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Abstract

G protein-coupled receptors (GPCRs) have been found to form heterodimers and modulate

or fine-tune the functions of GPCRs. However, the involvement of GPCR heterodimerization

and its functional consequences in gonadal tissues, including granulosa cells, have been

poorly investigated, mainly due to the lack of efficient method for identification of novel

GPCR heterodimers. In this paper, we identified a novel GPCR heterodimer between pros-

taglandin E2 (PGE2) receptor 2 (EP2) and calcitonin (CT) receptor (CTR). High-resolution

liquid chromatography (LC)-tandem mass spectrometry (MS/MS) of protease-digested

EP2-coimmunoprecipitates detected protein fragments of CTR in an ovarian granulosa cell

line, OV3121. Western blotting of EP2- and CTR-coimmunoprecipitates detected a specific

band for EP2-CTR heterodimer. Specific heterodimerization between EP2 and CTR was

also observed by fluorescence resonance energy transfer analysis in HEK293MSR cells

expressing cyan- and yellow-fluorescent protein-fused EP2 and CTR, respectively. Collec-

tively, these results provided evidence for heterodimerization between EP2 and CTR. More-

over, Ca2+ mobilization by CT was approximately 40% less potent in HEK293MSR cells

expressing an EP2-CTR heterodimer, whereas cAMP production by EP2 or CT was not

significantly altered compared with cells expressing EP2- or CTR alone. These functional

analyses verified that CTR-mediated Ca2+ mobilization is specifically decreased via heterodi-

merization with EP2. Altogether, the present study suggests that a novel GPCR heterodimer,

EP2-CTR, is involved in some functional regulation, and paves the way for investigation of

novel biological roles of CTR and EP2 in various tissues.

Introduction

Most receptors of neurotransmitters, neuropeptides, and hormones are G protein-coupled

receptors (GPCRs), and their pharmacological properties are targets of drug development

[1]. GPCRs are not only present as monomers and homodimers but form heterodimers

with other GPCRs [2, 3]. GPCR heterodimerization has been found to alter ligand binding

affinity, signal transduction, and desensitization of GPCRs [2, 3] and to participate in path-

ological processes [4, 5], pharmacological profiles [6–8] and species-specific biological

events [9] in vitro and in vivo. Moreover, several orphan GPCRs have been shown to serve

as protomers (i.e. partner GPCRs) in GPCR heterodimers and to cause specific functional
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alterations [10–13]. These findings have revealed the significance of GPCR heterodimers in

various biological activities.

Ovarian functions are coordinated and multi-step biological events functionally regulated by

a wide range of neuropeptides and hormones. These complicated processes are also thought to

be controlled by fine-tuning or functional alterations of GPCR heterodimers. To date, several

receptors for reproductive hormones have been found to form GPCR heterodimers. For

instance, two major gonadotropin-receptors, follicle-stimulating hormone receptor and lutein-

izing hormone receptor, have been shown to form heterodimers, which reciprocally attenuate

the downstream signaling of each receptor, although an endogenous function of it in ovarian

cells remains to be elucidated [14]. Our previous study also demonstrated heterodimerization of

the Ciona intestinalis gonadotropin-releasing hormone (GnRH) receptor (Ci-GnRHR)4 with

Ci-GnRHR1 and Ci-GnRHR2 in vitellogenic follicles [11, 12]. These findings suggested that

various GPCR heterodimers participate in a wide range of biological functions in ovaries.

Prostaglandin E2 (PGE2) is a multifunctional lipid in the follicle, and participates in ovula-

tory processes and fertilization mainly through its cognate GPCR, EP2 that is expressed in gran-

ulosa cells [15–18]. Granulosa cells, located between an oocyte and theca cells, are believed to

play pivotal roles of oocyte and follicle growth and maturation by endogenous ligands. Indeed,

a few transcriptomic analyses detected the expression of various GPCRs in granulosa cells [19,

20]. Collectively, these findings lead to the hypothesis that heterodimerization of EP2 with other

GPCRs is involved in the regulation of ovarian and follicular functions. However, little is

known about the heterodimerization of EP2 in any tissues or organs including granulosa cells.

The greatest difficulty in studying GPCR heterodimers is the lack of methodologies that can

predict novel GPCR heterodimers. A GPCR heterodimerization network was constructed

based on experimental data and the overall topology of GPCR heterodimers [21]. Moreover,

several computational models and simulations of GPCR heterodimer structures have been

designed [22]. Nevertheless, these predictions have not yet led to the identification of novel

GPCR heterodimers. In addition, no gene-silencing or knockdown procedures are useful for

evaluating the biological effects of GPCR heterodimerization, given that not only a heterodi-

meric (oligomeric) GPCR but also a monomeric GPCR are downregulated by these methods.

Consequently, exploration of novel GPCR heterodimers still depends on conventional experi-

ments, including detection of the co-expression of two GPCRs and the functional relationship

between two GPCR overexpressed in cultured cells. These technical issues strongly suggest the

need for efficient methods to detect novel GPCR heterodimers.

Non-GPCR membrane protein complexes have been identified by coimmunoprecipitation

(Co-IP)-based liquid chromatography (LC)-tandem mass spectrometry (MS/MS) [23, 24].

Although no GPCR heterodimer has yet been identified using this method [23, 24], these find-

ings suggest that Co-IP-based LC-MS/MS may be used to screen for novel GPCR heterodi-

mers. Hence, we aim to develop a Co-IP-based MS procedure and to identify a novel GPCR

heterodimer using it. This study presents the identification of a novel GPCR heterodimer

between the EP2 and the calcitonin (CT) receptor (CTR) in cultured cell lines using high-reso-

lution LC-MS/MS of EP2-coimmunoprecipitates, and fluorescent resonance energy transfer

(FRET). Moreover, we show that heterodimerization of CTR with EP2 functionally altered

CT-induced intracellular Ca2+ mobilization by CTR.

Materials and methods

Cell culture

OV3121 cells, derived from mouse granulosa cells, were the kind gift of Dr. Atsushi P. Kimura of

Hokkaido University and were cultured in DMEM supplemented with 10% FBS. HEK293MSR

EP2-CTR heterodimer
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cells were maintained at 37˚C under 5% CO2 as previously described [11]. After being washed

with PBS, cells were collected and centrifuged. The resultant pellets were stored at -80˚C until

use.

RT-PCR analysis

Total RNA was extracted and purified using Sepasol-RNA I Super G (Nacalai Tesque, Kyoto,

Japan), treated with TURBO DNase I (Ambion, Austin, USA), and reverse-transcribed to the

cDNA using oligo(dT)20 and Superscript III (Thermo Fisher Scientific, Waltham, USA). PCR

was performed as previously described [25] using the primers listed in S1 Table.

Membrane preparation and Western blotting

Cell pellets were homogenized using a Polytron homogenizer in homogenizing buffer (HB, 10

mM Tris-HCl, 1 mM EDTA, 10 mM MgCl2, 11% sucrose, pH 8.0) containing 1 × complete

protease inhibitor cocktail (Roche Diagnostics, Mannheim, Germany). After sonication, the

homogenate was incubated with 250 μg/ml RNase A (Qiagen, Valencia, USA) on ice for 30

min, releasing ribosomal proteins from the membrane fraction, as described [26]. The homog-

enate was centrifuged twice at 8,000 × g at 4˚C for 10 min each, and then, the supernatant was

further centrifuged at 100,000 × g at 4˚C for 1 hr. The precipitate was washed, resuspended,

sonicated in HB, and solubilized by adding an equal volume of 2 × radioimmunoprecipitation

assay buffer (RIPA, 50 mM Tris-HCl, 300 mM NaCl, 2% NP-40, 2% sodium deoxycholate

(SDC), 0.2% sodium dodecyl sulfate (SDS)) containing 2 × protease inhibitor cocktail and

rotating at 4˚C for 1 hr. Aliquots of 15-μg membrane proteins were electrophoresed on poly-

acrylamide gels and transferred to nitrocellulose membranes. The blot was incubated with

1 μg of each rabbit monoclonal anti-EP2 (ab167171) or anti-CTR (ab11042) antibody (Abcam,

Tokyo, Japan) as a primary antibody. The normal rabbit IgG (sc-2027, Santa Cruz Biotechnol-

ogy, Santa Cruz, USA) and anti-Na+/K+ ATPase α1 antibody (ab7671, Abcam) were used as a

negative and a loading control of membrane proteins, respetively. After the incubation with

horseradish peroxidase-linked secondary antibody (NA9340V, GE healthcare, Buckingham-

shire, UK), signals were detected using an ECL system (GE healthcare) as previously described

[11].

Co-IP, SDS-PAGE, and in-gel protein digestion

Aliquots of 800-μg membrane proteins were precleared with protein G sepharose (GE health-

care) at 4˚C for 1 hr with rotation and centrifuged at 10,000 × g for 1 min. The supernatant

was incubated overnight at 4˚C with 6-μg anti-EP2 antibody and protein G sepharose. The

mixture was centrifuged at 4˚C at 10,000 × g for 1 min, and the beads were washed seven times

with 1 × RIPA buffer and once with 0.1 × RIPA buffer. To denature proteins, the beads were

incubated twice with 1.5 × sample buffer (2.5% SDS, 12.5% glycerol, 0.075% bromophenol

blue, 2.5% β-mercaptoethanol) at 37˚C for 5 min each. Collected samples were subjected to

SDS-PAGE and subsequent fragmentation. Another Co-IP followed by Western blotting was

performed to verify the interaction between EP2 and CTR. Aliquots of 30-μg membrane pro-

teins were co-immunoprecipitated with 1 μg of each anti-EP2 or anti-CTR antibody, and one-

tenth volume of collected samples (and 3 μg of input sample without Co-IP) were used for

Western blotting using anti-CTR or anti-EP2 antibody, respectively. The sample prepared

without Co-IP was used as a negative control.

Following SDS-PAGE and staining with Coomassie brilliant blue, the gel fragment corre-

sponding to proteins of molecular mass 25–150 kDa was excised, cut into 1-mm cubes, and

dehydrated with 100% acetonitrile (ACN) for 10 min. After drying in vacuo, the gel pieces

EP2-CTR heterodimer
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were swollen in a minimum volume of digestion buffer (25 mM NH4HCO3, 0.1% SDC, 20 ng/

μl trypsin/Lys-C mix) for 15 min, covered with digestion buffer, and incubated overnight at

37˚C. Gel pieces were washed with MilliQ water and combined with the original supernatant.

Proteolytic fragments were extracted three times from gel pieces by mixing in 50% ACN for 1

hr each. All extracts were treated with 0.5% trifluoroacetic acid, followed by centrifugation at

15,700 × g for 2 min. After drying the supernatants in vacuo, the residues were dissolved in

MilliQ water and purified with YM-3 Microcon filters (Millipore, Bedford, USA).

LC-MS/MS analysis

The purified protein fragments were subjected to reverse-phase nano-liquid chromatography

using an EASY-nLC 1000 system, followed by tandem mass spectrometry (LC-MS/MS) analy-

sis using Orbitrap Elite (Thermo Fisher Scientific). The protein fragment solutions were first

loaded onto a 75 μm × 2 cm C18 trap column (Acclaim PepMap100, 3 μm, 100Å) at 300 nl/

min and separated on a 50 μm × 15 cm C18 analytical column (Acclaim PepMap RSLC, 2 μm,

100Å) using a linear gradient of 15–30% ACN with 0.1% formic acid over 48 min. The LC elu-

ent was introduced into the mass spectrometer by positive-mode nanospray ionization. Full-

scan mass spectra over a range of 350–2,000 m/z were measured with Orbitrap at a resolution

of 30,000, and the 15 most intense multivalent precursor ions were selected for data-dependent

scanning. The MS/MS spectra were acquired with Velos Pro under conditions of 1 m/z isola-

tion width, 35% normalized collision energy, and 10 ms maximum ion accumulation time.

Data were analyzed with Xcalibur software 2.2.

Protein identification

Raw files were processed using Proteome Discoverer 1.1 software incorporating the SEQUEST

search algorithm. All protein sequences of Mus musculus were downloaded from RefSeq

(December 2013) [27] and used for protein identification. Search criteria included precursor

mass tolerance, 10 ppm; fragment mass tolerance, 1.2 Da; maximum missed cleavage site, 2;

and dynamic modification, oxidation of methionine.

Plasmid construction and transfection

Open reading frames (ORFs) of EP2, CTR, and oxytocin receptor (OXTR) were amplified

from the OV3121 by RT-PCR. The ORF of EP2 was subcloned in frame into 5’-end of the

pcDNA4/V5 (Thermo Fisher Scientific) and pAmCyan1-N1 cyan fluorescent protein (CFP)

vector (Clontech, Kyoto, Japan) at the EcoRI/XhoI and NheI/XhoI, sites, respectively. The CTR

was subcloned into the pcDNA4/V5 and pZsYellow1-N1 yellow fluorescent protein (YFP) vec-

tor (Clontech) at the NheI/XhoI sites. The OXTR was subcloned into the pAmCyan1-N1 CFP

vector at the EcoRI/NheI sites. Each construct was transiently transfected into HEK293MSR

cells using Lipofectamine 2000 (Thermo Fisher Scientific), according to the manufacturer’s

instructions.

FRET

FRET was performed using a confocal laser microscopy as previously described with slight

modification [11, 12]. In brief, 1 μg of each expression vector (EP2-fused CFP (EP2-CFP),

OXTR-fused CFP (OXTR-CFP), or CTR-fused YFP (CTR-YFP)) was transfected to HEK29

3MSR cells on the 35-mm glass-bottom dish. CFP, YFP, and FRET signals were visualized at the

following day using confocal laser microscopy, Fluoview FV1000 (Olympus, Tokyo, Japan).

CFP and YFP were excited with the 458- and 515-nm lines of an argon laser, respectively. The

EP2-CTR heterodimer
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emitted fluorescence was collected at 475–500 nm for CFP and 530–630 nm for YFP and FRET

signals. Dose response effects of EP2-expression levels on FRET were investigated as follows.

1 μg of CTR-YFP expression vector was transfected with 0, 0.01, 0.1, 0.5, and 1 μg of EP2-CFP

expression vector to 1×105 HEK293MSR cells on the 35-mm glass-bottom dish. After 24 hr

incubation, FRET signal was observed. The signal intensity was analyzed using Fiji software and

data was represented as % maximal intensity.

Second messenger detection

Intracellular Ca2+ mobilization and cAMP production were measured as previously described

[11, 12]. In brief, 1×106 HEK293MSR cells were spread on 60-mm dish at one day before trans-

fection. 10 μg of pcDNA-based vector (5 μg of one GPCR-V5 and 5 μg of another) or mock

vector were transfected into the cells. As for the evaluation of dose response effects of EP2-ex-

pressioon levels on Ca2+ mobilization, 2.5 μg of CTR-V5 expression vector was transfected

with 0, 0.5, 1, 2, and 2.5 μg of EP2-V5 expression vector to 5×105 cells on the 35-mm dish.

After the 24 hr incubation, 5×104 cells per well were re-spread to the 96-well plate for the fol-

lowing assay. Prostaglandin E2 (PGE2, sc-201225, Santa Cruz Biotechnology) and salmon CT

(sc-201167, Santa Cruz Biotechnology) were used for the assays. Real-time fluorescent mea-

surement for Ca2+ mobilization using a Ca5 kit (Molecular Devices, Sunnyvale, USA) and end

point observation of cAMP production using CatchPoint Cyclic AMP Assay Kit (Molecular

Devices) were performed on FlexStation II. Results are shown as means ± standard error of the

mean (SEM) of three independent experiments. Emax values between monomer- and hetero-

dimer-expressing cells were analyzed by Student’s t test. P< 0.05 was defined as statistically

significant.

Results and discussion

Previously, we showed that Ci-GnRHR1 (R1) and Ci-GnRHR4 (R4) formed heterodimers fol-

lowing their transfection into HEK293MSR cells [11, 12]. Therefore, we first assessed whether

a known heterodimer between V5-tagged R1 and Myc-tagged R4 (R1V5-R4Myc) could be

detected by Co-IP-based LC-MS/MS analysis, which consists of five steps: 1) purification of

membrane proteins, 2) Co-IP, 3) protease digestion, 4) nano-scaled LC-MS/MS, and 5) data-

base assignment (S1 Text). LC-MS/MS analysis of V5-coimmunoprecipitates detected protein

fragments of R1 and R4 (S1 and S2 Figs), confirming the suitability of this method for identify-

ing GPCR heterodimers.

Detection of known GPCR heterodimer heterologously expressed in HEK293MSR cells by

the Co-IP-based LC-MS/MS method prompted us to identify a novel endogenous GPCR het-

erodimers in native tissues and cells using this experimental method. First, we investigated the

GPCR expression in murine ovarian granulosa cell line, OV3121. RT-PCR analysis showed

that PGE2 receptor 2, EP2 mRNA (Ptger2) was expressed in OV3121 cells (Fig 1A). Although

EP2 was reported to be expressed in native granulosa cells of preovulatory follicles [15–18],

whether EP2 forms GPCR heterodimer with other GPCRs and its functional consequences are

not known. Subsequently, we utilized the Co-IP-based LC-MS/MS to identify GPCR proto-

mers that heterodimerize with EP2 in OV3121 cells.

To identify endogenous GPCR heterodimers, we optimized three steps of the Co-IP-based

LC-MS/MS analysis. First, in purifying membrane proteins, cell lysates were treated with

RNase A to remove impurities such as ribosomal proteins and to enhance the solubility of

membrane proteins [26]. Second, because rabbit monoclonal antibodies have shown extremely

high affinity and specificity [28–30], in the Co-IP step, a rabbit monoclonal anti-EP2 antibody

was used. Western blotting with this antibody detected specific band corresponding to EP2,

EP2-CTR heterodimer
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whereas no band was observed using the normal rabbit IgG (Fig 1B, top). These results con-

firmed the expression of EP2 in OV3121 cells and the specificity of this antibody. Additionally,

the expression of Na+/K+ ATPase α1 was indicated as a loading control (Fig 1B, bottom).

Third, EP2-coimmunoprecipitates were serially digested with SDC to improve the accessibility

of proteases to hydrophobic GPCR [31–33]. The resultant peptide fragments were subjected to

nano-LC-Orbitrap MS/MS analysis, followed by database-referencing. These EP2-immuno-

precipitates were found to contain various proteins, including some transporters, enzymes,

non-GPCR receptors, and G proteins (S2 Table) as observed in proteomic analysis of other

membrane proteins [31]. Notably, EP2-coimmunoprecipitates were found to contain frag-

ments of one GPCR, CTR (S3 Fig), suggesting that EP2 and CTR form a heterodimer. The

mRNA expression of CTR (Calcr) in OV3121 cells was confirmed by RT-PCR (Fig 1A). West-

ern blotting also detected the bands of monomeric/multimeric CTR and verified the specificity

of the anti-CTR antibody (Fig 1B). Thus, we examined the interaction between EP2 and CTR

by another Co-IP-Western blotting using anti-EP2 and anti-CTR antibodies. The specific

band of EP2-CTR heterodimer was detected in EP2-coimmunoprecipitates with anti-CTR

antibody at 90 kDa (Fig 1C, left). Likewise, the identical band was also detected in CTR-coim-

munoprecipitates with anti-EP2 antibody (Fig 1C, right), which was not observed in the corre-

sponding amount of sample prepared without Co-IP (Fig 1C, IP-). This is consistent with the

previous findings that non-obligatory GPCR heterodimers are not dissociated by SDS [34, 35].

These results indicate that EP2 interacts with CTR in OV3121 cells.

To further validate the formation of EP2-CTR heterodimer, FRET analysis was performed.

EP2-CFP, CTR-YFP, or both constructs were transfected into HEK293MSR cells. Both CFP-

and YFP-derived signals were observed when EP2-CFP and CTR-YFP were expressed alone or

together, confirming that both GPCRs were sufficiently expressed on the plasma membranes

(Fig 2). Furthermore, prominent FRET signals were detected exclusively in cells coexpressing

Fig 1. EP2 interacts with CTR in the mouse ovarian granulosa cell line, OV3121. (A) Ptger2 and Calcr mRNA expression in OV3121 cells. Total

RNA was isolated from OV3121 cells, and first strand cDNA was synthesized with (RT+) or without (RT-) reverse transcriptase, followed by RT-PCR. Gene

symbols are indicated in italic, and their protein names are presented in parentheses. The Gapdh gene was used as an internal control. Abbreviations:

Ptger2 (EP2), prostaglandin E2 receptor 2; Calcr (CTR), calcitonin receptor; Gapdh (Gapdh), glyceraldehyde-3-phosphate dehydrogenase. (B) EP2 and

CTR expression in OV3121 cells. Western blotting using rabbit monoclonal anti-EP2 (ab167171) and anti-CTR (ab11042) antibodies detected specific

bands for monomeric and/or oligomeric GPCR at the predicted size. 1 μg of normal rabbit IgG (sc-2027) was used as a negative control. A plasma

membrane marker, Na+/K+ ATPase α1 was stained with the antibody (ab7671) as a loading control. (C) Detection of EP2-CTR interaction. Western

blotting of EP2- (left) and CTR- (right) coimmunoprecipitates using respective anti-CTR (left) and anti-EP2 (right) antibody detected specific bands for

EP2-CTR heterodimer. Corresponding amount of sample prepared without Co-IP (IP-) was used as negative control.

https://doi.org/10.1371/journal.pone.0187711.g001

EP2-CTR heterodimer
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EP2-CFP and CTR-YFP, but not in cells expressing either alone (Fig 2A). In contrast, no

FRET signals were observed in OXTR-CFP- and CTR-YFP-coexpressing cells (Fig 2B), show-

ing that the FRET signals were specific for EP2-CTR (Fig 2A). In addition, FRET signals were

dependent on the ratio of EP2-CFP expression to CTR-YFP expression (S4 Fig). Taken

together, these findings indicate that EP2 forms specific, constitutive heterodimers with CTR.

Co-IP-based LC-MS/MS analysis has been widely utilized to assess comprehensive interac-

tions of proteins [23, 24, 36–40]. To our knowledge, however, this report is the first to show

the identification of a novel GPCR heterodimer by Co-IP-based LC-MS/MS. The ability of this

method to detect GPCR protomers is particularly important in improving the specificity and

sensitivity of detecting target proteins. In this context, utilizing high-specificity-rabbit mono-

clonal antibody and stringent detergents (SDS) in the Co-IP step was effective in detecting the

specific interaction between EP2 and CTR. Moreover, serial protease-digestion with SDC dur-

ing fragmentation of coimmunoprecipitates likely enhanced the sensitivity of detection. Multi-

epitope affinity purification in a buffer containing detergent of mild to intermediate stringency

led to the identification of multiple non-GPCR-transmembrane proteins that form macromo-

lecular complexes with native GPCR [24], suggesting that mixture of several antibodies in a

mild stringent detergent may enhance the detection of GPCR heterodimers. Additional

enrichment of plasma membrane fractions by density-gradient centrifugation may also

remove impurities and enhance the specificity. However, it is noteworthy that a novel GPCR

heterodimer, namely, EP2-CTR, was detected by our relatively simple procedure despite the

presence of various non-GPCRs and impurities. The results therefore indicate the potential of

this Co-IP-based LC-MS/MS method to identify other novel GPCR heterodimers in other cells

or even in native tissues.

Subsequently, we evaluated the functional propensities of EP2-CTR in the second messen-

ger production. EP2 is coupled with only Gs protein and elevates the cAMP production upon

the PGE2 stimulation [15], whereas CTR are coupled with Gs and Gq proteins and induces

both cAMP production and intracellular Ca2+ mobilization in response to CT [41]. We thus

examined the effect of the heterodimerization on the cAMP production using HEK293MSR

Fig 2. FRET analysis of EP2-CTR heterodimerization. EP2-CFP (A, upper panels) or OXTR-CFP (B, upper panels) and CTR-YFP

(middle panels) were expressed individually or coexpressed (lower panels) in HEK293MSR cells. Individual cells were imaged. Left

panels, CFP; center panels, YFP; right panels, FRET. Specific FRET signal was detected in EP2-CFP- and CTR-YFP-expressing cells

(A), but not in OXTR-CFP- and CTR-YFP-coexpressing cells (B). Color bar indicates the FRET ratio between signal intensities of YFP

and CFP. Scale bar represents 10 μm.

https://doi.org/10.1371/journal.pone.0187711.g002

EP2-CTR heterodimer

PLOS ONE | https://doi.org/10.1371/journal.pone.0187711 November 2, 2017 7 / 13

https://doi.org/10.1371/journal.pone.0187711.g002
https://doi.org/10.1371/journal.pone.0187711


cells. Neither CT nor PGE2 stimulation exhibited any significant alteration of cAMP produc-

tion in heterodimer-expressing cells compared to monomer-expressing cells (Fig 3A and 3B).

On the other hand in the intracellular Ca2+ mobilization by CT, cells expressing EP2-CTR het-

erodimer showed significant suppression of intracellular Ca2+ mobilization (Emax = 62.4% ±
5.2%, P< 0.01, EC50 = 1.5 x 10−7 M) in a CT dose-dependent fashion, compared with those

expressing CTR alone (Emax = 100.0% ± 2.5%, EC50 = 1.0 x 10−7 M), (Fig 3C). Furthermore,

the suppression of Ca2+ mobilization was found to be correlated with the amounts of EP2-ex-

pression vector (Fig 3D). Taken together, these results, combined with the Co-IP (Fig 1 and S3

Fig) and FRET data (Fig 2 and S4 Fig), strongly indicate that EP2-CTR modulates intracellular

CTR-induced Ca2+ mobilization in response to CT (Figs 3 and 4), providing evidence for

EP2-CTR heterodimerization.

Of particular interest is that heterodimerization of EP2 with CTR exclusively resulted in

suppression of intracellular Ca2+ mobilization by CTR (Figs 3 and 4), whereas CTR activates

not only intracellular calcium mobilization but also cAMP production in response to CT [41].

These results are in good agreement with the findings that GPCRs adopt multiple active con-

formations which are specific to the respective G proteins and that these active conformations

are not interconvertible [3, 42–49]. Furthermore, several protomers of GPCR heterodimers

Fig 3. Effect of EP2-CTR heterodimerization on second messenger production. (A-C) 5-μg each of

EP2-V5 and CTR-V5 vectors were transfected individually or together into 1×106 HEK293MSR cells on 60-mm

dish. Then, 5×104 cells were spread onto 96-well assay plates at the next day and incubated for another 24 hr.

cAMP production (A, B) and Ca2+ mobilization (C) were measured following stimulation with PGE2 (A) or

salmon CT (sCT, B, C) at indicated concentration. Neither PGE2 (A) nor sCT (B) stimulation significantly altered

cAMP production by HEK293MSR cells. (C) Ca2+ mobilization by�10−7 M sCT was significantly lower in the

EP2-CTR-coexpressing cells than in cells expressing CTR alone. Emax values (dashed lines) between

monomer- and heterodimer-expressing cells (100.0% ± 2.5% vs 62.4% ± 5.2%) were analyzed by Student’s t

test (**, P = 0.0004). (D) Dose-response effects of EP2-expression levels on Ca2+ mobilization. 2.5 μg of

CTR-V5 and 0, 0.5, 1, 2, or 2.5 μg of EP2-V5 expression vectors were transfected into 5×105 HEK293MSR cells

on 35-mm dishes. Ca2+ mobilization was measured as above following stimulation with 1×106 M sCT. Results

are shown as the mean ± SEM from 3 independent transfections.

https://doi.org/10.1371/journal.pone.0187711.g003
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were shown to affect the adoption of a particular active conformation of a partner GPCR as an

endogenous allosteric modulator [3, 11, 12, 42–49]. In combination, the present results suggest

that EP2 specifically suppresses the adoption of the active conformation of CTR specific to Gq-

coupling via EP2-CTR heterodimerization.

In conclusion, we have identified a novel heterodimer, EP2-CTR using a Co-IP-based

LC-MS/MS method and demonstrated the regulation of second messenger production in cul-

tured cells. The present study paves the way for investigation of molecular mechanisms under-

lying a wide range of endocrine, neuroendocrine, and nervous systems involving GPCR

heterodimers.

Supporting information

S1 Text. Supplementary materials and methods.

(DOCX)

S1 Fig. Detection of known R1V5-R4Myc heterodimer by Co-IP-based LC-MS/MS. (A) West-

ern blotting using anti-V5 or anti-Myc antibody showed ectopic expression of R1V5 or R4Myc

in HEK293MSR cells. (B) The amino acid sequences of Ci-GnRHR1 and Ci-GnRHR4 detected

by the Co-IP-based LC-MS/MS analysis using anti-V5 antibody are shown in red letters. The

sequences of the seven transmembrane-domain are shaded.

(TIF)

S2 Fig. Representative MS/MS ion peak patterns of Ci-GnRHR1 and Ci-GnRHR4. b-ion

(red) and y-ion (blue) are fragments truncated from C- and N-terminal residues, respectively.

Peptide fragments of Ci-GnRHR1 (upper) and Ci-GnRHR4 (lower), corresponding to amino

acids 131–148 and 367–382, respectively, were detected. Each fragment was found to include

an oxidized methionine residue.

(TIF)

S3 Fig. Detection of the EP2-CTR heterodimer by Co-IP-based LC-MS/MS in OV3121

cells. (A) Representative MS/MS ion peak patterns of CTR. b-ion (red) and y-ion (blue) are

fragments truncated from C- and N-terminal residues, respectively. Peptide fragments of

Fig 4. Signaling modulation via EP2-CTR heterodimerization. The EP2-CTR heterodimer suppressed

CTR-mediated Ca2+ mobilization, compared with the CTR monomer/homodimer. cAMP production inducd by

either PGE2 or CT was not affected by heterodimerization.

https://doi.org/10.1371/journal.pone.0187711.g004
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CTR, corresponding to amino acids 329–340, were detected. (B) Amino acid sequences of

CTR detected by the Co-IP-based LC-MS/MS analysis using anti-V5 antibody are shown in

red. The sequences of the seven-transmembrane domain are shaded.

(TIF)

S4 Fig. Dose-response effects of an EP2-expression vector on FRET. Aliquots of 1-μg

CTR-YFP and indicated amounts of EP2-CFP expression vector were transfected into 1×105

HEK293MSR cells on 35-mm glass-bottom dishes. The intensity of the FRET signal observed

after 24 hr was analyzed using Fiji software. Data are presented as mean % maximal

intensity ± SEM of at least three individual cells.

(TIF)

S1 Table. Primer sequences used in the RT-PCR.

(DOCX)

S2 Table. Protein identification by database-referencing of Co-IP-based LC-MS/MS data.
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