors,
the method still obtains an acceptable result. Generally speaking, the proposed method is proved
that it is of good feasibility.

Keywords: damage detection; bearing damage; sensitivity analysis; regularization technology;
moth-flame optimization; invasive weed; hybrid optimization

1. Introduction

Civil structures suffer from traffic load, environmental temperature variation, fatigue failure,
and other uncertain negative influences during the service period. Among the distinguished damage
identification methods, the modal parameters-based detection method is known as the most popular
one. There are some major reasons for understanding its popularity. First, the modal parameters, such as
natural frequencies and modal shapes, are obtained easily by modal tests. Meanwhile, prior studies
have addressed many issues, the common one of them is the sensitivity coefficient analysis.

The existing studies have provided several different sensitivity coefficient analyses, including
the natural frequencies [1], modal shapes [2], modal strain energy [3], and modal kinetic energy [4,5].
For the natural frequencies, Xia and Hao [6] proposed a method of statistical damage identification
based on the frequencies sensitivity analysis and finite element model updating, which was successfully
applied in a numerical cantilever beam and a laboratory tested steel cantilever plate, meanwhile,
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the number of modal orders, various noise level, and different damage severity were also investigated.
In the study of Kim et al. [7], they evaluated and compared the sensitivity methods of natural
frequencies and modal shapes using a numerical concrete beam; results showed both methods could
localize and estimate the damage. Furthermore, Wei et al. [8] localized damage using the modal
strain energy change ratio approach, and good identification results in numerical thin plates were
obtained. Dinh-Cong et al. [9] derived the sensitivity coefficient of modal kinetic energy change ratio
(MKECR), then combined with symbiotic organisms search for damage localization and quantification,
the research indicated MKECR with good capability in locating the large numbers of damage locations
despite the existence of measurement noise.

However, because the dimensions of measured modal information are far less than the degree of
freedoms of the structure, the methods of sensitivity analyses have to face the problem of equation
underdetermined [10]. This issue will cause infinite solutions, which can be overcome by adopting
the regularization technology. Following this idea, Zhou et al. [11] achieved the damage detection of
the experimental cantilever beam based on the frequencies sensitivity analysis and l1 regularization
approach. The most significant advantage in the study was that only the first few structural frequencies
were used. Then, for the purpose of enhancing the accuracy, Hou et al. [12] utilized the modal shapes,
and the selection of regularization parameter was also studied [13], the results of numerical and
experimental examples indicated that the method could localize and estimate the sparse damage over
a numerous number of structural elements.

The damage identification based on the modal parameters requires the process of iterative
computation, since it is always transformed into a problem of mathematical optimization. However,
this process will confront another disturbing problem, namely, low computational efficiency and
local optimal. Hence, some swarm intelligence and evolutionary algorithms are exploited to tackle
the difficulty. One of the most popular is genetic algorithm (GA) [14]. In fact, there exist certain
challenges when practicing GA. At first, although there are numerous applications of GA [15–17],
it is not convenient to apply because of its complexity of parameter initialization. Also, GA tends to
be trapped into local optimal, which causes the low inaccuracy of damage identification. Aiming to
these drawbacks, some other optimization tools, such as Particle Swarm Optimization (PSO) [18],
Cuckoo Search (CS) [19], Jaya algorithm [20], Artificial Fish Swarm Optimization (AFSWO) [21],
and Artificial Bee Colony algorithm [22], were adopted in previous studies as well. Furthermore,
based on the hybrid mechanism of different algorithms, better optimization performance can be achieved.
For example, Huang et al. [23] proposed a PSO-CS hybrid algorithm. The random elimination mechanism
of CS was incorporated into basic PSO to avoid trapped in a local optimum. Ding et al. [24] combined
the Jaya and Tree Seeds algorithm to consider the uncertainties in structural damage identification.

On the other hand, for the damage detection of structural bearings, the existing researches
usually concern about the identification of boundary conditions. For example, Akhtyamov and
Mouftakhov [25] used the first four natural frequencies to identify the elastic constraint on each side
of the rectangular membrane. Then, Chesne [26] illustrated a method based on the estimation of the
spatial derivatives of displacement, which can be used to determine the boundary conditions of a beam.
Ahmadian and Esfandiar [27] adopted natural frequencies and damping ratios to estimate the boundary
condition parameters of a rectangular plate restrained in edges by an elastic support. In the paper
of Wang and Yang [28], a direct method was reported to identify the boundary conditions of tapered
beam-like structures using static flexibility measurements. Furthermore, there still exist some papers
that pay attention to the influence of boundary conditions. Xia et al. [29] proposed a novel approach to
perform the automatic reconstruction of boundary conditions in structure analysis, which was devoted
to improve the mechanical design efficiency. Park et al. [30] tried to use neural networks to consider
the boundary conditions in the process of finite element model updating. Shi et al. [31] also studied
the problem of updating boundary conditions for bridge structures.

Despite many studies on the structural damage and boundary condition identification, little to no
researches, to our best knowledge, focus on the bearings damage detection of beam structures, even to
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detect a beam structure whose damage occurs in structural elements and bearings simultaneously.
At the same time, the existing methods are too complex to obtain the results of boundary conditions,
which are not easy to be conducted in the practical applications. However, the rubber bearing, known as
one of the most important components of a beam structure, connects the beam and the pier or abutment.
The bearing is easy to be damaged in its complicated service environment. The common diseases
include separation, shear deformation, bulging deformation, and transverse crack. To address this
problem, Ni et al. [32] proposed a damage index for bridge pot rubber bearing based on support vector
machine and correlation and sensitivity analysis. Chen et al. [33] used the radial basis function neural
network and combined with bridge vibration modes to identify the bridge bearing damage, but the
damage severity failed to be estimated. The existence of bearings diseases will alter the forced form of
the whole bridge. In a worse situation, the bridge girder and pier would be damaged as well. Thus,
the damage of the bearing should be regarded as a potential risk in shortening the life cycle of bridges.
As a result, there would be a great demand for promoting an easy and convenient method to detect the
damage location and severity of bearings.

In this paper, a novel damage detection method is proposed to simultaneously identify the damage
of structural elements and bearings. Based on this method, satisfactory results can be achieved by
using only several orders modal characteristics, and complicated calculations in the existing methods
can be avoided. The main significance of this study can be listed as follows: (1) The sensitivity
coefficients of eigenvalues to the damage factors of structural elements and bearings are deduced,
which is a creative theory that can be used to identify the damage of bearings; (2) a hybrid algorithm,
chaotic moth-flame-invasive weed optimization (CMF-IWO), is raised to improve the optimization
problem, such as local optimal and slow convergence and it is proved that CMF-IWO has better
computational performance than other commonly used algorithms; (3) based on the first few modal
characteristics, the proposed method not only identify structural damage but also determine the
damage of bearings, which is the first damage identification method that can simultaneously consider
the damage of structures and bearings.

The specific work can be listed as follows: At first, the sensitivity coefficients of eigenvalues to the
damage factors of structural elements and bearings are derived, which can simultaneously consider the
influence of the damage of structural elements and bearings on eigenvalues. Meanwhile, based on the
sensitivity analysis, regularization objective function is constructed to detect the damage of structure
and bearings; modal strain energy-based index (MSEBI) is utilized to locate damage location. Then,
a new hybrid optimization algorithm, named as chaotic moth-flame-invasive weed optimization
(CMF-IWO), is proposed on the basis of moth-flame optimization (MFO), invasive weed optimization
(IWO), and some enhanced techniques, such as chaos theory, reverse learning and evolutional strategy.
Five benchmark functions and a numerical damage identification example are adopted to make
comparisons with PSO, CS, MFO, Differential Evolution (DE), and IWO. The optimization results and
iterative curves show that CMF-IWO is of better optimization capability. After that, a numerical 8-span
continuous beam and an experimental simply supported reinforced concrete plate both are used to
verify the feasibility of the proposed method. The outcomes demonstrate that the proposed method
can accurately localize and quantify the damage of elements and bearings in the numerical example.
Though there exist some uncertain factors for the experimental, the method has been proved to detect
the separation of bearing with high accuracy. In addition, considering the practical situation, there are
some acceptable errors in the damage quantification.
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2. Damage Detection Model

2.1. Sensitivity Analysis on the Damage of Structural Elements and Bearings

2.1.1. Damage Description of Structural Elements and Bearings

According to the theories of structural dynamics and finite element method, the un-damped free
vibration differential equation of a structure can be written as follows:

(K − λiM)ϕi = 0 (1)

where K and M denote the global stiffness and mass matrices of a structure, respectively; λi and ϕi
indicate the i-th eigenvalue and eigenvector, respectively. Very few researches try to establish a model
with structural boundary condition, and it is only treated as a simple constraint. However, this issue
can be solved by dividing the structure into two systems, one is the structural system and the other is
the boundary condition system [1]. Thus, Equation (1) can be rewritten as follows:

[(Ks + Kbc) − λi(Ms + Mbc)]ϕi = 0 (2)

where Ks and Kbc mean the stiffness matrices of the structural and boundary condition system,
respectively; Ms and Mbc stand for the mass matrices of the structural system and boundary condition
system, respectively. Also, the stiffness matrix of the boundary condition system can be defined
as follows [1]:

Ux Rx Uy Ry Uz Rz
Ux
Rx
Uy
Ry
Uz
Rz



A B C
D E F

G H
Sym I J

K
L


(3)

where the elements on the diagonal of the matrix denote the boundary stiffness in every degree of
freedom (DOF); others mean the synergistic effect, which can be explained that the translation in
one direction will cause rotations in the other two directions. Meanwhile, this matrix is not only
available for a 3-D finite element model, but also can be applied for the 2-D model by reducing the
unrelated DOFs.

When the damage of structural elements and/or bearings arise in the structure, damage can be
seen as the stiffness reduction with no mass change, thus, the damage of structural elements and
bearings can be quantitatively measured by using stiffness reduction vectors:

θ = [θ1,θ2,θ3, · · · ,θk] (4)

α = [α1,α2,α3, · · · ,α j] (5)

where θk and α j represent the damage severity of the k-th element and the j-th bearing. Thereby,
the damage in structural element and bearing can be described as follows:

Ks =
nele∑
k=1

(1− θk)ks
k, 0 ≤ θk ≤ 1 (6)

Kbc =
nbc∑
j=1

(1− α j)kbc
j , 0 ≤ α j ≤ 1 (7)
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where nele is the number of the structural elements; nbc is the number of bearings.

2.1.2. Sensitivity Analysis of Eigenvalue

The first-order sensitivity coefficients of eigenvalue corresponding to the structural damage factor
θk and the bearing damage factor α j can be obtained by derivative of Equation (2) concerning the two
parameters, respectively, which can be written as follows:

[
∂
∂θk

(Ks + Kbc) −
∂λi
∂θk

(Ms + Mbc) − λi
∂
∂θk

(Ms + Mbc)]ϕi + [(Ks + Kbc) − λi(Ms + Mbc)]
∂ϕi

∂θk
= 0 (8)

[
∂
∂α j

(Ks + Kbc) −
∂λi
∂α j

(Ms + Mbc) − λi
∂
∂α j

(Ms + Mbc)]ϕi + [(Ks + Kbc) − λi(Ms + Mbc)]
∂ϕi

∂α j
= 0 (9)

Then, the above equations are premultiplied by ϕT
i in both sides. At the same time, using the

known relations, such as ϕT
i (Ms + Mbc)ϕi = I for the unit-mass normalized mode shapes; the mass

matrices Ms and Mbc are independent of the damage factors of structural elements and bearings; stiffness
matrices Ks and Kbc are respectively independent of α j and θk, namely, ∂Ms/∂θk = 0, ∂Mbc/∂α j = 0,
∂Kbc/∂θk = 0 and ∂Ks/∂α j = 0. Thus, the sensitivity coefficients of i-th eigenvalue corresponding to
θk and α j can be derived respectively as follows:

∂λi
∂θk

= ϕT
i
∂Ks

∂θk
ϕi (10)

∂λi
∂α j

= ϕT
i
∂Kbc
∂α j

ϕi (11)

According to Equations (6) and (7), the following equations can be derived as:

∂Ks

∂θk
=

∂(
nele∑
k=1

(1− θk)ks
k)

∂θk
= −Ks

k (12)

∂Kbc
∂α j

=

∂(
nbc∑
i=1

(1− α j)kbc
j )

∂α j
= −Kbc

j (13)

where Ks
k and Kbc

j denote the k-th structural element stiffness matrix and the j-th boundary condition
stiffness matrix in the global coordinate, respectively. Thus, the first-order sensitivity coefficients of
eigenvalue corresponding to θk and α j can be rewritten as follows:

Ss
λ =

∂λi
∂θk

= −ϕT
i Ks

kϕi (14)

Sbc
λ =

∂λi
∂α j

= −ϕT
i Kbc

j ϕi (15)

2.1.3. Sensitivity Analysis of Eigenvector

According to the paper of Zhao and DeWolf [34], the first-order sensitivity coefficient of the
eigenvector corresponding to the structural damage factor θk can be represented as follows:

∂ϕi

∂θk
=

ndo f∑
n=1

ainϕn (16)
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where ndof stands for the total number of structural DOFs; ain denotes the n-th undetermined coefficient
in the sensitivity coefficient of the i-th eigenvector to the structural damage factor θk. As for ain, there
are two possible situations:

(1) When the subscript i , n, Equation (8) is premultiplied by ϕT
n on its both sides, then substituting

Equation (16) into Equation (8), the following equation can be derived:

ϕT
n [

∂
∂θk

(Ks + Kbc) −
∂λi
∂θk

(Ms + Mbc) − λi
∂
∂θk

(Ms + Mbc)]ϕi + ϕT
n [(Ks + Kbc) − λi(Ms + Mbc)]

ndo f∑
n=1

ainϕn =0 (17)

Because of the orthogonality of mode shapes, the mathematical relation can be concluded,
namely, if i , n, ϕT

n (Ms + Mbc)ϕi = 0; ϕT
n (Ms + Mbc)ϕn = I; ϕT

n (Ks + Kbc) = λnϕT
n (Ms + Mbc);

and ∂Ms/∂θk = 0. Thus, Equation (17) can be rewritten as follows:

−ϕT
n Ksϕi + (λn − λi)

ndo f∑
n=1

ain =0 (18)

For ain, it can be solved as:

ain =
1

(λn − λi)
ϕT

n Ks
kϕi (19)

(2) When the subscript i = n, as for the unit-mass normalized mode shapes, it can obtain:

ϕT
n (Ms + Mbc)ϕi = I (20)

Aiming Equation (20), take derivative in terms of θk, which can be written as:

∂ϕT
n

∂θk
(Ms + Mbc)ϕi + ϕT

n (Ms + Mbc)
∂ϕi

∂θk
= 0 (21)

Noting the symmetry characteristic of the mass matrix:

∂ϕT
n

∂θk
(Ms + Mbc)ϕi + ϕT

n (Ms + Mbc)
∂ϕi

∂θk
(22)

Considering Equation (16), the above equation can be rewritten as:

2
ndo f∑
n=1

ainϕ
T
n (Ms + Mbc)ϕi (23)

Because of the orthogonality of mode shapes and Equation (23), it can be indicated that:

ain = 0 (24)

Based on the above analysis, the sensitivity coefficient of a mode shape corresponding to the
structural element damage factor can be summarized as follows:

Ss
ϕ =

∂ϕi

∂θk
=


ndo f∑

n=1,n,i

1
(λn−λi)

ϕT
n Ks

kϕiϕn i , n

0 i = n

(25)
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Meanwhile, the same derivation procedure may be easily adapted to obtain the sensitivity
coefficient of mode shapes corresponding to bearing damage factor α j, which can be defined as:

Sbc
ϕ =

∂ϕi

∂α j
=


ndo f∑

n=1,n,i

1
(λn−λi)

ϕT
n Kbc

j ϕiϕn i , n

0 i = n

(26)

2.1.4. Sensitivity Coefficients of Eigenvalue to the Damage Factors of Structural Elements and Bearings

Because of the eigenvalues of the structure are not only influenced by the damage of structural
elements but also of the bearings, therefore, the sensitivity coefficient of eigenvalue to the two factors
should be considered. Based on Equations (14) and (15), the equations that can be obtained are
as follows:

∂2λi
∂θk∂α j

=
∂Ss

λ

∂α j
=

∂
∂α j

(−ϕiKs
kϕ

T
i ) (27)

∂2λi
∂θk∂α j

=
∂Sbc

λ

∂θk
=

∂
∂θk

(−ϕiKbc
j ϕ

T
i ) (28)

Expanding the above equations as:

∂Ss
λ

∂α j
= −(

∂ϕi

∂α j
Ks

kϕ
T
i + ϕi

∂Ks

∂α j
ϕT

i + ϕiKs
k

∂ϕT
i

∂α j
) (29)

∂Sbc
λ

∂θk
= −(

∂ϕi

∂θk
Kbc

j ϕ
T
i + ϕi

∂Kbc
∂θk

ϕT
i + ϕiKbc

j

∂ϕT
i

∂θk
) (30)

Noting ∂Kbc/∂θk = 0, ∂Ks/∂α j = 0, Ss
λ
= −ϕT

i Ks
kϕi and Sbc

λ
= −ϕT

i Kbc
j ϕi, Equations (29) and (30)

are premultiplied by ϕT
i and ϕi on their right and left sides respectively:

ϕi
∂Ss

λ

∂α j
ϕT

i = −ϕi
∂ϕi

∂α j
Ks

k(ϕ
T
i )

2
− (ϕi)

2Ks
k

∂ϕT
i

∂α j
ϕT

i (31)

ϕi
∂Sbc

λ

∂θk
ϕT

i = −ϕi
∂ϕi

∂θk
Kbc

j (ϕ
T
i )

2
− (ϕi)

2Kbc
j

∂ϕT
i

∂θk
ϕT

i (32)

Then the equations can be simplified by shifting terms:

∂Ss
λ

∂α j
= Ss

λ[
∂ϕi

∂α j

1
ϕi

+
∂ϕT

i
∂α j

1
ϕT

i

] (33)

∂Sbc
λ

∂θk
= Sbc

λ (
∂ϕi

∂θk

1
ϕi

+
∂ϕT

i
∂θk

1
ϕT

i

) (34)

Assuming ϕT
i = Aθ, then (ϕT

i )
T
= ϕi = (Aθ)T = θTAT; since ∂(Aθ)

∂θk
= AT, then ∂(Aθ)T

∂θk
=

∂(θTAT)
∂θk

= A, namely,
∂ϕT

i
∂θk

= AT and ∂ϕi
∂θk

= A, thus
∂ϕT

i
∂θk

= (
∂ϕi
∂θk

)
T

, similarly,
∂ϕT

i
∂α j

= (
∂ϕi
∂α j

)
T

.
Hence, Equations (33) and (34) can be rewritten as follows:

∂Ss
λ

∂α j
= Ss

λ[
∂ϕi

∂α j

1
ϕi

+ (
∂ϕi

∂α j
)

T 1
ϕT

i

] (35)
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∂Sbc
λ

∂θk
= Sbc

λ [
∂ϕi

∂θk

1
ϕi

+ (
∂ϕi

∂θk
)

T 1
ϕT

i

] (36)

Since
∂Ss
λ

∂α j
=

∂Sbc
λ

∂θk
= ∂2λi

∂θk∂α j
, add Equations (35) and (36), then the sensitivity coefficient can be

obtained as follows:

∂2λi
∂θk∂α j

= −
1
2
{ϕiKs

kϕ
T
i [
∂ϕi

∂α j

1
ϕi

+ (
∂ϕi

∂α j
)

T 1
ϕT

i

] + ϕiKbc
j ϕ

T
i [
∂ϕi

∂θk

1
ϕi

+ (
∂ϕi

∂θk
)

T 1
ϕT

i

]} (37)

2.2. Objective Function Based on Regularization Technology

Regularization technology, as an excellent tool, has been widely applied in solving the problem of
underdetermined equation in damage identification [10]. Assuming the change of modal parameters
caused by damage is linear, it can be expressed as:

Sx = ∆λ (38)

where S denotes the sensitivity coefficient matrix, which can be calculated according to Equation (37);
x = [θ,α]T is the combination of the stiffness reduction vectors of elemental damage and bearing
damage; ∆λ means the change of eigenvalue. Because of only a small number of damaged elements
and bearings, x will be a sparse vector. Meanwhile, to consider the limitation of sensors and
incomplete modal parameters, the dimension of ∆λ is far less than x, which indicates the equation is
underdetermined. Therefore, in order to obtain the expected sparsest solution, Equation (38) can be
transformed into the optimization problem as follows:

min‖x‖1, s.t.‖Sx− ∆λ‖2 ≤ ε (39)

Noting ∆λ = λe
− λa, the superscript e and a represent the experimental and analytical

eigenvalues, respectively.
The above equation can be rewritten as follow:

min‖x‖1, s.t.‖λ(x) − λe
‖2 ≤ ε (40)

where λ(x) = Sx + λa; ε is the error tolerance.
Moreover, based on Equation (40), the following l1 regularization can be obtained:

obj = ‖λ(x) − λe
‖

2
2 + µ‖x‖1 (41)

where µ > 0 represents the regularization parameter, which is determined using the L-curve
approach [11] or calculated by the equation of µ = σ

√
2 log(p), in which p is the cardinality of S [35].

Considering the damage identification problem and obtained eigenvalues, Equation (41) is further
written as:

obj =
1
m

[
λa

i (x) − λ
e
i

λe
i

]2
+
µ

n
‖x‖1 (42)

where λa
i and λe

i are the i-th analytical and experimental eigenvalues, respectively; m means the
considered number of modes; n represents the length of x.

2.3. Damage Location Based on MSEBI

In a structure, the damage of structural elements and bearings often exist simultaneously,
which increases the difficulty of damage detection and the cost of optimization computation. Aiming to
this problem, MSEBI is utilized to locate the locations of damaged elements and bearings.
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The modal strain energy of the element and the bearing can be calculated as follows:

msee
i =

1
2
(ϕe

i )
Tke

kϕ
e
i , k = 1, 2, · · · , nele, i = 1, 2, · · · , nm (43)

msebc
i, j =

1
2
(ϕbc

i )
T

kbc
j ϕ

bc
i , j = 1, 2, · · · , nb, i = 1, 2, · · · , nm (44)

whereϕe
i andϕbc

i are the nodal displacement vectors of the k-th element and j-th bearing corresponding
to the i-th mode shape, respectively; ke

k and kbc
j stand for the k-th elemental stiffness matrix and the j-th

bearing stiffness matrix, respectively; nm represents the mode order considered; nele and nb are the
total numbers of structural elements and bearings, respectively.

According to the above equations, the i-th total modal strain energy of the structure and bearings
can be calculated as follows:

msei =
nele∑
e=1

msee
i , i = 1, 2, · · · , nm (45)

msebc
i =

nb∑
j=1

msebc
i, j, i = 1, 2, · · · , nm (46)

For the convenience of calculation, the normalized i-th modal strain energy of element and bearing
can be defined as follows:

nmsee
i =

msee
i

msei
(47)

nmsebc
i =

msebc
i, j

msebc
i

(48)

Then taking the mean value of first nm-order normalized modal strain energy of element and
bearing, Equations (47) and (48) can be rewritten as follows:

mnmsee =

nm∑
i=1

nmsee
i

nm
, e = 1, 2, · · · , nele (49)

mnmsebc
j =

nm∑
i=1

nmsebc
i, j

nm
, j = 1, 2, · · · , nb (50)

Thus, MSEBI can be obtained as:

MSEBIe = max

0,
(mnmsee)E

− (mnmsee)A

(mnmsee)A

, e = 1, 2, · · · , nele (51)

MSEBIbc
j = max

0,
(mnmsebc

j )
E
− (mnmsebc

j )
A

(mnmsebc
j )

A

, j = 1, 2, · · · , nb (52)

where max[] represents the action of taking the maximum value; the superscripts of E and A mean
experimental and analytical respectively; when the analytical and experimental modal strain energy
are the same, MSEBI = 0, namely, the element or bearing is intact, otherwise, the damage may occur
(MSEBI > 0).
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3. Moth-Flame-Invasive Weed Optimization

3.1. Moth-Flame Optimization

Moth-flame optimization (MFO), as a novel optimization tool, was proposed by Mirjalili [36].
The inspiration of MFO can be traced back to the transverse orientation of moths at night, but it was
developed by the approach of a moth flying around the flame or candle. The basic theory of MFO
can be explained that some individuals of the moth with an attribute of position are first initialized
randomly in a D-dimensional solution space:

Mi = (mi1, mi2, · · · , mi j), i = 1, 2, · · · , n; j = 1, 2, · · · , D (53)

where n denotes the number of moths; D represents the dimension of optimization problem. At the
same time, the artificial light, namely, flame, will be marked as follows:

Flamei = (Flamei1, Flamei2, · · · , Flamei j), i = 1, 2, · · · , n; j = 1, 2, · · · , D (54)

The fitness values of each moth individual and flame are stored in two vectors, which can be
shown as follows:

OM = [OMit
i ]

T
, i = 1, 2, · · · , n (55)

OF = [OFit
i ]

T
, i = 1, 2, · · · , n (56)

where OM and OF represent the fitness value vectors of moth individual and flame, respectively;
it means the current number of the iteration. Then, the logarithmic spiral function is utilized to update
the position of each moth:

S(Mi, Flame j) = Di·ebt
· cos(2πt) + Flame j (57)

where Di stands for the spatial distance from i-th moth to j-th flame, the constant b is a factor to define
the spiral shape function, and t is a random number between −1 and 1.

Furthermore, the adaptive decrease mechanism of flames is incorporated into optimization
algorithm to ensure the powerful exploitation of optimization process, which also keeps the moth
individual always flying around the optimal solution from the first iteration to iteration termination.
The mathematical formula of the mechanism can be written as follows:

Fnit = round(Fnmax − Iteration·
Fnmax − 1

Iterationmax
) (58)

where Fnit and Fnmax are the flame number of the it-th iteration and the max number of flame;
Iteration stands for the current count of iteration; Iterationmax means the maximum number of iteration,
and round() denotes the action of taking the integer portion.

3.2. Invasive Weed Optimization

Invasive weed optimization (IWO) is inspired by the situation of colonization of invasive
weeds [37,38]. The colonizing behavior of weeds can be described in the formalization language of
mathematics, namely, some weeds are randomly generated in the D-dimensional problem space with
the characteristic of the position:

Wi = (wi1, wi2, · · · , wi j), i = 1, 2, · · · , n; j = 1, 2, · · · , D (59)
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where n denotes the initial number of weed; D represents the dimension of the problem. Then, based on
the fitness of each weed, the seed of each one is calculated by the equation as follows:

ωi =
f (wi) − fmin

fmax − fmin
(smax − smin) + smin (60)

where f (wi) means the fitness value of i-th weed; fmin and fmax are the worst and best fitness in the
current population, respectively; smin and smax represent the minimum and maximum seed number
that one weed can produce, respectively.

Subsequently, the produced seeds are spread over the search space using a normally distributed
random number, whose standard deviation at current iteration can be expressed by:

σiteration =
(Iterationmax − Iteration)n

(Iterationmax)
n (σinitial − σ f inal) + σ f inal (61)

where Iteration stands for the current count of iteration; Iterationmax means the maximum number of
iteration; σinitial and σ f inal represent the initial and final values of standard deviation, respectively;
n = 3 means the nonlinear modulation coefficient. Thus, the position of weeds can be updated by the
equation as follows:

Wit+1
i = Wit

i + σiteration·rand() (62)

Furthermore, the principle of the growing competition is adopted in the algorithm, and it can be
described that while evaluating the fitness of all weeds and seeds, the poor weeds and/or seeds are
eliminated to reach the maximum number of preset populations.

3.3. Chaotic Moth-Flame-Invasive Weed Optimization Hybrid Algorithm

MFO is of powerful local searching ability, but it is unable to ensure the performance in global
search, especially for the diversity of moth individuals in the late iterations is poor. Therefore, a hybrid
algorithm, chaotic moth-flame-invasive weed optimization hybrid algorithm (CMF-IWO), is proposed
to obtain a better optimization result. In the hybrid algorithm, the mechanism of seed spreading and
growing competition are incorporated into MFO, meanwhile, the population initialization approach
of reverse learning [39], chaos theory [40], and evolutional strategy are also adopted to enhance the
diversity of the population.

The flowchart of CMF-IWO is shown in Figure 1.
The basic procedures of CMF-IWO can be summarized as follows:

(1) To initialize the chaotic populations of n based on the chaos theory, the related equation can be
defined as follows:

wi = lb + ξi·(ub− lb) (63)

where lb and ub are the low and upper bounds respectively; ξi denotes the chaotic vector,
which can be generated by the logistic chaos mapping:

ξi+1 = u·ξi·(1− ξi) (64)

where u is a scalar, when u = 4, the system is in chaos.
(2) To apply the operation of reverse learning, the individuals of reverse learning can be produced

as follows:
wRL

i = lb + ub−wi (65)

Then merge wi and wRL
i , and the fitness of each individual is evaluated. After that, according to

the ranking of the fitness, the first n weeds are selected as moth individuals to be input into MFO.
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(3) In MFO, the moth individuals are spread over the search space according to Equation (61) to
enhance the diversity, and the evolutional strategy is also incorporated in this stage. The operation
of mutation can be described as follows:

mi = mi j + F(mik −mir) (66)

where F = (Fmax − Fmin) ∗ rand is the scale factor, mi j, mik, and mir are the j-th, k-th, and r-th
element of i-th moth, respectively. The operations of crossover and selection can be defined as:

mi j =

 m1
i j rand(0, 1) ≤ pCR

m2
i j rand(0, 1) > pCR

(67)

mi =

{
m1

i f (m1
i ) ≤ f (m2

i )

m2
i f (m1

i ) > f (m2
i )

(68)

where the pCR represents the probability of crossover.
(4) Based on the obtained individuals of the previous step, the first n moth individuals are selected

according to their fitness values. Then the remaining steps of MFO are conducted to obtain the
optimization results.
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3.4. Evaluation of the Proposed Algorithm

3.4.1. Evaluation Using Benchmark Functions

The optimization ability and computational accuracy of the hybrid algorithm are first
evaluated with five mathematical benchmark functions (Table 1) and compared with existing
optimization algorithms, such as MFO, IWO, Particle Swarm Optimization (PSO), Cuckoo Search (CS),
and Differential Evolution (DE). The parameter settings of each algorithm are listed in Table 2, and each
algorithm is performed 50 times with maximum iterations of 500 and maximum populations of 100,
the average results and iterative curves are shown in Table 3 and Figure 2.

Table 1. The benchmark functions.

Function Definition Dimension Range

F1 f1(x) =
D∑

i=1
x2

i D = 50 [−100, 100]

F2 f2(x) =
D∑

i=1
[100(xi+1 − x2

i )
2
+ (xi − 1)2] D = 50 [−30, 30]

F3 f3(x) =
D∑

i=1
[x2

i − 10 cos(2πxi) + 10] D = 50 [−5.12, 5.12]

F4 f4(x) = −20 exp(−0.2

√
1
n

D∑
i=1

x2
i ) − exp( 1

n

D∑
i=1

cos(2πxi)) + 20 + e D = 50 [−32, 32]

F5 f5(x) = 1
4000

D∑
i=1

x2
i −

D∏
i=1

cos( xi√
i
) + 1 D = 50 [−600, 600]

Table 2. The parameters settings of each algorithm.

Algorithm Parameters

CMF-IWO smax = 15, smin = 0, σinitial = 10, σ f inal = 0.00001, pCR = 0.9, Fmin = 0.2, Fmax = 0.8
MFO /

IWO smax = 15, smin = 0, σinitial = 10, σ f inal = 0.00001, initial population: 25
PSO c1 = c2 = 2, ωmax = 0.9, ωmin = 0.4
CS Pa = 0.25
DE pCR = 0.9, Fmin = 0.2, Fmax = 0.8

Table 3. Statistical results of five benchmark functions.

Function Parameters Best Worst Mean Std

F1

CMF-IWO 1.0887 × 10−9 2.5681 × 10−7 6.7496 × 10−8 6.4762 × 10−8

MFO 52.9446 2.0310 × 104 5851.1526 6630.1173
IWO 0.0523 0.1041 0.0773 0.0130
PSO 0.7630 2.8517 1.6985 0.5147
CS 329.5988 818.0726 588.6970 117.3877
DE 27.3037 129.5271 67.8251 25.0673

F2

CMF-IWO 6.7661 × 10−8 6.4539 × 10−5 1.6294 × 10−5 1.8073 × 10−5

MFO 1.5441 × 104 7.9961 × 107 1.7465 × 106 1.1287 × 107

IWO 53.6460 2250.7460 323.9226 453.1753
PSO 81.8194 402.8715 194.5452 77.3596
CS 2.5492 × 104 9.0476 × 104 5.6018 × 104 1.6313 × 104

DE 2396.3380 2.4560 × 104 7.1717 × 103 4.029 × 103
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Table 3. Cont.

Function Parameters Best Worst Mean Std

F3

CMF-IWO 2.9532 × 10−8 4.2936 × 10−5 1.1240 × 10−5 1.1753 × 10−5

MFO 172.1081 453.5721 285.1176 53.0783
IWO 73.1735 172.1583 121.4345 23.9014
PSO 19.2279 60.4631 33.9154 9.0074
CS 196.3107 286.7401 245.3998 19.5425
DE 377.7231 462.2816 425.0265 16.5028

F4

CMF-IWO 1.6950 × 10−5 2.0 × 10−4 1.0 × 10−4 5.9477 × 10−5

MFO 5.2021 19.9651 19.0605 2.8102
IWO 0.2356 1.1460 0.5189 0.2578
PSO 3.7516 6.0987 4.8038 0.6294
CS 12.8120 17.7599 15.2283 1.2716
DE 3.0005 19.9528 4.0701 2.7859

F5

CMF-IWO 9.3958 × 10−11 1.6634 × 10−8 3.3969 × 10−9 3.3064 × 10−9

MFO 2.3160 273.2845 48.9034 58.2422
IWO 0.0024 0.0254 0.0098 0.0054
PSO 0.5038 0.9340 0.7803 0.09630
CS 3.7573 8.9510 6.3427 1.1683
DE 1.3510 2.4297 1.5854 0.1985
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Figure 2. The average iterative curves of benchmark functions: (a) F1; (b) F2; (c) F3; (d) F4, and (e) F5.

From Table 3, it can be seen that the proposed hybrid algorithm can achieve better optimal results
in the optimizations of five benchmark functions, which can be owed to the chaotic population, and the
mechanism of seed space spreading can enhance the diversity of the initial population. Meanwhile,
the operation of reverse learning can obtain elite populations. These two improvements can guarantee
that the initial populations are of high quality and diversity. In addition, the iterative curves of Figure 2
indicate that the curves of CMF-IWO are steeper than those of other algorithms, which demonstrates
that the convergence speed of CMF-IWO is good. At the same time, compared to the other algorithms,
the proposed algorithm can escape from local optimal, whose main reason may be the fusion of
evolutional strategy.

3.4.2. Evaluation Using Numerical Example of Structural Damage Identification

In order to further assess the optimization ability of the proposed hybrid algorithm, a simply
supported beam with 16 elements is exploited (Figure 3). For the beam, its Young’s modulus is
3.0 × 1010 Pa, the mass density is 2450 kg/m3, the cross-sectional area is 0.05 m2, the inertia moment
is 4.16 × 10−5 m4, the length of each element is 0.5 m. Three damage cases, including single-point
damage, double-point damage, and multiple-point damage, are introduced by the reduction of the
stiffness, the details are listed in Table 4.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 27 

 

 
(e) 

Figure 2. The average iterative curves of benchmark functions: (a) F1; (b) F2; (c) F3; (d) F4, and (e) F5. 

From Table 3, it can be seen that the proposed hybrid algorithm can achieve better optimal 
results in the optimizations of five benchmark functions, which can be owed to the chaotic 
population, and the mechanism of seed space spreading can enhance the diversity of the initial 
population. Meanwhile, the operation of reverse learning can obtain elite populations. These two 
improvements can guarantee that the initial populations are of high quality and diversity. In 
addition, the iterative curves of Figure 2 indicate that the curves of CMF-IWO are steeper than those 
of other algorithms, which demonstrates that the convergence speed of CMF-IWO is good. At the 
same time, compared to the other algorithms, the proposed algorithm can escape from local optimal, 
whose main reason may be the fusion of evolutional strategy. 

3.4.2. Evaluation Using Numerical Example of Structural Damage Identification 

In order to further assess the optimization ability of the proposed hybrid algorithm, a simply 
supported beam with 16 elements is exploited (Figure 3). For the beam, its Young’s modulus is 3.0 × 
1010 Pa, the mass density is 2450 kg/m3, the cross-sectional area is 0.05 m2, the inertia moment is 4.16 
× 10-5 m4, the length of each element is 0.5 m. Three damage cases, including single-point damage, 
double-point damage, and multiple-point damage, are introduced by the reduction of the stiffness, 
the details are listed in Table 4. 

 
Figure 3. The simply supported beam. 

Table 4. Three damage cases. 

Case Damage Severity @ Element Number 

1 10% @ 3 

2 10% @ 3, 5% @ 7 

3 10% @ 3, 5% @ 7, 10% @ 13 

Because of the beam with the simply supported boundary conditions, namely, it has no 
bearings on each side. The bearing damage factor jα  is defined as zeros, only the elemental damage 
factor kθ  is considered. The parameters setting of six algorithms are the same as Table 2, each 
algorithm is performed seven times with maximum iteration of 500 and maximum population of 
100, the average damage identification results are illustrated in Figure 4. 

1 2 3 4 5 6 7 8 9 10 11 13 14 15 1612

Figure 3. The simply supported beam.

Table 4. Three damage cases.

Case Damage Severity @ Element Number

1 10% @ 3
2 10% @ 3, 5% @ 7
3 10% @ 3, 5% @ 7, 10% @ 13

Because of the beam with the simply supported boundary conditions, namely, it has no bearings
on each side. The bearing damage factor α j is defined as zeros, only the elemental damage factor θk
is considered. The parameters setting of six algorithms are the same as Table 2, each algorithm is
performed seven times with maximum iteration of 500 and maximum population of 100, the average
damage identification results are illustrated in Figure 4.
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Figure 4. Damage identification results of simply supported beam: (a) Case 1; (b) Case 2, and (c) Case 3.

As shown in Figure 4, for the single-point damage, CMF-IWO can determine the damage location
and quantify the damage severity with a higher accuracy. However, other algorithms cannot achieve
satisfactory results. Then in Case 2, some errors occur in all the six algorithms, the main reason is
that the natural frequencies do not contain the spatial information of structural damage, so it is not
easy to obtain very precise results by using merely frequencies. However, comparatively, the error
of the proposed algorithm is less than the other five algorithms, which indicates the optimization
performance of CMF-IWO is better than other algorithms. Furthermore, the same conclusion can be
obtained in Case 3.

To summarize, with limited modal characteristics, by using the proposed CMF-IWO hybrid
algorithm, better damage identification results can be achieved than the other five algorithms, which has
better potential in structural damage detection.

3.5. Damage Detection Methodology

Based on the proposed regularization objective function and CMF-IWO hybrid algorithm, a novel
damage detection approach is put forward, which can identify the damage of bearings, as well as the
damage of structural elements. The main steps of this method can be summarized as follows:
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(1) MSEBI of structural elements and bearings is calculated and used to detect the locations of damage;
(2) According to the detected damage location, the sensitivity coefficients of the suspected structural

elements and bearings are calculated, which are adopted to construct the regularization
objective function;

(3) The regularization objective function constructed in the previous step is input into CMF-IWO
hybrid algorithm to quantify the damage severities of structural elements and bearings.

4. Damage Detection Examples

4.1. Numerical Study

In this section, as shown in Figure 5, an 8-span continuous beam with 48 elements and 9 bearings
is introduced to verify the proposed damage identification method. The length and cross-sectional area
of each element are 0.5 m and 0.03 m2, respectively, its material properties, such as Young’s modulus,
mass density, and inertia moment are 3.45 × 1010 Pa, 2500 kg/m3, and 2.5 × 10−5 m4, respectively.
The vertical stiffness of the bearings is 1.0 × 106 KN/m. The damage of structural elements and bearings
are both simulated using reduction of stiffness [41–44]. Five damage cases are introduced, which are
shown in Table 5.

Sensors 2020, 20, x FOR PEER REVIEW 17 of 27 

 

(2) According to the detected damage location, the sensitivity coefficients of the suspected 
structural elements and bearings are calculated, which are adopted to construct the regularization 
objective function; 

(3) The regularization objective function constructed in the previous step is input into 
CMF-IWO hybrid algorithm to quantify the damage severities of structural elements and bearings. 

4. Damage Detection Examples 

4.1. Numerical Study 

In this section, as shown in Figure 5, an 8-span continuous beam with 48 elements and 9 
bearings is introduced to verify the proposed damage identification method. The length and 
cross-sectional area of each element are 0.5 m and 0.03 m2, respectively, its material properties, such 
as Young’s modulus, mass density, and inertia moment are 3.45 × 1010 Pa, 2500 kg/m3, and 2.5 × 
10−5 m4, respectively. The vertical stiffness of the bearings is 1.0 × 106 KN/m. The damage of 
structural elements and bearings are both simulated using reduction of stiffness [41–44]. Five 
damage cases are introduced, which are shown in Table 5. 

 
Figure 5. The 8-span continuous beam. 

Table 5. Five damage cases. 

Case Damage Severity @ Element Number Damage Severity @ Bearing Number 
1 30% @ 24 25% @ 2# 
2 20% @ 5, 30% @ 24 25% @ 2#, 50% @ 7# 
3 20% @ 5, 30% @ 24, 40% @ 40 25% @ 2#, 75% @ 5#, 50% @ 7# 
4 20% @ 1, 40% @ 48 25% @ 1#, 50% @ 9# 
5 20% @ 1, 40% @ 48 99.9% @ 1#, 99.9% @ 9# 

The first six modal parameters are exploited to detect the damage of structural elements and 
bearings. Also, the maximum iterations, populations, and parameters setting are the same as 
Section 3.4. The results of the damage location are depicted in Figures 6 and 7. 

 
(a) 

 
(b) 

1# 2# 3# 4# 5# 6# 7# 8# 9#

1 4 7 102 3 5 6 8 9 111213141516171819 20 21222324252627282930313233343536373839 4142434445 46 47 4840

Figure 5. The 8-span continuous beam.

Table 5. Five damage cases.

Case Damage Severity @ Element Number Damage Severity @ Bearing Number

1 30% @ 24 25% @ 2#
2 20% @ 5, 30% @ 24 25% @ 2#, 50% @ 7#
3 20% @ 5, 30% @ 24, 40% @ 40 25% @ 2#, 75% @ 5#, 50% @ 7#
4 20% @ 1, 40% @ 48 25% @ 1#, 50% @ 9#
5 20% @ 1, 40% @ 48 99.9% @ 1#, 99.9% @ 9#

The first six modal parameters are exploited to detect the damage of structural elements and
bearings. Also, the maximum iterations, populations, and parameters setting are the same as Section 3.4.
The results of the damage location are depicted in Figures 6 and 7.
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Figure 7. Results of structural bearings damage location: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4;
and (e) Case 5.

As shown in Figure 6, the suspected damaged elements of the five damage cases are detected
accurately. Also, in Cases 1 to 3, there still exist some elements whose identified damage are not zero,
but compared to the damaged elements, the values are so small that they can be ignored. Hence, it is
revealed that the suspected damaged elements for Cases 1 to 3 can be reduced from 48 to 1, 2, and 3
elements respectively. On the other hand, from Figure 7, it is clearly observed that MSEBI can locate
the locations of damaged bearings with high accuracy. To summarize, MSEBI not only can detect the
damage location of structural elements but also identify the locations of damaged bearings.

Because modal parameters are more sensitive to the damage of structural elements than the
damage of bearings, if the damage severities of elements and bearings are simultaneously determined
in the process of damage detection, the change of modal parameters caused by the damage of bearings
will be masked by elemental damage. Thus, at first, assuming the bearings are intact, the damage
severity of structural elements is determined. After that, the determined elemental damage condition
is input to the procedure of damage detection, and the damage severity of bearing is quantified.
The average results of seven times iterations are demonstrated in Figures 8 and 9.
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Figure 8. Damage Detection Results of Structural Elements: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4
and (e) Case 5.
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Figure 9. Damage detection results of bearings: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4; and (e)
Case 5.

As shown in Figure 8, because of the location operation of MSEBI, the proposed method can
detect the damaged elements with high accuracy. However, regarding the quantification of damage
severity, the performance is not very satisfactory. Only for Case 1, the result is precise, different
degrees of error occur in all the other cases, this phenomenon can be explained as follows: (1) The
eigenvalues do not include the spatial information of structural damage, which cannot obtain the
accurate detection results; (2) the existence of bearings damage may apply some adverse influence on
the identification performance.
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The detection results of bearings damage are shown in Figure 9, it can be observed that the damage
of Case 1, Case 4, and Case 5 can be quantified with satisfactory precision. However, there are different
errors in other damage cases, such as damage severity shifting for Case 2 and inaccurate quantification
results for Case 3. The reason also can be owed to the missing spatial information of eigenvalues, at the
same time, the previous damage identification results of structural elements are the key factors to the
damage detection of bearings. On the other hand, comparing Case 2, Case 4, and Case 5, it can be
found that the more serious the damage severity of bearings, the more severe the fluctuations of the
eigenvalues. Meanwhile, the comparison also indicates that the proposed method is more suitable to
detect the serious damage of bearings, like bearing separation.

4.2. Experimental Example

In this section, an experimental example of a simply supported reinforced concrete plate is adopted
to further assess the proposed damage detection approach. As shown in Figure 10a, the plate is
located in the campus of Wuhan Institution of Technology; its measured size is 5.4 m × 0.6 m × 0.12 m
(length ×width × thickness), with the Young’s modulus of 3 × 1010 Pa, the mass density of 2410 kg/m3.
Meanwhile, there were four rubber bearings placed on the two ends to support the plate. Additionally,
the lengths of both the overhangs were 0.2 m at the two ends. In the natural environment, irregular
hammer excitation was conducted to make the plate vibrate, ten accelerometers were installed on
the top surface of the plate to collect the signal of acceleration. The layout of sensors can be seen as
Figure 10b.
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Figure 10. The simply supported reinforced concrete plate: (a) view of modal test; (b) layout of sensors
and mass block.
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The acceleration data were captured by a DH5922 vibration testing system (Figure 11) which
has the advantages of light mass and convenient use etc. The operation temperature of acceleration
acquisition instrument ranges from 0 ◦C to 60 ◦C and it is also a universal dynamic signal test
and analysis system which can complete the testing and analysis of stress, strain, vibration, shock,
etc. The instrument has 16 24-bit IEPE input channels that are equipped with an anti-mixing filter,
and supports sampling frequency up to 51.2 k Hz. The system was connected with the acceleration
sensor by L5 coaxial extension wire and placed in the center of the equal dividing line to collect the
acceleration signal. The operation temperature of acceleration sensor ranged from −40 ◦C to 80 ◦C and
its tolerance was ±1%.

Sensors 2020, 20, x FOR PEER REVIEW 22 of 27 

 

 
(a) 

(b) 

Figure 10. The simply supported reinforced concrete plate: (a) view of modal test; (b) layout of 
sensors and mass block. 

The acceleration data were captured by a DH5922 vibration testing system (Figure 11) which 
has the advantages of light mass and convenient use etc. The operation temperature of acceleration 
acquisition instrument ranges from 0 °C to 60 °C and it is also a universal dynamic signal test and 
analysis system which can complete the testing and analysis of stress, strain, vibration, shock, etc. 
The instrument has 16 24-bit IEPE input channels that are equipped with an anti-mixing filter, and 
supports sampling frequency up to 51.2 k Hz. The system was connected with the acceleration 
sensor by L5 coaxial extension wire and placed in the center of the equal dividing line to collect the 
acceleration signal. The operation temperature of acceleration sensor ranged from −40 °C to 80 °C 
and its tolerance was ±1%. 

 

Figure 11. DH5922 vibration testing system 

0.6 m

5.0 m

Accelerometer

1#

2#

3#

4#

Mass Block

Figure 11. DH5922 vibration testing system

Meanwhile, in the experiment, because of its difficulties in introducing the stiffness change of
concrete plate, the damage was simulated by the approach of applying additional mass block with
a length of 0.3 m, width of 0.2 m, and thickness of 0.15 m (Figure 12); moreover, the placed location
was the center of the plate. Also, bearing 2# was removed to simulate the common disease, namely,
bearing separation. Eight cases were set, and corresponding modal tests were conducted, the details of
each case and the measured natural frequencies are listed in Tables 6 and 7, respectively.
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Table 6. Eight cases of the simply supported reinforced concrete plate.

Case Mass/kg Bearing

1 / /
2 / 2#(removed)
3 20 /
4 20 2#(removed)
5 40 /
6 40 2#(removed)
7 60 /
8 60 2#(removed)

Table 7. The measured natural frequencies of eight cases.

Mode Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

1 7.28 7.357 7.18 7.042 6.874 6.850 6.743 6.688
2 27.314 26.734 26.827 26.318 26.46 26.418 25.837 26.095
3 60.054 59.479 58.709 59.351 56.903 57.348 56.408 54.380
4 103.218 103.097 102.913 104.520 102.084 103.957 102.039 102.105
5 153.48 153.454 153.204 153.439 150.728 151.203 147.903 153.554

Then, MATLAB is used to construct the finite element model of the plate. The plate is meshed
to 66 elements, which is modeled by 20-node shell element; furthermore, the rubber bearings were
simulated by the 3-D spring elements. The numbering and meshing diagram of elements and nodes
are depicted in Figure 13. Because of the limitation of sensors, the modal shapes were incomplete,
meanwhile, the structure is 3-dimensional, hence it is difficult to calculate the modal assurance criterion,
thus, only the natural frequencies are adopted. The analytical and experimental natural frequencies
are extracted and listed in Table 8.Sensors 2020, 20, x FOR PEER REVIEW 24 of 27 
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where MassM represents the total weight of the plate and additional mass blocks; im  and iβ  are 
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where [ , ]X β α= . For the Cases 2–8, the detection procedure is carried out for seven times, the 
average identification results are extracted and depicted in Table 9. 
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Table 8. The analytical and experimental natural frequencies.

Mode Experimental/Hz
Before Model Updating After Model Updating

Analytical /Hz Error /% Analytical /Hz Error/%

1 7.28 7.505 3.09 7.280 0.0006
2 27.314 26.791 1.91 27.315 0.0022
3 60.054 62.131 3.45 60.057 0.0049
4 103.218 89.243 13.53 103.225 0.0067
5 153.48 137.549 10.38 153.696 0.1406

As shown in Table 8, there exist some errors between the actual structure and the finite element
model, especially for the higher-order modes, which can be owed to the environmental effects,
instrument errors, and size deviations of the model. Thus, model updating is conducted using the
CMF-IWO hybrid algorithm. After model updating, it can be revealed that the consistency between
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analytical and experimental models is really good, which means the model can be used for the baseline
model of damage detection.

Assuming the mass of the plate is uniformly distributed, that is to say, when the size is the same,
the mass of each element is equal. By introducing the mass additional factors, the total mass can be
calculated as:

MMass =
nele∑
i=1

(1 + βi)mi (69)

where MMass represents the total weight of the plate and additional mass blocks; mi and βi are the
i-th elemental mass and additional factor respectively. Hence, when βi is obtained, the weight of the
additional mass block can be identified based on elemental mass.

However, because of the limitation of sensors, the measured mode shapes are incomplete resulting
in the fact that MSEBI cannot be obtained. For the purpose of bearings damage and additional mass
detection, the location of mass blocks is assumed to be known, thus the search range is reduced.
Additionally, the detection of mass and bearings damage are separated, namely, the mass change
is first determined, after that the damage of the bearings is identified. According to Equation (42),
the objective function can be defined as follows:

obj =
1
m

[
λa

i (X) − λe
i

λe
i

]2
+
µ

n
‖X‖1 (70)

where X = [β,α]. For the Cases 2–8, the detection procedure is carried out for seven times, the average
identification results are extracted and depicted in Table 9.

Table 9. The identification results of additional mass and bearings damage.

Case Identified Mass/kg Identified Damage Severity @ Bearing Number

2 / 98.42% @ 2 #
3 23.008 /
4 9.045 98.41% @ 2 #
5 30.316 /
6 39.777 98.68% @ 2 #
7 72.353 /
8 76.201 98.35% @ 2 #

As listed in Table 9, the proposed method can precisely detect the separation of bearings. However,
for the identification of mass change, the errors occur, namely, the inaccurate weight quantification.
For Cases 3 and 6, the identified results are acceptable, but for other cases, the overestimating or
underestimating has emerged, which may be attributed to the inaccurate measured data and the errors
of the finite element model.

5. Conclusions

A novel bearings damage detection method using sensitivity analysis and chaotic moth-flame-
invasive weed optimization hybrid algorithm has been put forward to determine the damage of
structural elements and bearings. According to the obtained results, some conclusions and prospects
can be summarized as follows:

(1) The sensitivity coefficients of eigenvalues to the damage factors of structural elements and bearings
provide a good evaluation approach to research the influences of damage of structural elements
and bearings to eigenvalues, meanwhile, which is the basis for constructing the regularization
objective function.
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(2) MSEBI, as a damage location index, is able to accurately detect the damage location of structural
elements as well as identify the locations of damaged bearings with high precision. At the same
time, this damage location approach can greatly reduce the search range of damage detection and
promote detection effectiveness.

(3) Compared to PSO, CS, MFO, DE, and IWO, the proposed hybrid algorithm, CMF-IWO,
is demonstrated with good convergence speed and global search performance, which is of
good potential for overcoming the problem of local optimal in damage detection.

(4) The proposed method is proved to be well applied in the bearings damage detection of numerical
simulation, supported by the study case. Compared to the existing methods, the proposed
method is easy and convenient to conduct and only the first few modal characteristics are
needed. Hence complex calculation can be avoided. However, because of some uncertain factors
and errors, such as the inaccuracy of instrument measurement, incomplete modal information,
inevitable environmental noise, and the deviation of the finite element model, there still exist
some difficulties to obtain very precise results in practical application.
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