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Abstract. A set of proteins reflecting the prognosis of patients 
have clinical significance since they could be utilized as predic-
tive biomarkers and/or potential therapeutic targets. With the aim 
of finding novel diagnostic and prognostic markers for glioblas-
toma (GBM), a tissue microarray (TMA) library consisting of 62 
GBMs and 28 GBM-associated normal spots was constructed. 
Immunohistochemistry against 78 GBM-associated proteins 
was performed. Expression levels of each protein for each patient 
were analyzed using an image analysis program and converted 
to H-score [summation of the intensity grade of staining (0-3) 
multiplied by the percentage of positive cells corresponding 
to each grade]. Based on H-score and hierarchical clustering 
methods, we divided the GBMs into two groups (n=19 and 37) 
that had significantly different survival lengths (p<0.05). In 
the two groups, expression of nine proteins (survivin, cyclin E, 
DCC, TGF-β, CDC25B, histone H1, p-EGFR, p-VEGFR2/3, 
p16) was significantly changed (q<0.05). Prognosis-predicting 
potential of these proteins were validated with another inde-
pendent library of 82 GBM TMAs and a public GBM DNA 
microarray dataset. In addition, we determined 32 aberrant or 
mislocalized subcellular protein expression patterns in GBMs 

compared with relatively normal brain tissues, which could be 
useful for diagnostic biomarkers of GBM. We therefore suggest 
that these proteins can be used as predictive biomarkers and/or 
potential therapeutic targets for GBM.

Introduction

Glioblastomas (GBMs), the most common primary brain tumor 
in adults, show a median survival of <12 months due to its 
resistance to current medical treatments. Several genetic aber-
rations have been shown in GBMs (1). However, the molecular 
markers that correlate with the clinical outcome of GBMs 
are still required to establish the comprehensive molecular 
fingerprint. Such molecular profiling may eventually lead to 
diagnostic biomarkers and/or targeted therapeutic approaches 
that can improve the clinical outcome (2).

The Cancer Genome Atlas Research Network provided an 
integrative analysis of mRNA and DNA data (3). The landmark 
study was of particular importance because they integrated 
a large number of datasets and presented an unbiased and 
systematic cancer genome analysis (4). Yet, what is still 
lacking is a robust protein and clinical dataset, which could 
provide functional level understanding and thereby comple-
ment genomic and transcriptomic data. Therefore, we applied 
the tissue microarray (TMA) analysis to acquire the protein 
expression data (5,6).

Previous reports demonstrated brain tumor profiling using 
TMA is feasible (2,7-10). However, the conventional profiling 
has inherent limitations because they only provide categorical 
values. Moreover, acquisition of TMA data is often plagued with 
high subjectivity originating from intra- and inter-observer vari-
ations (11). Now that image analysis technique has improved, it 
would benefit us to use it to reduce systematic errors and human 
bias (12,13). Therefore, here, we used image analysis tool to 
more objectively quantify the values. 

We applied the TMA technology for an exhaustive immu-
noprofiling of GBMs with integrating clinical variables in 
an attempt to identify new biomarkers for diagnostic and/or 
prognostic utility.
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Materials and methods

Patients and tissue collection. Sixty-two GBM samples were 
obtained at Samsung Medical Center (Seoul, Korea) with 
written informed consent in accordance with the institutional 
review board between January 2004 and December 2006 
(original set). Patients were managed according to established 
diagnostic and therapeutic protocols, including surgical resec-
tion and subsequent chemoradiotherapy. A macroscopic total 
resection was performed in 47 of 62 patients (75.8%), a partial 
resection in 14 of 62 patients (22.6%), and a biopsy only in 
one of 62 patients (1.6%). Tumor samples were re-evaluated by 
neuropathologists to confirm the diagnosis according to World 
Health Organization criteria. All patients underwent subse-
quent radiotherapy (60 Gy in 2 Gy fractions) after surgical 
resection. Fifty of 62 patients received temozolomide concur-
rent chemoradiotherapy with a median of 4 cycles (range, 1-9 
cycles). However, the 12 others (20%) did not receive chemo-
therapy because of clinical deterioration during radiotherapy. 
There was no follow-up loss.

Another independent set consisting of 82 GBM patients 
diagnosed between January 2004 and December 2007 from 
the same institute was used for validation (validation set). The 
82 GBMs of the validation set were also managed according 
to established diagnostic and therapeutic protocols. A macro-
scopic total resection was performed in 59 of 82 patients (72.0%), 
a partial resection in 19 of 82 patients (23.2%), and a biopsy 
in 4 of 82 patients (4.9%). All patients underwent subsequent 
radiotherapy after surgical resection. Fifty of 82 patients had 
temozolomide concurrent chemoradiotherapy with a median of 
5 cycles (range, 1-17 cycles). There were 6 follow-up losses. 

Of the 82 patients, 39 were included in both the original 
and validation datasets owing to the difficulty of acquiring 
adequate number of surgical samples or public TMA data of 
GBMs. Instead, the surgical samples of the 39 GBMs were 
newly processed for TMA and expression of proteins was 
re-examined. Detailed patients' clinical data of the original 
dataset was also reported in Kong et al (14).

Construction of tissue microarray. Surgical samples were 
fixed in 10% formalin solution (Sigma-Aldrich) for 24 h at 
4˚C within 24 h after surgery and then paraffin-embedded. 
A representative area of each GBM was marked on an H&E 
section of each patient's paraffin block avoiding necrosis and 
extensively vascularized area. Corresponding tissue core of 
2 mm diameter was extracted from the original donor block 
using an arraying machine (MTA-1, Beecher Instruments). 
The cores were fit into a vertical hole that was bored in a 
recipient paraffin block. Recipient blocks were incubated at 
58˚C for 5 min, pressed on a hot plate for 3 min, and cooled in 
ice water to enable tissue cores to integrate into the recipient 
block. Sections of 4 µm thickness were cut from each array 
block.

Selection of biomarkers. Recently, frequent genetic alterations 
of GBM in three critical signaling pathways were reported by 
the Cancer Genome Atlas (3). Accordingly, expressions of i) 
receptor tyrosine kinase (RTK)-RAS-PI(3)K pathway proteins 
(X05, X10, X12, X38, X61, X63, X64, X66, X67, X68, X69, 
X70, X71, X76, X77, X78, X82, X83), ii) p53 signaling proteins 

(X28, X35, X36), iii) RB signaling proteins (X08, X14, X15, 
X31, X32, X33, X34, X37, X39, X50) were selected (Table I). 
Since the profound characteristics of GBM include invasion 
of tumor cells and proliferation of endothelial cells, proteins 
promoting cell invasion (X43, X44, X45, X79, X80) and angio-
genesis related proteins (X46, X47, X51, X54, X60, X72, X73, 
X74, X75) were also examined (Table I). DNA and histone 
modification (X01, X17, X18, X19, X20, X24, X25) and neural 
stem cell markers (X06, X07, X21, X40, X49, X52, X53, X56, 
X57, X58, X65, X84) were included regarding that cancer 
stem cells of GBM which may be related with radio- and/or 
chemo-resistance, could share molecular characteristics with 
neural stem cells and have alteration in the DNA and histone 
methylation and/or acetylation (Table I). Several common 
oncogene (X02, X04, X09, X11, X16, X22, X23, X27, X42) 
and apoptosis regulators (X03, X13, X41, X55, X81) were 
also analyzed. Phosphorylation-specific antibodies against 
p70 S6 kinase (X61), Akt (X63), PDGFR-α (X68), PDGFR-β 
(X71), VEGFR2 (X74), VEGFR2/3 (X75), EGFR (X82) were 
included since they are the most important targets of newly-
developing targeting agents (Table I).

Immunohistochemistry and generation of protein expres-
sion values. Immunohistochemical staining against 78 
tumor-associated gene products was done using a standard 
procedure (14). Briefly, sections of TMAs were prepared on 
the slide, baked at 55˚C for 30 min, deparaffinized in xylene 
and rehydrated in graded concentrations of ethanol. Antigens 
were retrieved in 10 mM citrate buffer (pH 6.0, Dako) for 
5 min in MicroMED T/T Mega microwave (Milestone). 
Endogenous peroxidase activity was blocked by incubation 
in 0.3% hydrogen peroxide in methanol. Primary antibodies 
(overnight at 4˚C, Table I), biotinylated secondary antibodies 
(1:200, 1 h at room temperature, Vector) and an ABC kit 
(1 h at room temperature, Vector) were applied sequentially. 
Diaminobenzidine tetrahydrochloride (DAB) was used as the 
enzyme substrate. Specificity of primary antibodies was vali-
dated by i) no immunoreactivity in GBM sections which were 
reacted without primary antiserum as negative controls, and 
ii) comparing staining pattern of each antibody with previous 
studies that used the same antibody.

One hundred and eight subcellular location-specific proteins 
were extracted based on previously reported cellular localiza-
tions of 78 proteins (e.g., Myc_Cytoplasm). Immunostained 
TMA slides were scanned by Aperio Scan Scope CS System and 
converted into image files. Staining intensity of each protein 
(grade 0, negative; 1, weak but detectable above control; 2, 
moderate; and 3, strong) and percentage of positively stained 
cells for each intensity were automatically analyzed in the 
whole area of each spot by TissueMine (Bioimagene Co.) (15). 

TissueMine determines positive versus negative staining 
based on the colorimetric differences between stained and 
unstained subcellular location (i.e. nuclei; positive nuclei demon-
strating brown staining consisted of pixels with red greater than 
blue). These algorithms then used the gray scale (0-255) to 
quantitate intensity of staining. The grade of intensity is deter-
mined by percentage of positive cells. For example, the grade 1 
means that the percentage of positive cells is between 10-25%.

For each observed tissue component, a summary value we 
refer to as H-Score was calculated. This consists of a sum of the 
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percentages of positively stained cells multiplied by a weighted 
intensity of staining: 

                                    3
                          H-score = ∑Pi * i
                                   i=0

where Pi is the percentage of stained cells in each intensity 
category, and i is the intensity for i = 0, 1, 2, 3 (16-20). Kruskal-
Wallis test and plotting were performed to verify the utility of 
H-score and to confirm the correlation of it with the manual 
grade. The validity of this automated process was confirmed 
by clinical experts (Fig. 1).

Data analysis 
Exclusion criteria and normalization. We excluded samples 

according to the exclusion criteria: i) GBMs missing >15% of 
the protein expression values, ii) recurrent GBMs, iii) GBMs 

without clinical data. To remove non-biological origin of varia-
tion between arrays, we performed the quantile-normalization 
on the assumption that the distribution of protein expressions 
for each patient would be the same, similar to what is already 
observed for patient's gene expression distribution (21). In 
the quantile-normalization, a qqplot was utilized to compare 
distribution of datasets from patients. Projecting each value 
onto the unit diagonal in the qqplot makes distributions iden-
tical. To adapt the method for TMA data, we transposed TMA 
data matrix to set columns and rows to samples and proteins 
and used normalize.quantiles function in affy package of R 
program.

Hierarchical clustering and survival analysis. Hierarchical 
clustering (distance, standard Euclidean distance; criterion, 
complete-link) was performed using the R program package (22). 
With clustering results, we performed Kaplan-Meier survival 

Figure 1. Comparison of scoring methods between manual grade and H-score from image analysis result. Representative expressions of survivin (A) and APC 
(B) proteins studied by IHC on TMAs and their grade score and H-score. Magnification, x50. In the right column, plots show that grades of spots and their rank 
values of H-score have high correlation. From Kruskal-Wallis test, statistically significant differences of three or four groups can be determined. For survivin: 
p<0.05; for APC: p<0.001.

  A

  B
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Table I. The 78 antibodies used for immunohistochemical study.

Code Antibody Source Dilution Retrieval Localization No. of Observed
    method  analyzed expression pattern
      patients in GBMs

X01 Acetyl H3(lys9) Cell Signaling, 9671S 1:100 Microwave N 62 N
X02 APC GeneTex, GTX16794 1:20 Microwave C 62 C, M
X03 Bax Invitrogen, 33-6400 1:100 Microwave C 62 C
X04 c-Fos Neomarker, RB-9413-P1 1:100 Microwave N 62 N
X05 c-Met Invitrogen, 370100 1:50 Microwave M 62 C, M
X06 CD24 Lab Vision, MS-1279 1:20 Microwave M 62 C, M
X07 CD44 Lab Vision, MS-668 1:100 Microwave C, M 62 C, M
X08 CDC25B Lab Vision, MS-123 1:10 Microwave C, N 62 N
X09 c-Jun Calbiochem, OP55 1:40 Microwave N 62 C, N
X10 c-K-Ras GeneTex, GTX16819 1:10 Microwave C 62 C
X11 c-Myc Lab Vision, MS-139 1:50 Microwave N 62 C, N
X12 c-N-Ras GeneTex, GTX13054 1:10 Microwave C 62 C
X13 Cytochrome C Lab Vision, MS-1192 1:100 Microwave C 62 C
X14 Cyclin D1 Lab Vision, RM-9104 1:50 Microwave N 62 N
X15 Cyclin E Lab Vision, MS-1060 1:20 Microwave N 62 N
X16 DCC BD, 554223 1:100 Microwave N 62 C
X17 Dimethyl histone H3 (lys4) Upstate, 07-030 1:100 Microwave N 62 N
X18 Dimethyl histone H3 (lys9) Upstate, 07-212 1:100 Microwave N 62 N
X19 Dimethyl histone H4 (arg3) Upstate, 07-213 1:100 Microwave N 62 N
X20 Dnmt1 GeneTex, GTX13537 1:200 Microwave N 62 C, N
X21 E-cadherin Zymed, 1379115 1:50 Microwave M 62 C
X22 E2F-1 Lab Vision, MS-879 1:20 Microwave N 62 C, N
X23 FHIT Lab Vision, MS-9471 1:200 Microwave C 62 C
X24 Histone H1 (B419) GeneTex, GTX72121 1:50 Microwave N 62 N
X25 Histone H3 (dimethyl K9) Abcam, ab7312 1:100 Microwave N 62 N
X27 MLH1 BD, 551091 1:25 Microwave N 62 N
X28 MDM2 Lab Vision, MS-291 1:100 Microwave N 62 N
X31 p16 BD, 550834 1:10 Microwave C, N 62 C, N
X32 p18 Lab Vision, MS-858 1:20 Microwave N 62 C, N
X33 p21 Lab Vision, MS-891 1:40 Microwave N 62 C, N
X34 p27 Lab Vision, MS-256 1:40 Microwave C, N 62 C, N
X35 p53 Lab Vision, MS-186 1:30 Microwave N 62 N
X36 p63 Lab Vision, MS-1081 1:50 Microwave N 62 C, N
X37 p130 Lab Vision, MS-866 1:40 Microwave N 62 N
X38 PTEN Lab Vision, MS-1601 1:20 Microwave C, M 62 C, M
X39 Rb Lab Vision, RB-1441 1:40 Microwave N 62 N
X40 RAR-β Lab Vision, MS-1342 1:20 Microwave C, N 62 C, N
X41 Survivin Lab Vision, MS-1202 1:25 Microwave C, N 62 C, N
X42 Telomerase Lab Vision, RB-10328 1:40 Microwave N 62 N
X43 TGF-α GeneTex, GTX16768 1:10 Microwave C, M 62 C, M
X44 TGF-β GeneTex, GTX21279 1:1000 Microwave C 62 C, M
X45 TIMP-3 Lab Vision, RB-1541 1:10 Microwave C 62 C, M
X46 VEGF Lab Vision, MS-350 1:50 Microwave C, M 62 C, M
X47 VEGFR1 Novus Biologicals, NB100-685 1:10 Microwave C, M 62 C, M, N
X49 Notch Cell Signaling, val 1744 1:200 Microwave C, M, N 62 C, M, N
X50 Cyclin E (SC-198) Santa Cruz, SC-198 1:200 Microwave N 62 C, N
X51 CD31 Dako, M0823 1:200 Microwave M 62 C, N
X52 Id4 Santa Cruz, SC-13047 1:100 Microwave C 62 C, M
X53 pGP Dako, M3521 1:50 Microwave M 62 C, M
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analysis and log-rank test to compare the clinical outcomes. The 
influence of possible compounding factors was assessed by Cox 
proportional hazard models.

Selection of biomarker candidates. Two clusters differenti-
ated by the hierarchical clustering from the original dataset 
were compared by Student's t-test which is then used for finding 
differentially expressed proteins. We performed multiple testing 
corrections using Benjamini & Hochberg false discovery rate 
to correct for the occurrence of false positives (23).

Supervised analysis using the classification methods. We 
used supervised methods [support vector machine (SVM), 
random forest (RF), and general linear model (GLM)] to 
confirm the utility of whether the set of biomarker protein 
candidates distinguished the groups appropriately into survival 
status. Among the 56 cases, two-thirds of the cases from each 
group were randomly assigned to the training set, and the 
remaining one-third was assigned to the test set. A receiver 
operating characteristic (ROC) curve was constructed, and the 

Table I. Continued.

Code Antibody Source Dilution Retrieval Localization No. of Observed
    method  analyzed expression pattern
      patients in GBMs

X54 SMA Dako, M0851 1:100 Microwave C 62 C, N
X55 MIB-1 Dako, M7240 1:300 Microwave N 62 N
X56 SOX-2 R&D, MAB2018 1:50 Microwave N 62 C, N
X57 Nestin Abcam, ab5968 1:500 Microwave C 62 C
X58 Musashi Chemicon, ab5977 1:500 Microwave C 62 C, N
X60 SMA (Abcam) Abcam, ab5694 1:300 Microwave C 62 C
X61 p-p70 S6 kinase Cell Signaling, 9204C, N 1:100 Microwave C 62 C, N
 (Thr421/Ser424)
X63 p-AKT (Ser473) Cell Signaling, 9277 1:25 Microwave C, N 62 C, N
X64 Akt Cell Signaling, 9272 1:50 Microwave N 62 C, N
X65 CD133 Abcam, 19898 1:200 Microwave M 62 C, M
X66 PDGF-A Santa Cruz, SC-128 1:100 Microwave C, M 62 C, N
X67 PDGFR-α Santa Cruz, SC-338 1:100 Microwave C, M 62 C, M
X68 p-PDGFR-α (Tyr720) Santa Cruz, SC-12910 1:100 Microwave C, M 62 C, M
X69 PDGF-B Santa Cruz, SC-127 1:200 Microwave C, M 62 C
X70 PDGFR-β Santa Cruz, SC-4327 1:100 Microwave C, M 62 C, M
X71 p-PDGFR-β (Tyr1021) Santa Cruz, SC-12909-R 1:100 Microwave M 62 C, M
X72 VEGF Santa Cruz, SC-152 1:300 Microwave C, M 62 C
X73 VEGFR2 Cell Signaling, 2479 1:125 Microwave C, M 62 C, M
X74 p-VEGFR2 (Tyr1175) Cell Signaling, 2478 1:300 Microwave C, M 62 C, M
X75 p-VEGFR2/3 Calbiochem, PC460 1:2000 Microwave C, M 62 C, M
 [GLARDIpYKDPDpYVRKGD(C)] 
X76 EGF Santa Cruz, SC-275 1:25 Microwave C, M 62 C, M, N
X77 EGFR Santa Cruz, SC-03 1:50 Microwave M 62 C, M
X78 p-EGFR (Tyr1173) Biosource, 44-794G 1:50 Microwave C, M 62 C, M
X79 MMP2 Chemicon, ab807 1:200 Microwave C, M 62 C, M
X80 MMP9 Chemicon, ab13458 1:100 Microwave C, M 62 C
X81 Cleaved caspase-3 Cell Signaling, 9661 1:200 Microwave C, N 62 C, N
X82 Wile-type EGFR Dako, M7298 1:1000 Microwave M 62 C, M
X83 EGFR vIII Abcam, ab52104 1:50 Microwave C, M 62 C, M
X84 Notch Abcam, ab27526 1:200 Microwave C, M, N 62 C, M, N

C, cytoplasm; M, membrane; N, nucleus; APC, Adenomatous polyposis coli; CDC25B, cell division cycle 25 homolog B; DCC, deleted in colorectal carcinoma; 

Dnmt1, DNA methyltransferases 1; E2F-1, E2F transcription factor 1; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; FHIT, fragile histi-

dine triad; Id4, inhibitor of differentiation 4; MDM2, murine double minute-2; MIB-1, mindbomb homolog 1 (Drosophila); MLH1, mutL homolog 1; MMP, matrix 

metallopeptidase; PDGF, platelet-derived growth factor; PDGFR, platelet-derived growth factor receptor; Pgp, P-glycoprotein; PTEN, phosphatase and tensin 

homolog; RAR-β, retinoic acid receptor; Rb, retinoblastoma protein; SMA, α-smooth muscle actin; Sox-2, sex determining region Y-box 2; TGF, transforming 

growth factor; TIMP-3, tissue inhibitor of metalloproteinase; VEGF, vascular endothelial growth factor; VEGFR1, vascular endothelial growth factor receptor 1.
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area under the curve (AUC) was calculated. The class, defined 
as the prognosis outcome for any patient's protein expression 
data using the output computed by the model, was predicted by 
R program package (22). 

Validation of the biomarkers. We validated our ten prog-
nostic markers against another independent GBM TMA dataset. 
Same preprocessing works (immunohistochemistry, genera-
tion of protein expression values, normalization, hierarchical 
cluster, survival analysis) were performed. We re-evaluated 
the 10 biomarkers using a publically available DNA micro-
array data [GSE4271 from the gene expression omnibus 
(24,25)]. We normalized the gene expression CEL files using 
Robust Multichip Averaging procedure, and PM-MM differ-
ence model was used to obtain the expression values. With 
nine candidate genes which corresponded to our ten prognostic 
markers, we calculated the Euclidean distance between the 
patients and constructed a corresponding distance matrix. The 
resulting nine-dimensional data was rescaled to a two-dimen-
sional map using the multidimensional scaling (MDS) method. 
We performed the k-means clustering on the MDS result with 
the number of clusters set to two (k=2) to correspond to the 
clustering performed in TMA analysis. Survivals of the two 
groups were compared by the Kaplan-Meier survival analysis 
and log-rank test.

Results

Expression profiling of 108 subcellular location-specific 
proteins. The expressions of 78 proteins (Table I) were studied 
by immunohistochemistry on TMAs containing 62 GBM and 
28 tumor-associated normal (normal brain tissue extracted 
around tumor tissue) spots proteins. For each protein, grade 
value (0-4) of each spot was made by pathological reading. 
H-scores (a sum of the percentages of positively stained cells 
multiplied by a weighted intensity of staining: grade 0, nega-
tive; 1, weak but detectable above control; 2, moderate; and 
3, strong) were also generated by an image analysis program 
(12). In the generation of H-score, each protein was read in 
each subcellular localization, i.e., nucleus, cytoplasm and 
membrane, based on previously reported cellular localiza-
tions of 78 proteins (e.g., Myc_Cytoplasm). Consequently, we 
obtained 108 subcellular location-specific proteins (Table I). 
According to criteria for exclusion, 56 tumor spots and 26 

normal spots were included in further analysis (male, 34; 
female, 22).

To verify the utility of the H-score, we compared manually 
constructed numerical values against automatically generated 
H-scores in 20 randomly selected proteins. We concluded that 
using H-score was reasonable for profiling protein expressions 
as those values were well-correlated (p<0.05, Kruskal-Wallis 
test, Fig. 1).

Hierarchical clustering and survival analysis. The H-scores 
were normalized with quantile normalization to make the data 
statistically comparable. We clustered the normalized data 
with hierarchical clustering method. Tumor and relatively-
normal spots were well-divided (p=9.9904x10-16, Fisher's exact 
test), confirming that this method was suitable for separating 
spots into groups having characteristic protein expressions. 
Using only tumor spots, we performed quantile normaliza-
tion (Fig. 2A) and clustering analysis. The combined protein 
expression patterns defined 56 GBMs into cluster 1 (n=19) and 
cluster 2 (n=37) (Fig. 2B).

We performed survival analysis to determine whether 
the two clusters represent distinct prognostic subgroups. 
Indeed, cluster 2 had a significantly better survival than 
cluster 1 [median survival (months) of cluster 1, 11.7 (range: 
0.7-20); cluster 2, 13.2 (range: 1.4-30.4), p<0.05, log-rank 
test, Fig. 2C]. The clinical characteristics of the two groups 
showed no significant difference (Table II). On multivariate 
survival analysis, molecular classification (clusters 1 and 2) 
and age (<70 and ≥70 years) were the most significant factors 
to distinguish patients by prognosis (p<0.01 and p<0.01, 
respectively, Table III). Based on these significant results, 
we determined that two groups from clustering analysis were 
clinically distinct.

Biomarker candidates and supervised analysis. Student's t-tests 
were utilized to identify proteins whose expression significantly 
differed between the two groups with Benjamini & Hochberg 
False Discovery Rate. Ten subcellular location-specific proteins 
were identified (Table IV, q<0.05, CDC25B_nuclear, cyclinE_
nuclear, p16_nuclear, p16_cytoplasm, TGF-β_cytoplasm, 
histone_nuclear, p.VEGFR2.3_cytoplasm, DCC_nuclear, 
survivin_nuclear, p.EGFR_cytoplasm). Of these, four proteins 
were overexpressed while the remaining six were underexpressed 

Table II. Clinical characteristics of patients from the original set.

Characteristics  Cluster 1 (no.) Cluster 2 (no.)

Patients 19 37
Gender (male:female) 11:8 23:14
Mean age (years) 51.6 55.6
Pathologic subtype (primary:secondary) 18:1 36:1
Surgical treatment
 Total resection (%) 12 (63.2%) 29 (78.4%)
 Partial resection (%)   7 (36.8%)   7 (18.9%)
 Biopsy (%)   0 (0.00%)   1 (2.70%)
RT + temozolomide (%) 15 (78.9%) 29 (78.4%)
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Figure 2. Classification of 56 patients by prognosis based on 108 protein expression values. (A) Boxplot of protein expression values before (left) and after (right) 
quantile normalization. The plot shows the quantile normalized distribution of protein expression values for each patient. Horizontal axis represents individual 
patients. Vertical axis represents H-score. (B) Heatmap and dendrogram as a result of hierarchical clustering of GBM samples. Top dendrogram represents 
clustering of patients. Left dendrogram represents clustering of proteins. Of two patient branches, samples in the left branch represent cluster 1 and samples in 
the right branch represent cluster 2, consisting of 19 and 37 patients, respectively. (C) Univariate survival analysis of overall survival by Kaplan-Meier method. 
Kaplan-Meier survival plot of the two clusters of patients defined by the hierarchical clustering. Cluster 1 is the poor survival group. The log-rank test shows that 
the difference between two curves is significant (p<0.05).

  A

  B

  C
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in cluster 1 (Fig. 3). With a more stringent statistical criterion 
(q<0.01), CDC25B_nuclear, cyclinE_nuclear, p16_nuclear and 
p16_cytoplasm were significantly different. Functional catego-
rization of these proteins using the PANTHER (26) ontology 
database showed that they are significantly related with p53 
pathway, angiogenesis, cell cycle, Ras pathway and VEGF 
signaling pathway (p<0.05).

Three supervised (classification) models (SVM, RF and 
GLM) were used to confirm that these proteins were available 
for classification for prognosis of GBMs. SVM shows the best 
performance in our data. The prediction accuracy of SVM for 
patient survival was 87.5% with 0.05 adjusted p-value (AP) 
and 80.4% with 0.01 AP. The sensitivity for better prognosis 
group of classifier for patient survival was 100% (specificity: 
63.2%) with 0.05 AP and 94.6% (specificity: 52.6%) with 0.01 
AP. ROC curves for 0.05 AP and 0.01 AP showed that clas-
sification model using 0.05 AP performs better than 0.01 AP 
(data not shown).

Interestingly, survivin_nuclear was the most significant 
factor for 0.05 AP and cyclinE_nuclear was the most signifi-
cant factor for 0.01 AP for each classification model in GLM. 
Contrary to our expectations, the same protein was not the 
most important factor in both models. This discrepancy was, 
however, rectified when considering that these two proteins 

both belong to the chemo-radiation-resistant group (poorer 
prognosis group). In addition, further analysis by protein clus-
tering showed that they belonged to the same cluster, implying 
that these two proteins had a similar pattern. Consequently, 
with this analysis, we could confirm that the result of hierar-
chical clustering, unsupervised method was well explained by 
supervised methods.

Validation of selected biomarker candidates. In order to vali-
date the clinical significance of the 10 markers, an independent 
TMA consisting of 82 GBMs was analyzed. We obtained expres-
sion values of the 10 subcellular location-specific proteins and 
calculated H-scores. Two groups were separated (cluster 1A and 
2B, n=59 and 23, respectively). These two groups also showed 
statistically significant difference in the survival [median survival 
(days) of cluster 1A, 391 (range, 42-730); cluster 2B, 415 (range, 
22-929), p<0.05, log-rank test, Fig. 4A]. The clinical charac-
teristics of the two groups showed no significant difference 
(Table V). These results showed that the biomarkers obtained 
from the original set are valid to another independent data set.

Protein expression data are arguably more useful than tran-
scriptional data because it provides the data at the functional 
level of cells, and thus it is not uncommon to observe differ-
ences in the expression of proteins and mRNAs. Nevertheless, 

Table III. Cox proportional hazards multivariate analysis in overall survival.

Variable Hazard ratio (95% CI) p-value

Molecular classification (cluster 1 vs. cluster 2) 0.342 (0.154-0.7570) <0.01
Age (<70 years vs. ≥70 years) 4.728 (1.683-13.286) <0.01
Karnofsky performance status (KPS) (<70 vs. ≥70) 2.496 (0.593-10.495) 0.21
University of California San Francisco (UCSF) gradea 0.641 (0.444-0.9250) 0.018
Extent resection 0.340 (0.097-1.1930) 0.092

aThe UCSF grade was determined by the spatial relationship of the contrast-enhancing lesion (CEL) with the subventricular zone (SVZ) and 
cortex (46). Classification was as follows: group I, CEL contacting SVZ and infiltrating cortex; group II, CEL contacting SVZ but not involving 
cortex; group III, CEL not contacting SVZ but involving cortex; and group IV, CEL neither contacting SVZ nor infiltrating cortex. 

Table IV. Adjusted p-value for Student's t-test for each protein and cellular location pairs.

Code Protein Localization Adjusted p-value Up-/down-regulated at
    chemo-radiation-resistant group

X50 Cyclin E Nuclear 0.00744 Up
X16 DCC Nuclear 0.01550 Up
X41 Survivin Nuclear 0.02950 Up
X44 TGF-β Cytoplasm 0.01040 Up
X08 CDC25B Nuclear 0.00744 Down
X24 Histone H1 (B419) Nuclear 0.01130 Down
X78 p-EGFR Cytoplasm 0.02950 Down
X75 p-VEGFR2/3 Cytoplasm 0.01220 Down
X31 p16 Cytoplasm 0.00744 Down
X31 p16 Nuclear 0.00744 Down
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correlation between the two types of data can be very mean-
ingful. Therefore, we used DNA microarray data to evaluate 
the 10 biomarkers acquired through TMA data analysis as 
further validation of our approach. We selected 55 GBMs from 
high grade gliomas from the microarray data (GSE4271) of 
Phillips et al (24), which had both expression and clinical data. 
k-means clustering was carried out to group GBMs using genes 
corresponding to the biomarkers that we selected. We obtained 
two clusters consisting of 30 (cluster A) and 25 GBMs (cluster B). 
The survival analysis showed that the prognostic difference of 
the two groups was significant [median survival (months) of 
cluster A, 13.3 (range, 2.8-55.1); cluster B, 22.2 (range, 0.7-75.1), 
p<0.05, log-rank test, Fig. 4B). Survivin and cyclin E were also 
the most significant contributors for discriminating between 
two prognostic groups (GLM). According to the TMA analysis, 
these proteins were overexpressed in the chemo-radiation-
resistant group. Interestingly, the same observation was made 
for their corresponding genes from the DNA microarray anal-
ysis, confirming other previous reports (27,28) and validating 
our data. The results here show that our TMA analysis is indeed 
a valid approach in differentiating prognostic groups.

Aberrant protein expressions in GBM. Aberrant or mislocal-
ized protein expression patterns could be useful for diagnosis 
of GBM. Accordingly, we further compared expressions of 
all 234 subcellular location-specific proteins (78 proteins) of 
GBMs with those of relatively-normal tissues using the original 
dataset. H-scores of 16 subcellular location-specific proteins 
were decreased and 16 ones increased significantly in GBMs 
(data not shown). Of those, cyclin E expression in the cyto-
plasm was increased whereas the expression in the nuclear was 

Figure 3. Plot for means of protein marker expressions of two groups. The com-
parison of means of statistically significant biomarker expression values. Mean 
values for good prognosis group are represented as white bar, and mean values 
for poor prognosis group are represented as black bar (**q<0.01; *q<0.05, t-test).

Table V. Clinical characteristics of patients from the validation set.

Characteristics  Cluster 1A (no.) Cluster 2B (no.)

Patients 59 23
Gender (male:female) 35:24 15:8
Mean age (years) 53.9 54.2
Pathologic subtype (primary:secondary) 56:3 21:2
Surgical treatment
Total resection (%) 40 (67.8%) 19 (82.6%)
Partial resection (%) 15 (25.4%)   4 (17.4%)
Biopsy (%)   4 (6.80%)   0 (0.00%)
RT + temozolomide (%) 46 (77.9%) 19 (82.6%)

Figure 4. Validation of clustering and survival analysis for the 82 GBM patients 
from another TMA dataset and from public DNA microarray data and survival 
analysis of 55 independent GBM patients. (A) Kaplan-Meier survival curves of 
the two groups from clustering analysis of another independent TMA dataset 
with 10 biomarkers identified. They show statistically significant difference 
in the overall survival by the log-rank test. (B) Kaplan-Meier survival curves 
for each group from clustering analysis on public DNA microarray data were 
compared with overall survival. Clustering analysis was performed with nine 
candidate genes (corresponding to proteins of ten pairs based on their cellular 
localization). Differences in the survival were tested for statistical significance 
by the log-rank test.

  A

  B
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decreased in GBMs. Therefore, this particular protein could be 
one of mislocalized candidates specific for GBMs. Previously, 
cyclin E was validated as a prognostic biomarker for GBM (27), 
which could underline the significance of cyclin E in GBMs.

Discussion

This study shows that molecular classification of GBMs can 
be accomplished based on the immunohistochemical profiles 
of biomarkers using the TMA methods. Recent studies have 
also supported that clinical application of the TMA methods 
to the molecular classifications of various cancers (29,30). To 
provide a more precise data analysis, this study utilized scaled 
continuous protein expression values (H-score) and could find 
more significant differences using parametric statistic tests 
with continuous variables.

The overall protein expression patterns using 108 subcel-
lular location-specific proteins defined two survival-associated 
clusters. However, 108 expression values were too many for 
practical use. To reduce the number of markers, we performed 
a feature selection using Student's t-test. Ten and four subcel-
lular location-specific proteins were selected with 0.05 and 0.01 
adjusted p-value cut, respectively. Survivin_nuclear was the 
most significant factor for 0.05 AP and cyclinE_nuclear for 0.01 
AP. Survivin is known to be an inhibitor of apoptosis that acts 
via a pathway independent of Bcl-2. Previous studies showed 
a correlation between increased protein/mRNA levels of 
surviving and adverse prognosis in various cancers (28,31-34). 
Cyclin E mediates the initiation of DNA synthesis in the late 
G1 phase by activating cyclin-dependent kinases 2. Abnormal 
expressions of cyclin E (27,35,36) and other biomarkers (37-42) 
we selected have frequently been found in cancer cells.

In this study, phosphorylation-specific antibodies against p70 
S6 kinase, Akt, PDGFR-α, PDGFR-β, VEGFR2, VEGFR2/3 
and EGFR were included since they are the most important 
targets of newly-developing targeting agents. In contrast to 
our expectation, phosphorylated EGFR and VEGFR2/3 were 
inversely correlated with worse prognosis. Although EGFR 
and VEGFR are heavily activated in GBMs, agents targeting 
them showed disappointing results in clinical trials (43,44). 
Therefore, our results could reflect those results and indicate 
that other specific targets that have prognostic significance 
need to be elucidated.

In this study, we could not obtain non-neoplastic human 
brains as controls. Alternatively, tumor-associated normal 
tissues that were adjacent to the tumors were utilized. These 
tissues may harbor GBM cells, therefore, we selected the outer-
most region of the surgical samples. In addition, the tissues 
were clearly separated from the tumor cores by hierarchical 
clustering. This result indicates that there was minimal GBM 
cell-contamination, and, though not the most ideal, they are 
valid as controls.

It could be argued that due to the immense heterogeneity 
of cancer specimens, the normalization method we adopted may 
not seem pertinent to our study. Also, the quantile-normalization 
has an admitted limitation in that it removes outliers which could 
be of meaningful value. Our H-score method scaled the range 
of expression of all the cells found in the entire area of each 
spot of TMA, therefore, it would represent the heterogeneity 
well. Moreover, since the scaled range cannot have outliers, we 

circumvented the limitations of normalization by our scoring 
method.

Our 10 biomarkers are proven powerful to predict prognosis 
of GBM by analyzing three independent datasets. Moreover, the 
suggested biomarkers are optimal for practical use in pathology 
laboratories with respect to cost and time of prognostic evalu-
ations. They also can provide the basis for developing new 
personalized approach as well as drug discovery. In addition 
we expect that our findings at the protein level can comple-
ment the transcriptomic and genomic data of GBMs (3,45) and 
would improve the molecular understanding of GBM.

For clinical application of the results, further analysis with 
a larger sample set and more detailed validation are still neces-
sary. Nevertheless, the approach used in this study suggests that 
subjective interpretation of TMA profiling can be minimized 
and that larger scaled TMA analysis can be simultaneously 
performed. To our knowledge, this is the first TMA data 
analysis study based on quantitative values of protein expres-
sion using an image analysis tool. By applying bioinformatics 
techniques with large-scale data, it is now possible to perform 
comprehensive analysis and identify the cluster set of protein 
biomarkers for GBM.
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