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Inside out: Bone marrow adipose tissue as a source of circulating adiponectin
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ABSTRACT
The adipocyte-derived hormone adiponectin mediates beneficial cardiometabolic effects, and
hypoadiponectinemia is a biomarker for increased metabolic and cardiovascular risk. Indeed,
circulating adiponectin decreases in obesity and insulin-resistance, likely because of impaired
production from white adipose tissue (WAT). Conversely, lean states such as caloric restriction (CR)
are characterized by hyperadiponectinemia, even without increased adiponectin production from
WAT. The reasons underlying this paradox have remained elusive, but our recent research suggests
that CR-associated hyperadiponectinemia derives from an unexpected source: bone marrow
adipose tissue (MAT). Herein, we elaborate on this surprising discovery, including further discussion
of potential mechanisms influencing adiponectin production from MAT; additional evidence both
for and against our conclusions; and observations suggesting that the relationship between MAT
and adiponectin might extend beyond CR. While many questions remain, the burgeoning study of
MAT promises to reveal further key insights into MAT biology, both as a source of adiponectin and
beyond.
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Introduction

It is now well established that white adipose tissue
(WAT) is a major endocrine organ, with white adipo-
cytes secreting numerous hormones, cytokines, lipids,
and other molecules to exert diverse local and systemic
effects.1 Notable among these diverse endocrine factors,
known as adipokines, is the hormone adiponectin. First
discovered in 1995, adiponectin is the most abundant
adipokine in the circulation, where it exists in distinct
multimeric forms including low-molecular-weight
(LMW) trimers, middle-molecular-weight (MMW) hex-
amers, and high-molecular-weight (HMW) complexes
including dodecamers and even larger multimers. Over
the past 20 years adiponectin has become established as
a major topic of biomedical research that, at the time of
writing (January 2016), has been featured in over 15,000
published studies. Such interest reflects the diverse bio-
logical actions of adiponectin, as well as its utility as a
biomarker for increased risk of clinical conditions
including insulin resistance, cardiovascular diseases,
bone loss, and certain cancers.2

While such extensive study has yielded great insights,
many questions remain unsolved. One notable question
concerns the so-called adiponectin paradox: despite being
produced exclusively by adipose tissue, circulating adipo-
nectin levels decrease in conditions of excess adiposity
(i.e. obesity) but are elevated markedly in conditions of
extreme leanness, such as during caloric restriction (CR)
in animals and in human subjects with anorexia nervosa
(AN). In obese, insulin-resistant states, hypoadiponectine-
mia likely results from decreased expression and secretion
of adiponectin transcripts and protein in WAT.3 In con-
trast, why circulating adiponectin increases in CR and AN
has remained poorly understood.

In research published last year we revealed that, dur-
ing CR, increased circulating adiponectin comes from a
previously unrecognized source: bone marrow adipose
tissue (MAT).4 Herein we elaborate on these findings,
including additional lines of evidence that further sup-
port our conclusions, and other data and clinical obser-
vations suggesting that the relationship between MAT
and circulating adiponectin, both in CR and beyond,
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may be more complex. While there is much evidence to
consider, many key questions remain to be addressed.

Increased adiponectin during CR: WAT’s
going on?

Four years after adiponectin was identified, Arita and
colleagues made the surprising discovery that, despite
being produced by adipocytes, circulating adiponectin
concentrations correlate inversely with adiposity.5 Thus,
states of obesity and insulin resistance are characterized
by hypoadiponectinemia. It is now well established that
this results not from increased adiponectin clearance,6

but from impaired adiponectin production from WAT.3

Indeed, adiponectin has been studied extensively in the
context of obesity and insulin resistance. In contrast,
research into hyperadiponectinemia during CR has been
more limited. The first reports of this phenomenon
emerged in 2003, beginning with the observation that
circulating adiponectin is significantly increased in
humans with AN.7 This finding coincided with a study
from Phil Scherer’s group, which revealed that, in lean
mice, chronic CR leads to hyperadiponectinemia.8 These
initial reports have since been followed by numerous
additional studies that, with some exceptions, further
demonstrate that circulating adiponectin levels are
increased in subjects with AN or during CR in lean ani-
mals or humans (Table 1). However, while this phenom-
enon is now well established, the underlying
mechanisms are not so clear. Hyperadiponectinemia can
result from increased adiponectin production and/or

decreased clearance from the circulation, but few studies
of AN or CR have investigated these readouts (Table 1).
Indeed, only one study of AN patients has measured adi-
ponectin transcript expression in WAT, finding this to
be decreased with AN.9 Surprisingly, no studies have
analyzed the impact of AN on adiponectin half-life in
the circulation. Whether AN alters expression or secre-
tion of adiponectin protein in WAT also remains
untested, perhaps owing to the difficulty of obtaining
sufficient WAT from these extremely lean subjects.
Other studies of CR in animals or humans have been
similarly limited (Table 1), with none assessing secretion
and only one analyzing the half-life of adiponectin,
which was unaltered by CR.10 Unlike for AN, animal
studies of CR have more thoroughly investigated adipo-
nectin expression in WAT; however, the results have
been mixed. Thus, several reports suggest that adiponec-
tin transcripts are increased in WAT with CR,10-17 with
three of these studies also finding increased expression of
adiponectin protein.10-12 However, Wiesenborn et al.
found that, despite increased transcript expression, adi-
ponectin protein in WAT was decreased with CR.16 In
contrast, studies from 6 other groups, including the
Scherer lab and ourselves, find that CR is associated with
unaltered or decreased expression of adiponectin mRNA
in WAT.4,8,18-21 In our study, adiponectin protein
expression was also unaltered.4

Together, these observations paint a murky picture:
although CR can lead to increased adiponectin mRNA
and protein expression in WAT, it can also promote
hyperadiponectinemia even when the expression of

Table 1. Studies investigating the relationship between AN or CR, circulating adiponectin, WAT, and MAT.

Effect of CR

Study type Readout Increased Unaltered Decreased Not analysed

AN (humans) Circulating adiponectin 4,7,9,97-103 104-106 107,108 109-113

Adiponectin mRNA expression in WAT 9 4,7,97-113

Adiponectin protein expression in WAT 4,7,97-113

Adiponectin secretion from WAT 4,7,97-113

Adiponectin half-life in circulation 4,7,97-113

MAT volume / Bone marrow adiposity 4,109-113 7,9,97-108

Adiponectin mRNA expression in MAT / bone 4,7,97-113

CR (lean animals) Circulating adiponectin 4,8,10,12-17,114-120 19,21,121-123 21 11,18,20

Adiponectin mRNA expression in WAT 10-17 4,8,18,19,21 20,21 114-123

Adiponectin protein expression in WAT 10-12 4 16 8,13-15,17-21,114-123

Adiponectin secretion from WAT 4,8,10-21,114-123

Adiponectin half-life in circulation 10 4,8,11-21,114-123

MAT volume 4 8,10-21,114-123

Adiponectin mRNA expression in MAT / bone 4 8,10-21,114-123

CR (lean humans) Circulating adiponectin 124,125 126 127,128

Adiponectin mRNA expression in WAT 124-128

Adiponectin protein expression in WAT 124-128

Adiponectin secretion from WAT 124-128

Adiponectin half-life in circulation 124-128

MAT volume 124-128

Adiponectin mRNA expression in MAT / bone 124-128
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adiponectin in WAT is unaltered or even decreased.
Moreover, a recent study found that, in humans, changes
in circulating adiponectin during CR are not associated
with changes in adiponectin secretion fromWAT.22 Adi-
ponectin transcript expression in WAT is also unrelated
to the changes in circulating adiponectin that occur in
response to insulin or thiazolidinedione (TZD) treat-
ment.14,23 Collectively, these findings question the
assumption that WAT is the key source of increased cir-
culating adiponectin during CR, and perhaps in other
contexts. But if not WAT, then what?

Digging deeper: bone marrow adipose tissue

One limitation to these studies is that their focus has
been largely limited to WAT. This, perhaps, is unsurpris-
ing: WAT has been featured in over 90,000 published
studies (Fig. 1), reflecting the widespread interest in this
tissue. Brown adipose tissue (BAT), a distinct type of fat
specialized for mediating adaptive thermogenesis, has
also been subject to extensive research (Fig. 1), partly
because of its promise as a therapeutic target for obesity
and associated metabolic diseases.24 In contrast, modern
biomedical research has largely ignored MAT (Fig. 1).
This is surprising, because adipocytes in bone marrow
(BM) were identified over a century ago and MAT
accounts for up to 70% of BM volume in healthy
humans.25 Moreover, our recent research suggests that
healthy adults have over 2 kg of MAT, representing
more than 10% of total adipose mass (Fig. 1).4 MAT fur-
ther increases in diverse clinical conditions, including
during CR in animals and in human subjects with AN.26

This is particularly striking given that such catabolic
states typically feature WAT loss. Thus, both MAT and
circulating adiponectin are elevated during CR and AN.
This observation was the foundation for our hypothesis
that MAT contributes to hyperadiponectinemia during
CR; however, given the relatively limited knowledge of
MAT biology, our efforts to address this hypothesis had
to begin by focusing on some very basic questions.

Production of adiponectin by MAT

Adiponectin expression in MAT vs WAT

The first question was whether MAT even expresses adi-
ponectin, and how this compares to expression in WAT.
Adiponectin transcript and protein expression has been
reported in whole BM of long bones of mice27-31 and in
cultured BM adipocytes isolated from human femurs,32

with mRNA expression also noted in adipocytes differ-
entiated in vitro from mouse or human BM stromal
cells.33,34 Although such cultured adipocytes may not
accurately mimic BM adipocyte characteristics in vivo, at
least one report demonstrates that adipocytes within
intact human BM express adiponectin mRNA and pro-
tein.35 However, none of these previous studies analyzed
intact MAT and WAT samples. Therefore, we began by
characterizing MAT and WAT obtained from mice, rab-
bits, and humans.4 In mice, techniques for isolation of
intact MAT are yet to be perfected; hence, to study
murine MAT we exploited the fact that BM of caudal
(tail) vertebrae is essentially all MAT, with very little red,
haematopoietic marrow (Fig. 2). We found that such

Figure 1. MAT is under-studied, despite being a major adipose depot. Numbers of publications featuring WAT, BAT or MAT were deter-
mined by searching the PubMed database in October 2015 with the following terms: WAT, “adipose tissue” OR “adipocyte” NOT “brown
adipose tissue” NOT “brown adipocyte;” BAT, brown adipose tissue OR brown adipocyte; MAT, “marrow adipose tissue” OR “marrow adi-
pocyte” OR “yellow marrow” OR “yellow bone marrow.” Values for WAT, BAT or MAT as percentage of total adipose mass in lean, healthy
humans, are based on previous publications.4,96

ADIPOCYTE 253



caudal vertebrae express adiponectin protein at levels
similar to those in inguinal WAT (iWAT), gonadal
WAT (gWAT), and perirenal WAT (pWAT). In con-
trast, caudal vertebrae have far lower expression of other
typical adipocyte markers, including peroxisome prolif-
erator-activated receptor-g (PPARg), fatty-acid-binding
protein 4 (FABP4), hormone-sensitive lipase (HSL), and
perilipin A (Fig. 2).4 Another study also finds that, at the
mRNA level, adipocytes isolated from mouse BM express
PPARg (Pparg), FABP4 (Fabp4), and perilipin A (Plin1)
at lower levels than adipocytes from WAT (Fig. 2).36

This suggests that, in comparison to WAT, MAT
expresses adiponectin transcripts and protein at higher
levels than other adipocyte markers. Consistent with
this, we found that, in rabbits, tibial MAT expresses adi-
ponectin transcripts and protein at similar levels to
iWAT, pWAT, and gWAT, while the expression of other

typical adipocyte transcripts (e.g. Cebpa, Fabp4) and pro-
teins (Perilipin A, FABP4) is lower than in each of these
WAT depots (Fig. 2).4

This disparity between adiponectin expression and
that of other adipocyte markers is striking, especially
considering that the transcription factors PPARg
and CCAAT/enhancer-binding protein-a (C/
EBPa/ positively regulate adiponectin expression and
secretion.37-42 Indeed, Fabp4 is a key transcriptional tar-
get of PPARg; hence, decreased Fabp4 expression in
MAT suggests diminished PPARg activity. Why then
would adiponectin be similarly expressed between MAT
and WAT? Although the reason is unclear, other studies
show that adiponectin expression can be uncoupled
from that of other adipocyte genes in certain contexts.39

One possibility is that the different environments of
MAT and WAT are responsible for their distinct

Figure 2. Characteristics of MAT in comparison to WAT. Expression or secretion of each factor, relative to WAT, is indicated as follows:
greater than WAT, red circle with upward arrow; lower than WAT, green circle with downward arrow; similar to WAT, amber circle with
‘»’; unknown, gray circle with ‘?’. Where differences refer to mRNA expression, official transcript names are used as follows: Adipoq, adi-
ponectin; Pparg, PPARg; Fabp4, FABP4; Cebpa, C/EBPa; Lep, leptin; Plin1, Perilipin A. All other differences refer to expression or secretion
of proteins. Micrographs for caudal and tibial MAT are H&E-stained sections from mice, rabbits or humans, as indicated. The micrograph
of isolated adipocytes is a phase-contrast image of adipocytes from femoral MAT, post-isolation, and is presented for schematic pur-
poses only. Characteristics of caudal and tibial MAT are based on our previously published observations.4 Characteristics of isolated BM
adipocytes are based studies of MAT obtained from tibiae/femurs of mice or the iliac crest of humans.36,46 These observations demon-
strate that MAT expresses and secretes adiponectin, but many questions remain to be addressed. Abbreviations and other details are
given in the main text.
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expression of adipocyte markers. For example, BM adi-
pocytes exist in close proximity to osteoblasts, and the
osteoblast-secreted factor osteocalcin stimulates adipo-
nectin mRNA expression in adipocytes.43 Thus, greater
local concentrations of osteocalcin in BM might dispro-
portionately increase adiponectin expression in MAT.
Finally, differential exposure to other secreted factors
that inhibit adiponectin expression and secretion, includ-
ing glucocorticoids and pro-inflammatory cyto-
kines,38,44,45 might also explain why production of
adiponectin is greater in MAT than in WAT.

In addition to analyzing mouse and rabbit samples, we
further characterized tibial MAT and subcutaneous WAT
(scWAT) from humans. We found that tibial MAT
expresses adiponectin protein at higher levels than scWAT,
at least in the 3 patients studied.4 Together with our above
results in mice and rabbits, our observations suggest that
adiponectin transcripts and protein are expressed in MAT
at levels similar to or greater than inWAT. However, this is
at odds with two recent microarray studies by Liu et al and
Poloni et al, in which adipocytes isolated from BM of mice
or humans were found to have lower expression of adipo-
nectin mRNA than adipocytes isolated from WAT
(Fig. 2).36,46 This discrepancy could relate to the fact that we
analyzed intact MAT while Liu et al and Poloni et al studied
isolated adipocytes. Given that MAT andWAT do not con-
sist exclusively of adipocytes, it is possible that non-adipo-
cyte populations contribute to adiponectin expression in
whole MAT. For example, osteoblasts reportedly express
adiponectin transcripts and protein,27,28,47 and our human
MAT samples andmouse caudal vertebrae clearly contained
some ossified tissue (Fig. 2).4 However, osteoblasts express
adiponectin mRNA at only 0.01% of adipocyte levels,47

whereas we found that rabbit tibial MAT expresses adipo-
nectin mRNA at levels similar or greater thanWAT, despite
containing no trabecular bone.4 Moreover, our observations
in mice show that adiponectin protein expression in caudal
vertebrae is far greater than that in lumbar vertebrae, despite
these tissues having similar bone content.4 Thus, we believe
it unlikely that osteoblasts make any meaningful contribu-
tion to adiponectin expression in caudal vertebrae of mice
or our humanMAT samples. A second possibility relates to
the fact that Liu et al and Poloni et al isolated adipocytes via
collagenase treatment, a method that can alter cellular tran-
scriptional profiles.48 Finally, and perhapsmost intriguingly,
is the possibility that adiponectin expression in MAT varies
across different skeletal sites. Indeed, we recently revealed
that properties of BM adipocytes are region-specific, such
that MAT can be classified into two broad sub-types: regu-
lated MAT (rMAT) exists in more proximal skeletal sites
and consists of adipocytes interspersed with haematopoietic
BM, while constitutive MAT (cMAT) exists in more distal
regions (e.g., distal tibia, caudal vertebrae) and appears

histologically similar to WAT, with few visible haemato-
poietic cells.49 These MAT subtypes also differ in their lipid
composition and response to external stimuli.49 Therefore,
it is notable that for our adiponectin studies we analyzed
more cMAT-like tissue (i.e., from tails or distal tibiae),
whereas Liu et al and Poloni et al studied adipocytes from
regions of rMAT (i.e. pooled from femurs/tibiae, or from
the iliac crest).We have since begun to investigate adiponec-
tin expression in adipocytes isolated from rMAT, cMAT,
and WAT of rodent models, and these studies are ongoing.
We have also started to analyze adiponectin protein expres-
sion in more rMAT-like samples from human femurs, find-
ing that adiponectin is expressed in these regions; however,
unlike in tibial MAT, such expression is not always higher
than that in scWAT (Fig. 3). This supports the possibility
that adiponectin expression is higher in cMAT than in
rMAT. Whether these MAT subtypes differ in adiponectin
expression, or indeed other endocrine properties, clearly
warrants further study (Figs. 2 and 5).

Adiponectin secretion from MAT vs WAT

Despite these inconsistencies, it is clear that BM adipo-
cytes do express adiponectin mRNA and protein; but
what about adiponectin secretion? In this case the litera-
ture is less revealing. One earlier study noted adiponectin
secretion from adipocytes differentiated ex vivo from
human BM,50 while two more-recent papers confirm
that adiponectin is secreted from primary adipocytes iso-
lated from human femurs.32,51 To build on these obser-
vations, we analyzed adiponectin secretion during ex
vivo culture of tibial MAT and WAT explants obtained
from rabbits or humans.4 In both species, secretion of
adiponectin was markedly higher from tibial MAT than
from WAT, even after accounting for potential differen-
ces in total protein secretion and explant breakdown
(Fig. 2).4 For the human samples, further analysis of
LMW, MMW, and HMW adiponectin showed that each
of these multimeric forms is also secreted more highly
from MAT than from WAT (Fig. 2). While this finding
is striking, the mechanistic basis remains to be deter-
mined. Adiponectin secretion is regulated by numerous
factors, including PPARg, SIRT1, the endoplasmic retic-
ulum chaperones Ero1-La and ERp44, the enzyme
DsbA-L, and the GTPase regulator FIP1,52-55 as well as
the multi-ligand receptor sortilin, which directs adipo-
nectin toward lysosomal degradation;56 hence, altered
expression and/or activity of these factors could account
for increased adiponectin secretion from cMAT. Another
possibility relates to the impact of fatty acids on adipo-
nectin production. Specifically, we recently discovered
that cMAT has a lower proportion of saturated fatty
acids than rMAT or WAT.49 Given that saturated fatty
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acids such as palmitate can suppress adiponectin tran-
script expression and protein secretion,56 decreased
exposure to saturated fatty acids might lead to increased
expression and secretion of adiponectin from cMAT.
Future studies must explore these possibilities and also
move beyond explant studies, which can adversely affect
adipose tissue biology.57 Alternative approaches, such as
analysis of arteriovenous differences in adiponectin con-
centrations across BM and WAT depots,58 could be one
approach to determine the relative production of adipo-
nectin by WAT and MAT in vivo (Fig. 2).

Beyond the basics: MAT as a source of
adiponectin during CR

Supporting evidence

Having confirmed that MAT expresses and secretes adi-
ponectin, we next sought to determine if MAT

contributes to circulating adiponectin. An ideal tool for
addressing this question would be an animal model that
lacks MAT but not WAT, or vice versa. Unfortunately,
such a model has yet to be firmly established; however,
we were extremely fortunate in that our lab had previ-
ously developed Ocn-Wnt10b mice, which express the
secreted ligand Wnt10b in osteoblasts. Wnt10b promotes
osteoblastogenesis, and therefore these mice have
increased bone mass.59 Wnt10b also inhibits adipogene-
sis,60 leading us to speculate that Ocn-Wnt10b mice
might also lack MAT. Our initial analyses of proximal
tibiae, from the proximal metaphysis to the tibia-fibula
junction, showed that the while Ocn-Wnt10b mice tend
to have less MAT than their control littermates, this dif-
ference does not reach statistical significance.4 However,
additional experiments revealed that Ocn-Wnt10b mice
significantly resist expansion of this MAT depot during
CR.4 We have since extended these analyses to whole tib-
iae (Fig. 4), revealing that MAT is also decreased in the

Figure 3. Adiponectin expression in human femoral MAT. Subcutaneous WAT and MAT were isolated from the femoral heads of patients
undergoing hip-replacement (Patients 1–3) or from the femoral diaphysis of an amputation patient (Patient 4). (A) Representative
micrographs of H&E-stained tissue sections. Scale bar D 200 mm. (B) Total protein was isolated from scWAT and MAT of each patient
and expression of the indicated proteins was assessed by immunoblotting; similar results were observed for tissue samples obtained
from two other hip-replacement patients (data not shown). Expression of a-tubulin was analyzed as a loading control, although expres-
sion was sometimes variable between each tissue type. For patients 1–3, MAT and scWAT lysates were run on non-adjacent lanes of the
same gel, and therefore intervening lanes have been removed for ease of comparison. Both the Institutional Review Boards of the Uni-
versity of Michigan and of the Veterans Affairs Hospital of Ann Arbor, MI, approved the study involving hip-replacement patients (IRB
number: HUM00053722). The University of Michigan Medical School Institutional Review Boards approved the study involving lower-
limb amputation patients (IRB number: HUM00060733). Methods for histology and immunoblotting are as described previously.4
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proximal metaphysis and distal tibia of CR-fed Ocn-
Wnt10b mice and that, even without CR, Ocn-Wnt10b
mice have significantly less distal tibial MAT than their
control littermates (Fig. 4). These new data also highlight
that CR-associated MAT expansion occurs predomi-
nantly in the proximal tibia rather than the distal tibia.
This further supports the designation of these sites as
rMAT and cMAT, respectively.

These observations demonstrate that Ocn-Wnt10b
mice have moderately decreased MAT volume without
CR and robustly resist MAT expansion during CR. What
are the consequences for circulating adiponectin? We
found no differences in control-fed mice but, strikingly,
CR-associated hyperadiponectinemia is significantly
blunted in the Ocn-Wnt10b mice.4 Importantly, this
occurs despite unaltered expression of adiponectin tran-
scripts or protein in WAT.4 It remains possible that
genotype-dependent differences in adiponectin half-life
or secretion from WAT contribute to this striking phe-
notype; however, we found that WAT expression of
ERp44 and Dsb-AL, key regulators of adiponectin secre-
tion, is unaltered by diet or genotype.4 Thus, Ocn-
Wnt10b mice likely resist CR-associated hyperadiponec-
tinemia because of impaired MAT expansion, rather
than altered adiponectin production from WAT.4

Together these observations provide direct evidence that
MAT expansion is required for hyperadiponectinemia
during CR.

Other recent studies further support this conclusion.
For example, Zgheib et al investigated the effects of sepa-
ration-based anorexia (SBA), a unique model of CR in
mice. They find that SBA causes many typical effects of
CR, such as weight loss and hypoleptinemia; however, it
does not lead to hyperadiponectinemia.21 More recent
research from this group shows that MAT expansion
also fails to occur during SBA (Christophe Chauveau,
personal communication). Similarly, we recently
revealed that CR in rabbits leads to decreased body mass,
WAT mass, and circulating leptin, but without hyperadi-
ponectinemia or MAT expansion.61 Thus, data from
three distinct animal models suggest that MAT expan-
sion is necessary for hyperadiponectinemia during CR,
supporting the conclusion that MAT contributes to
increased circulating adiponectin in this context.

Functional consequences

Adiponectin acts on numerous target tissues and cell
types to exert diverse systemic effects on metabolic
homeostasis, vascular function, inflammation, and other

Figure 4. Ocn-Wnt10b mice resist MAT expansion during CR. To determine if Ocn-Wnt10b mice resist MAT formation, we stained tibiae
with osmium tetroxide and analyzed MAT volume in situ by micro-CT scanning, as described previously.4 Representative images of
osmium-stained tibiae from wild-type mice, fed a control or CR diet, are shown on the left of the figure; osmium-stained MAT appears
as darker regions within the bones. MAT volume was then quantified for each of the indicated tibial regions and normalized to total
marrow volume to give percentage of MAT volume, as shown in the graph on the right. Data in the graph are presented as mean C/¡
standard deviation of the following numbers of mice: WT control, n D 6; Wnt10b control, n D 4; WT CR, n D 5; and Wnt10b CR, n D 6.
For each diet group, significant differences between WT and Wnt10b mice are indicated by ��� (P < 0.001). Within each genotype, sig-
nificant differences between control and CR diets are indicated by # (P < 0.05) or ### (P <0.001).
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systems. What, then, are the consequences of MAT’s
contribution to hyperadiponectinemia during CR? Our
studies in Ocn-Wnt10b mice reveal that, during CR,
these mice not only resist hyperadiponectinemia but also
have altered adaptations in skeletal muscle, including
decreased expression of transcripts related to mitochon-
drial function and increased activity of AMP-activated
protein kinase.4 Beyond skeletal muscle, other responses
to CR were similar between Ocn-Wnt10b and control
mice, including enhanced glucose tolerance and altered
hepatic transcription.4 From this one could infer that the
metabolic impact of MAT expansion and/or hyperadipo-
nectinemia during CR is limited to skeletal muscle; how-
ever, there are several important caveats. Firstly, there
are many other metabolic effects of CR that we did not
assess, including altered energy expenditure, substrate
utilization, and b-cell function, to name but a few. Sec-
ondly, while CR-associated MAT expansion and hypera-
diponectinemia are blunted in the Ocn-Wnt10b mice,
these effects still occur. Thus, we are currently pursuing
additional approaches to determine more comprehen-
sively the consequences of CR-associated MAT
expansion.

Additional considerations

Although there is much supporting evidence, it is impor-
tant to consider any observations that question the con-
tribution of MAT to hyperadiponectinemia during CR.
For example, several papers report that CR does increase
adiponectin mRNA and/or protein expression in WAT
(Table 1), suggesting that WAT does contribute to
hyperadiponectinemia under these conditions of CR.
Surprisingly, one of these studies also finds that CR leads
to increased adiponectin expression in skeletal muscle,
with adiponectin protein expression being higher in skel-
etal muscle than in visceral WAT.15 From these surpris-
ing observations, the authors propose that skeletal
muscle may contribute to hyperadiponectinemia during
CR. Finally, in subjects with AN, both MAT and circulat-
ing adiponectin inversely correlate with bone mineral
density,25 and therefore one might expect BM adiposity
to positively associate with circulating adiponectin in
AN subjects. However, in our recent analysis of MAT
and adiponectin in control and AN subjects, there was
no significant association between MAT and circulating
adiponectin (P. Fazeli and A. Klibanski, unpublished
observations). One limitation is that these MRI-based
measurements focused only on vertebral and femoral
MAT,4 which might hold less influence on circulating
adiponectin than the more cMAT-like adipocytes within
tibial MAT (Fig. 3). Moreover, BM adiposity alone might
not sufficiently reflect the contribution of MAT to CR-

associated hyperadiponectinemia. Indeed, it seems plau-
sible that CR or AN could alter adiponectin production
from MAT, thereby impacting circulating levels without
alterations in total MAT mass (Figs. 2 and 5). However,
while such knowledge is limiting in the case of WAT
(Table 1), for MAT it is entirely lacking. Future research
must address these questions, in particular how CR or
AN impacts adiponectin secretion from these and other
tissues.

Does MAT contribute to circulating adiponectin
in other contexts?

Lessons from lipodystrophies

Our studies in Ocn-Wnt10b mice provide the most com-
pelling evidence that MAT contributes to hyperadipo-
nectinemia during CR, because of the unique ability of
these mice to resist the formation of MAT but not WAT.
Further insights could be gleaned from the converse phe-
notype, i.e., a lack of WAT but not MAT. Unfortunately,
animal models with this phenotype are lacking. How-
ever, differential loss of WAT and MAT can occur in
human patients with lipodystrophies, acquired or inher-
ited conditions characterized by the impaired formation,
progressive loss, or redistribution of adipose tissue.62

Consequently, WAT is either partially or totally absent;
however, MAT is sometimes maintained. Therefore,
these conditions might provide further insights into the
contributions of WAT and MAT to circulating adiponec-
tin. For example, is circulating adiponectin greater in lip-
odystrophic subjects whose MAT is preserved, compared
to those who lack MAT? As shown in Table 2, this is
sometimes, but not always, the case. Thus, subjects with
acquired partial lipodystrophy (APL) have partial loss of
visceral and subcutaneous WAT, while MAT is pre-
served and adiponectin concentrations are normal. A
similar situation exists for familial partial lipodystrophy
(FPLD), although this can feature increased visceral
WAT; slight decreases in circulating adiponectin were
also reported in one group of FPLD subjects (Fig. 2).
Conversely, in other classes of lipodystrophies both
MAT and circulating adiponectin are decreased. These
include the partial lipodystrophy associated with antire-
troviral therapy for HIV, as well as congenital general-
ized lipodystrophies (CGL) caused by mutations in
AGPAT2 (CGL1) or BSCL2 (CGL2). For CGL4, caused
by PTRF mutations, MAT was detected in MRI scans of
one patient,63 but for most CGL4 patients MAT content
has not been reported. However, we recently revealed
that lack of Ptrf in mice is associated with loss of rMAT
but not cMAT,49 suggesting partial loss of MAT in
CGL4 (Table 2). Together, these observations support
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the possibility that preservation of MAT is necessary if
normal circulating adiponectin levels are to be main-
tained. However, in patients with acquired generalized
lipodystrophy (AGL) and in the only known CGL3 sub-
ject, circulating adiponectin is decreased despite the pres-
ence of MAT (Table 2). Thus, the presence of MAT does
not guarantee maintenance of normal circulating adipo-
nectin concentrations.

While such observations can be informative, their
interpretation is difficult because lipodystrophies are typ-
ically associated with metabolic dysregulation, such as
insulin resistance and dyslipidemia, which themselves
adversely affect circulating adiponectin concentrations.
Moreover, analysis of MAT content in lipodsytrophic
patients has been extremely limited, while essentially
nothing is known about how the underlying clinical
defects impact adiponectin production by MAT.

Mouse models of lipodystrophy are similarly limited,
but can yield useful insights into the relationship
between WAT, MAT, and adiponectin. In one notable
study, Colombo et al investigated the impact of WAT
transplantation in A-ZIP/F-1 mice, a well-established
mouse model of lipodystrophy. In these mice WAT is
absent; circulating levels of adiponectin are decreased by
98%; and those of leptin, another adipokine, are over
99% lower than in controls.64 Upon transplanting wild-
type scWAT into A-ZIP/F-1 mice, circulating leptin

increased to 40% of wild-type concentrations, while cir-
culating adiponectin concentrations reached only 4% of
those in wild-type controls.64 The authors state, “The
serum levels of adiponectin achieved by WAT transplan-
tation were very low. It is not clear why adipose tissue
transplantation to a level »25% of wild-type WAT weight
and producing nearly wild-type levels of leptin gave adipo-
nectin levels only»4% of wild-type.” This suggests that, at
least in this context, WAT makes only a minor contribu-
tion to circulating adiponectin. Although they would
have been unaware at the time, it has since been con-
firmed that A-ZIP/F-1 mice also lack MAT.25 Might this
explain why WAT transplantation alone has only a negli-
gible effect on circulating adiponectin?

Another recently published mouse model may pro-
vide further important insights. In an elegant approach,
the Scherer lab generated mice in which expression of
C/EBPa in mature adipocytes can be inducibly ablated
via treatment with doxycycline.42 Development of
gWAT is postnatal, whereas that of scWAT occurs dur-
ing embryogenesis.65 Thus, perinatal treatment of these
mice with doxycycline, before substantial gWAT devel-
opment, leads to loss of C/EBPa in scWAT but not
gWAT.42 While this does not affect scWAT mass, it is
associated with a 34% decrease in circulating adiponectin
concentrations, leading the authors to conclude that
scWAT “contributes about one-third of the adiponectin

Table 2. Impact of human lipodystrophies on WAT, MAT, and circulating adiponectin. Data for MAT and WAT phenotypes are based
on63,133-138 and/or studies discussed in a previous review.81 Data for adiponectin are based on the references indicated in the right-most
column. Circulating adiponectin concentrations (mg/L) from each cohort are shown as (median; range). aCGL1 and CGL2 are grouped
together in this row because the study by Haque et al.129 did not distinguish between these two classes of CGL. bIn FPLD, visceral WAT
content is normal in some subjects134 but increased in others,138 while in AGL the extent of WAT loss depends on the subtype of AGL136

– in most subjects, loss of scWAT is severe, while visceral (intra-abdominal) WAT content can be absent, normal, or increased. cData for
CGL3 are from only a single subject, and therefore the reproducibility of this observation remains unknown; however, we recently con-
firmed maintenance of MAT in Cav1-knockout mice.49

Phenotype

Class of
lipodystrophy
(mutated gene)

Visceral
WAT

Subcutaneous
WAT MAT

Circulating
adiponectin Refs.

MAT present, adiponectin normal
(or small decrease)

APL Partial loss Partial loss Present Normal (7.9; 3.1–13.3) 129

FPLD (LMNA) Variableb Partial loss Present Normal (6.4; 1.9–23.2) 129

Decreased (3.9; 1.4–15.2) 130

MAT and adiponectin decreased HIV-associated Increased Partial loss Partial loss Decreased (2.1; 0.2–12.4) 130

CGL4 (PTRF) Absent Absent Partial loss Large decrease (0.5;
<0.4–2.3)

131,132

CGL1 (AGPAT2) Absent Absent Absent Large decrease (0.5;
<0.1–1.4)

130

CGL2 (BSCL2) Absent Absent Absent Decreased (3.3; 0.7–23.7) 130

CGL1/2 (AGPAT2 or BSCL2)a Absent Absent Absent Large decrease (1.5; 0.4–
7.5)

129

MAT present, adiponectin decreased AGL Variableb Large decreaseb Present Decreased (3.2; 0.6–7.7) 129

CGL3 (CAV1) Absent Absent Present Large decreasec (0.1; N/A) 133

Healthy controls Present Present Present Normal (7.8; 1.5–29.4) 130
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in systemic circulation.” However, it is notable that the
MAT phenotype of these mice was not investigated.
Indeed, we recently demonstrated that cMAT adipocytes
have even greater expression of C/EBPa than adipocytes
in scWAT,49 which suggests that cMAT might be even
more susceptible than scWAT to C/EBPa deletion.
Therefore, in the Scherer lab’s unique mouse model it
seems highly plausible that C/EBPa ablation would
impair adiponectin production from MAT, thereby lead-
ing to decreased circulating adiponectin. We eagerly
await studies addressing this possibility.

Insulin receptor dysfunction and
hyperadiponectinemia

The above studies underscore the potential of monogenic
human diseases and transgenic mouse models to clarify
our knowledge of MAT’s contribution to circulating adi-
ponectin. This applies not only to conditions of
decreased circulating adiponectin, but also to states char-
acterized by hyperadiponectinemia. In particular,
marked increases in circulating adiponectin occur in
patients with insulin receptoropathies caused by insulin
receptor antibodies or mutations in the insulin recep-
tor.66,67 Hyperadiponectinemia also occurs in FIRKO
mice, which lack the insulin receptor in adipose tissue.68

Thus, insulin receptor dysfunction is associated with
increased circulating adiponectin. While the underlying
reasons remain unclear, several observations support the
possibility that MAT plays a role. For example, insulin
directly suppresses adiponectin expression in human
MAT,32 suggesting that insulin receptor dysfunction
might increase MAT adiponectin production. Moreover,
MAT expansion occurs in conditions of hypoinsuline-
mia, such as CR and type 1 diabetes,25 which suggests
that insulin might suppress MAT formation. Thus, there
is clear rationale for investigating if MAT is increased in
FIRKO mice or in humans with insulin receptoropathies,
as this might explain the idiopathic hyperadiponectine-
mia that occurs in these conditions (Fig. 5).

Associations between MAT and adiponectin: not
restricted to caloric restriction

Our studies to date have focused on the contribution of
MAT and WAT to hyperadiponectinemia during CR.
However, increases in both MAT and circulating adipo-
nectin also occur in many other diverse conditions,
including aging, estrogen deficiency, type I diabetes, and
in response to pharmacological agents such as TZDs,
glucocorticoids and fibroblast growth factor-21 (FGF21)
(Fig. 5).8,25,36,69-73 Conversely, both MAT and circulating
adiponectin are decreased in Gaucher’s disease.74-76 This

suggests that loss of MAT may lead to hypoadiponecti-
nemia, consistent with our above discussion of lipody-
strophies (Table 2). Whether these conditions also
feature a significant positive correlation between MAT
and circulating adiponectin has yet to be established;
however, such an association has been noted in patients
with Cushing’s Disease.77 Finally, our recent work fur-
ther reveals that both MAT and circulating adiponectin
increase in patients undergoing chemotherapy or radio-
therapy for cancer.4 Based on these observations, it is
tempting to speculate that MAT influences circulating
adiponectin levels in states other than CR (Fig. 5). This
relationship might also extend beyond adverse clinical
conditions. Indeed, ethnic differences in healthy adults
have been reported for both circulating adiponectin and
BM adiposity, with each of these being higher in Cauca-
sians than in adults of African origin.78,79 Moreover, a
positive correlation between MAT volume and serum
adiponectin was recently reported in healthy Caucasian
girls.80

The above evidence suggests that MAT might contrib-
ute to circulating adiponectin beyond CR, both in clinical
contexts and in healthy populations (Fig. 5). However, it
must be emphasized that, in other conditions, there is
discordance between MAT content and circulating adi-
ponectin. For example, heart failure is associated with
hyperadiponectinemia, despite MAT loss.81,82 Similarly,
circulating adiponectin concentrations in newborn
humans are 2- to 3-fold higher than in healthy adults,83

even though MAT is essentially absent in newborns.81

Finally, in adult humans it is well established that circu-
lating adiponectin levels are higher in females than in
males;5 however, most studies to date suggest that males
have more MAT than females.25 Thus, while increases in
MAT are paralleled by increased circulating adiponectin
in many conditions, this relationship is not universal
(Fig. 5).

MAT and adiponectin in obesity

This discordance is perhaps most notable in the case of
obesity and insulin resistance. When we began to study
the relationship between MAT and circulating adiponec-
tin it had not yet been established if MAT volume was
altered in such adverse metabolic conditions; however,
more recent studies report increased MAT in high-fat-
diet-fed mice84-86 and in humans with visceral obesity
and dyslipidemia or type 2 diabetes.87-89 Unfortunately
none of these studies assessed circulating adiponectin,
and therefore it remains unclear if this is related to MAT
content in such conditions. The clinical studies were also
limited to small groups of subjects and therefore await
verification in larger cohorts. Nevertheless, these findings
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raise the question: if MAT truly is a source of adiponec-
tin, then why does circulating adiponectin decrease in
obese, insulin-resistant states, when MAT increases?

Although this question might quickly spring to mind,
by this logic one would also question if WAT is a source
of adiponectin; after all, obesity is defined by excessive
WAT accumulation, yet this has not cast doubt on the
contribution of WAT to circulating adiponectin. Of
course, it is now well established that obesity and insulin
resistance lead to WAT dysfunction, including excessive
inflammation and oxidative stress, which impairs adipo-
nectin production from WAT. Increasing evidence dem-
onstrates that obesity and insulin resistance also
promote oxidative stress and inflammation within
BM.90-92 Adipocytes in MAT might be particularly sus-
ceptible to such stress, given their relatively high expres-
sion of proinflammatory genes.36 Thus, it seems likely

that obesity would also lead to adipocyte dysfunction
within MAT, thereby compromising production of adi-
ponectin. Determining how obesity impacts MAT func-
tion must therefore be a priority of future research
(Figs. 2 and 5).

Concluding Perspectives

Our research to date provides compelling evidence that
MAT contributes to increased circulating adiponectin dur-
ing CR. The basis of this phenomenonmight be further clar-
ified by studies beyond MAT, including more widespread
analysis of adiponectin secretion from WAT and its clear-
ance from the circulation, each of which has been largely
ignored (Table 1). However, given the limited study of
MAT (Fig. 1), it is not surprising that many of the key ques-
tions are focused on this tissue. For example, to what extent

Figure 5. Potential relationships between MAT and circulating adiponectin in health and disease. Circulating adiponectin is represented
as low-molecular-weight (LMW) trimers, middle-molecular-weight (MMW) hexamers, and high-molecular-weight (HMW) dodecamers,
although HMW forms may consist of even larger multimers. MAT content varies in ‘normal’ physiological and developmental contexts,
with further decreases or increases occurring in adverse or pathological conditions, as indicated. In some cases decreases or increases in
MAT are paralleled by similar changes in circulating adiponectin (e.g. decreases in CGL1, CGL2, CGL4; increases in CR, AN), while in other
conditions MAT and circulating adiponectin change in opposite directions (e.g., heart failure; obesity). Future studies must address the
relative contributions of rMAT and cMAT (represented here by micrographs of rMAT and cMAT from rabbits), as well as how these
diverse physiological and clinical conditions impact not just MAT content, but also MAT function.
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does adiponectin expression and secretion vary between
rMAT, cMAT, and WAT, and what are the underlying
mechanisms (Fig. 2)? Moreover, are these characteristics
affected by CR, obesity, aging, lipodystrophies, or other
physiological or pathological conditions in which MAT
and/or circulating adiponectin is altered (Figs. 2 and 5)?
Similarly, to what degree does the relationship between
MAT and circulating adiponectin extend to other physio-
logical or pathological conditions (Fig. 5)?

The function of MAT as an endocrine organ could
have enormous implications. Our studies in Ocn-
Wnt10b mice suggest that MAT expansion contributes
to CR-associated adaptations in skeletal muscle,4 demon-
strating that MAT can exert systemic effects. However,
whether this is through adiponectin or other endocrine
factors remains to be determined, as does the full extent
of MAT’s systemic actions during CR. The endocrine
impact of MAT in other contexts, beyond CR, also
demands further investigation.

While it remains possible that MAT produces other
endocrine factors, thus far we have focused on adiponec-
tin. Here, a major point of interest would be to determine
if MAT influences circulating adiponectin in healthy
humans. As mentioned above, one study reports a positive
relationship between MAT and adiponectin in healthy
girls, albeit in a rather limited context.80 Several genome-
wide association studies have identified genetic variants
that influence circulating adiponectin,93-95 and therefore it
would be informative to investigate if these variants also
impact MAT formation or function. Indeed, huge insights
into MAT biology, beyond its relationship to adiponectin,
might be gleaned from more widespread analysis of MAT
across larger human populations. Achieving this goal
would not be straightforward. For example, determination
of MAT content non-invasively relies on MRI, which is
expensive and time consuming, making large-scale studies
difficult. Even if this were achievable, would such meas-
urements of MAT content alone be sufficient to inform
us about the contribution of MAT to circulating adiponec-
tin, or indeed to other physiological or pathological phe-
nomena? As for WAT in obesity, alterations in MAT
function, perhaps undetectable by MRI, might have a far
greater impact than changes in MAT content alone
(Fig. 5). This underscores the need to more directly ana-
lyze MAT function though both preclinical and clinical
studies, including establishing the global characteristics of
MAT in comparison to other adipose depots.

Clearly, there is much work to be done; however, interest
in MAT formation and function is growing and research in
this field is gathering momentum. The future therefore
holds great promise for further expanding our understand-
ing of MAT, not only as a source of adiponectin, but also
more broadly in the context of health and disease.

Abbreviations

AGL acquired generalized lipodystrophy
AN anorexia nervosa
APL acquired partial lipodystrophy
BAT brown adipose tissue
BM bone marrow
C/EBPa CCAAT/enhancer-binding protein-a;
CGL congenital generalized lipodystrophy
cMAT constitutive MAT
CR caloric restriction
FABP4 fatty-acid-binding protein 4
FGF21 fibroblast growth factor-21
FPLD familial partial lipodystrophy
HMW High-molecular-weight adiponectin
HSL Hormone-sensitive lipase
LMW Low-molecular-weight adiponectin
MAT marrow adipose tissue
MMW Middle-molecular-weight adiponectin
PPARg peroxisome proliferator-activated receptor-g;
rMAT regulated MAT
SBA separation-based anorexia
TZD thiazolidinedione
WAT white adipose tissue
iWAT inguinal WAT
gWAT gonadal WAT
pWAT perirenal WAT
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