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Introduction

The field of medical imaging provides comprehensive 
imaging tools. The applications of multimodality images 
in radiotherapy development from the recent past to the 
current diagnostic images were appreciated in precise 
delineation of target volume (TV), organ at risk (OAR), 
treatment plan, treatment response assessment and 
treatment follow up. Amongst the various multimodality 
images, computed tomography (CT) images plays two 
vital roles, namely defining pretreatment tumor and tumor 
responses to treatment, of which the later impacts greatly 
the treatment decision. However, the recent modern 
advancements in imaging analysis, namely radiomics, 
extracts additional quantitative features from medical 
images, such as CT, positron emission tomography 
(PET), and magnetic resonance imaging (MRI), to 
uncover patient’s response to treatment as well as the 
chance of developing side effects (Gillies et al., 2016). 
CT radiomics is a conventionally practiced prognostic 
feature in radiation therapy. Various clinical, phantom, 
and texture analysis of CT radiomics have discussed both 
its reliability in assessing tumor response to treatment 
and its limitations. However, such limitations outweigh 
the established purpose of CT radiomics (Nardone et al., 
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2016; Nie et al., 2016; De Cecco et al., 2016; Bundschuh 
et al., 2014; Pyka et al., 2015; Tian et al., 2015; Yip et al., 
2014). Three - dimensional (3D) cone –beam CT (CBCT) 
is taken regularly for patient setup and position verification 
(Lambin et al., 2017). These images are then used to 
study the tumor changes during the course of treatment 
(Brink et al., 2014). Radiomics based on CBCT imaging 
offers a potential for primary treatment process where the 
prognostic value of conventional CT images is already 
known (Fried et al., 2014; Coroller et al., 2015; Aerts et 
al., 2014). There are very few literatures explaining the 
possibilities for image features extracted from CBCT to be 
a potential alternative for CT. Moreover, the prospective of 
radiomics in CBCT needs to be investigated particularly in 
the image quality of CBCT as this dimension is unfamiliar 
when compared to the conventional CT. Therefore, this 
study aimed to assess the quality of CBCT-based radiomic 
features with selected known image density region of 
interest (ROIs) and compared to it CT-based radiomics 
features. The parameter of interest was to analyze the gray 
level value changes of the ROIs image density between 
the CBCT and CT by computing the first order intensity 
and texture matrices. To assess the  reliability of CBCT 
radiomic features, Catphan® 504 phantom images of 
head, thorax, and pelvis image guided radiation  therapy 
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(IGRT) protocols of on-board imaging (OBI) CBCT  
were obtained since phantoms have proved to provide 
robustness in non-invasive studies .This study further 
investigated the possibility of utilizing CBCT radiomics 
as an independent modality to assess the tissue equivalent 
density region.

Materials and Methods

Catphan® 504
Catphan® 504 phantom is the most common 

available phantom in IGRT. It is supplied by Varian 
Medical Systems. This phantom is designed to monitor 
sensitometry target values. Over the time, it is proved to 
provide valuable information like indicating changes in 
scanner performance. It is regularly used to define the CT 
density table in the treatment planning system for patient 
dose calculation and as OBI CBCT image calibration 
. Catphan® 504 phantom module has sensitomerty 
region which has known density material inserts made 
up of  Teflon, Delrin, acrylic, polystyrene, low density 
polyethylene (LDPE), polymethylpentene (PMP), and 
air. The relative electron densities are 1.868, 1.363, 
1.147, 0.998, 0.945, 0.853, and 0.001, respectively. Each 
density insert is 1.25 cm diameter and 2.5 cm in length. 
This phantom was chosen for this study for its predefined 
known seven ROI density and easy accessibility in most 
of the IGRT setup as it is routinely used as a tool for 
determining image calibration and quality. 

Phantom imaging
To determine the similarity between the CBCT 

radiomics texture values and those of CT images, we 
imaged Catphan® 504 using the default IGRT head 
,thoracic and pelvis CBCT Varian Linac OBI  imaging 
protocols and GE medical system (Discovery IQ) CT 
scanner. Each CBCT scan is classified as CBCT head 
scan (CBCThead), CBCT thorax scan (CBCT thorax), and 
CBCT pelvis scan (CBCT pelvis). The characteristics of 
the scan parameters are given in Table 1.

ROI segmentation
The scanned images in Digital Imaging and 

Communication in Medicine (DICOM) format were 
imported into Imaging Biomarker Explorer (IBEX) 
software (available for download at http://bit.ly/ IBEX_
MDAnderson). ROI density was delineated in all the 
four scanned image sets using the IBEX graphical user 
interfaces (GUI) countering option. Delineated segmented 
ROI shown in Figure1 were considered to be sub images 
for the sources of texture feature extraction. Each ROI 
was manually segmented and added to the data sets which 
contained basic image information, such as ROI statistics, 
voxel, ROI contours, ROI binary masks, and image data 
in the ROI bounding box. As there were possibilities 
of inaccurate contour values, accurate countering was 
necessary and features were only calculated within these 
areas. Radiomics features extracted from the segmented 
density ROI volume within phantom is highlighted in 
Figure 2.

Radiomics feature definition and extraction
ROI data of four image sets were preprocessed with 

histogram equalization enhancement preprocessing 
algorithm. The four-feature categories and 49 features 
extraction algorithm were developed in the feature 
algorithm workspace in IBEX. The selected 49 features 
can be generated for different applications, such as tumor 
diagnosis, tumor staging, gene prediction, and outcome 
prediction. 

The selected feature categories for this phantom 
study were 11 Intensity Histogram and Gray Level Run 
Length Matrix, 22 Gray level Co-occurrence Matrix, and 
5 Neighborhood Intensity Difference matrix, as shown 
in the Table 2. 

Statistical analysis
The feature category clusters, namely intensity, 

Manufacturer GE medical 
system CT

Varian medical system OBI

Scan protocol CT-Pelvis CBCT-
Head

CBCT 
Thorax

CBCT 
Pelvis

Image size (pixels) 512x512 384x384 384x384 384x384

Pixels size (mm) 0.0976 0.0625 0.1171 0.1171

Slice thickness 
(mm)

2.5 2.5 2.5 2.5

Tube Voltage (kVp) 120 100 110 125

Exposure time 
(mAs)

6 145 262 680

Tube current (mA) 300 20 20 80

Scanner rotation Helical Half fan 
200º

Full fan  
360º

Full 
fan360º

Filter Full 
bowtie 
filter

Half 
bowtie 
filter

Half 
bowtie 
filter

No of image Projection 360 655 655

Table 1. Characteristics of the Scan Parameters of the CT 
and CBCT Images

Figure 1. Axial Section Taken for the Analysis of 
CT Catphan® 504 Sensitometry Region Image with 
Segmented ROI Known Density Materials 1)Teflon , 2)
Delrin , 3) Acrylic ,4) Polystyrene , 5) LDPE, 6) PMP 
and 7) Air
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Results

The radiomics features extracted using IBEX from 
seven known phantom density ROIs image data set 
were concurrently analyzed with CBCT inter scan IGRT 
imaging protocol ROIs image segment radiomics feature 
category cluster reproducibility, and radiomics feature 
density dependency consistency was compared with 
known CT features.

CBCT interrelation relatability with CT image
Radiomics feature category clusters, namely intensity, 

GLCM, GLRLM, and NID, were extracted from the seven 
density ROIs segments. Each ROI was considered as 
individual image feature data set. The ICC was calculated 
for the ROI feature category clusters of CBCT and CT 
images, and the results are expressed in Table 3. The 
average ICC of the feature category cluster was significant 
(ICC=0.913±0.123, P=0.011). Correlation value more than 
> 0.7 is considered as strong interrelated repeatability 
among the images. ICC analysis result of the first three 
radiomics cluster features indicated significant CBCT 
inter scan IGRT imaging protocol interrelated repeatability 
with CT. However, NID cluster feature value from acrylic 
and air ROIs had ICC=0.418 (P=0.209) and ICC=0.607 
(P=0.09), respectively, revealing less correlation 
significance. Each ROI segment cluster feature category 

GLCM, GLRLM, and NID radiomics feature values, 
extracted from individual density ROIs image data 
set were selected for the analysis. The interrelation 
relatability between the images was calculated using 
intra-class correlation coefficient (ICC). Variance 
estimates were obtained using two-way mixed effects 
and absolute agreement method. The ICC is a statistical 
measure ranging from 0 to 1, indicating null and perfect 
reproducibility, respectively. The ICC > 0.7 is considered 
significant in the interrelated reproducibility between 
the CT and CBCTs. The bivarFiate Pearson’s correlation 
coefficient was used to analysis the density dependent 
related changes of the extracted radiomics features 
from the known seven ROIs present within the CT and 
CBCT. The correlation coefficient value ranges from 
±1 to 0 in which -1 and +1 indicates perfect negative 
and perfect positive, respectively. In this condition, r=0 
(zero relationship) implies no correlation, 0.1< |r| < ±0.3 
is said to show small / weak correlation, while the values 
between ±0.3< |r| < ±0.5 medium / moderate correlation 
and ±0.5<|r| is large / strong correlation. In this study, the 
ICC and Pearson’s correlation coefficient were analyzed 
using the IBM SPSS.

Figure 2. Different ROI Density Sensitomerty Regions Catphan® 504 (A) CT Image (B)-(D) CBCT Images
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ICC comparison is shown in Figure 3. 

ROI density radiomics feature correlation consistency 
among the images

 The 49 computed features correlation strength 
significance and magnitude were compared among the 
images. Here, the Pearson’s scoring of the four image sets, 
namely CT, CBCThead ,  CBCTthorax ,and  CBCTpelvis, 
was considered to be the similarity predictors. The 
average absolute Pearson’s correlation coefficient 
from the features of the images was as follows: CT: 
r=0.679±0.257 (40 of the 49 features had  r>0.5 and 55% 
of the selected features had significant (p-value<0.05)), 
CBCThead: r=0.707±0.231 (39 of the 49 features had r>0.5 
along with 59% of the selected showed the significance 
(p-value <0.05)), CBCTthorax : r=0.643±0.260 (35 of the 49 
features had r>0.5 with 43% significance (p-value <0.05)), 
and  CBCTpelvis :r=0.594±0.276 (27 of the 49 features had 
r>0.5 and 41% significance (p-value <0.05)). Nineteen 
computed features out of the 49 selected radiomics 

features from all the four image sets had very strong 
correlation (r > 0.750) and were significant (p-value<0.05) 
as shown in the Figure 4(a-d).  The results of Pearson’s 
correlation coefficient test on the image radiomics features 
are presented in Table 4 (a-d).

Discussions

In this phantom study, amongst the four inter scan 
image modalities, CBCThead  radiomics features,  80% 
of the 49 selected features demonstrated strong correlation 
r>0.5, and 55% of the features were significant (p-value 
<0.05). Similarly, other two modalities of CBCTthorax and 
CBCTpelvis  had 10% less and  below of CBCThead. The 
IGRT CBCT image reconstruction filters differed from 
their imaging protocols. This significant difference in the 
CBCT images might be due to the image reconstruction 
(Zhao et al., 2014; Rizz et al., 2005).

The results on the extracted four radiomics feature 
categories from the image sets of the phantom were 

Figure 3. Box Plot Wispier of Radiomics Feature Cluster vs. ICC

Feature type Feature Category Estimated Feature Names Comment

First order 
Intensity 

Intensity Energy, Entropy, Max, Mean, Median, Min, standard deviation, 
Uniformity, Kurtosis, Skewness and Variance

Texture Gray level co-occurrence 
matrix25 
(GLCM)

Autocorrelation , Cluster Prominence
Cluster Shade , Cluster Tendency , Contrast
Correlation , Difference Entropy ,
Dissimilarity , Energy , Entropy , Homogeneity, 
Homogeneity2, Information Measure Correlation1, 
Information Measure Correlation 2 , Inverse Difference 
Moment Normalised, Inverse Difference Normalised , Inverse 
Variance, Max Probability, Sum Average, Sum Entropy Sum 
Variance and Variance

25:= GLCM is computed 
from all 2D image slices 

Gray level run length 
matrix (GLRLM)

Gray Level Non-uniformity, High Gray Level Run Emphasis, 
Long Runs Emphasis , Long Run High Gray Level Emphasis, 
Long Run Low Gray Level Emphasis , Low Gray Level Run 
Emphasis, Run Length Non-uniformity, Run Percentage, Short 
Runs Emphasis, Short Run High Gray Level Emphasis, Short 
Run Low Gray Level Emphasis.

Neighborhood intensity 
difference matrix25
(NID)

Busyness, Coarseness, Complexity, Contrast and Texture 
Strength

25:= Neighborhood 
intensity different (NID) 
is computed from all 2D 
image slices 

Table 2. Feature Extraction Algorithms Used in the Study with Estimated Feature Names 
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Feature type Phantom image ROI 
segment Density materials

Average measures Intra class 
Correlation

CT with CBCT radiomic features   

Significances
p-value 

95% Confidence 
Interval 

Lower Bound

Upper 
Bound

Intensity Teflon 0.902 0 0.787 0.963
Delrin 0.908 0 0.800 0.965
acrylic 0.895 0 0.773 0.961
Polystyrene, 0.896 0 0.774 0.961
LDPE 0.922 0 0.83 0.970
PMP 0.914 0 0.812 0.967
Air 0.91 0 0.805 0.966

Texture GLCM Teflon 0.952 0 0.909 0.978
Delrin 0.977 0 0.956 0.989
acrylic 0.999 0 0.997 0.999
Polystyrene, 0.995 0 0.990 0.998
LDPE 0.99 0 0.980 0.995
PMP 0.943 0 0.892 0.974
Air 0.958 0 0.921 0.981

Texture GL-
RLM

Teflon 0.994 0 0.986 0.998
Delrin 0.995 0 0.989 0.999
acrylic 0.976 0 0.941 0.993
Polystyrene, 0.988 0 0.971 0.996
LDPE 0.996 0 0.991 0.999
PMP 0.997 0 0.992 0.999
Air 0.845 0 0.619 0.953

Texture NID
 

Teflon 0.874 0.002 0.519 0.985
Delrin 0.827 0.008 0.343 0.980
Acrylic 0.418* 0.209 -1.230 0.933
Polystyrene, 0.699 0.047 -0.144 0.965
LDPE 0.824 0.008 0.332 0.980
PMP 0.84 0.006 0.391 0.982
Air 0.607* 0.093 -0.491 0.954

Table 3. ICC Values Comparsion between CT and CBCT Radiomics Images

Figure 4a. Intensity Feature Relationship was Compared with Density Pearson’s Correlation Coefficient in the Four 
Images and the Correlation Significances were Above r=0.75 and below r=-0.75.
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Intensity 
features

CT CBCThead CBCTthorax CBCTpelvis

Pearson (r) Sig p-value Pearson (r) Sig p-value Pearson (r) Sig p-value Pearson (r) Sig p-value
aEnergy* 0.900 0.006 0.916 0.004 0.913 0.004 0.925 0.003
Entropy* 0.837 0.019 0.897 0.006 0.699 0.081 0.647 0.116
aMax* 0.810 0.027 0.854 0.014 0.858 0.014 0.827 0.022
aMean* 0.952 0.001 0.973 0.000 0.976 0.000 0.977 0.000
aMedian* 0.969 0.000 0.98 0.000 0.986 0.000 0.990 0.000
aMin* 0.946 0.001 0.965 0.000 0.985 0.000 0.970 0.000
Std 0.488 0.267 0.370 0.413 0.370 0.414 0.283 0.539
aUniformity* -0.838 0.019 -0.841 0.018 -0.811 0.027 -0.795 0.033
aKurtosis* -0.764 0.046 -0.766 0.045 -0.774 0.041 -0.774 0.041
aSkewness* -0.813 0.026 -0.854 0.015 -0.845 0.017 -0.794 0.033
Variance 0.582 0.170 0.475 0.282 0.498 0.255 0.428 0.338

Table 4a. Radiomics Feature Variability with Respect to ROI Segment Density in Intensity Feature   

a, indicates that the feature from the four image modalities had a strong correlation with significant p-value<0.05; *, indicates that the feature from 
the four image modalities had a strong correlation with r>0.5

Gray Level Co 
occurrence Matrix feature

CT CBCThead CBCTthorax CBCTpelvis

Pearson (r) Sig p-value Pearson (r) Sig p-value Pearson (r) Sig p-value Pearson (r) Sig p-value
aAuto Correlation* 0.903 0.005 0.925 0.003 0.92 0.003 0.926 0.003

Cluster Prominence* 0.610 0.146 0.601 0.154 0.609 0.146 0.553 0.198
aCluster Shade* -0.859 0.013 -0.844 0.017 -0.832 0.020 -0.903 0.005

Cluster Tendency 0.546 0.205 0.516 0.236 0.526 0.226 0.427 0.339

Contrast 0.642 0.120 0.410 0.36 0.438 0.326 0.45 0.311

Correlation -0.231 0.618 0.565 0.186 0.482 0.273 0.088 0.851

Difference Entropy 0.729 0.063 0.639 0.122 0.378 0.403 0.299 0.514

Dissimilarity 0.701 0.08 0.417 0.352 0.441 0.321 0.389 0.389
aEnergy* -0.806 0.028 -0.815 0.026 -0.797 0.032 -0.768 0.044

Entropy* 0.784 0.037 0.883 0.008 0.638 0.123 0.571 0.180

Homogeneity -0.782 0.038 -0.877 0.01 -0.604 0.151 -0.449 0.313

Homogeneity2 -0.758 0.049 -0.882 0.009 -0.582 0.171 -0.411 0.359

InformationMeasureCorr1 0.169 0.718 -0.548 0.203 -0.238 0.607 -0.272 0.555

InformationMeasureCorr2 0.153 0.744 0.581 0.171 0.299 0.515 0.256 0.580

Inverse Diff Moment Norm -0.642 0.12 -0.403 0.37 -0.434 0.330 -0.445 0.317

Inverse Diff Norm -0.706 0.076 -0.42 0.348 -0.441 0.322 -0.378 0.404

Inverse Variance 0.164 0.725 0.292 0.526 0.042 0.929 0.154 0.742
aMax Probability* -0.803 0.03 -0.808 0.028 -0.802 0.03 -0.783 0.037
aSum Average* 0.951 0.001 0.974 0.000 0.977 0.000 0.977 0.000

Sum Entropy* 0.806 0.029 0.814 0.026 0.631 0.129 0.557 0.194
aSum Variance* 0.902 0.006 0.922 0.003 0.919 0.003 0.926 0.003

Variance 0.546 0.205 0.516 0.236 0.526 0.226 0.427 0.339

Table 4b. Radiomics Texture Feature Variability with Respect to ROI Segment Density in GLCM Feature 

a, indicates that the feature from the four image modalities had a strong correlation with significant p-value<0.05; *, indicates that the feature from 
the four image modalities had a strong correlation with r>0.5

as follows. Out of the 11 intensity features, 8 showed 
significant  correlation with CT. The skewness and 
kurtosis of the intensity features category are used as a 
prognostic tools in identifying tumor genetic mutation 
of NSCLC (Weiss et al., 2014), while another study 
used skewness to predict overall survival (Ahn et al., 
2015). Image features extracted from CBCT also act 
as an early potential biomarker for treatment response 
assessments (Bertelsen et al., 2011; Bernchou et al., 2015). 
Similarly, 5 of the 11 selected texture features of GLRLM 

had significant  correlation with CT. The GLRLM feature 
expresses its usefulness in distinguishing benign lymph 
nodes from malignant ones (Bayanati et al., 2015).  On 
the other hand, among the 22 GLCM features, 9 had 
strong correlation with CT,  which is in line with findings 
of a previous study calculated the CT images  using an 
anthropomorphic which phantom (Mahmood et al., 2017).
However, in a clinical study, Coroller et al., considered this 
feature to the best radiomics feature in predicting distant 
metastasis in NSCLC patients (Coroller et al., 2015). 
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Gray Level Run Length Matrix 
Features

CT CBCThead CBCTthorax CBCTpelvis

Pearson (r) Sig p-value Pearson (r) Sig p-value Pearson (r) Sig p-value Pearson (r) Sig p-value

Gray Level Non uniformity -0.044 0.925 -0.76 0.048 0.072 0.879 -0.260 0.573
aHigh Gray Level Run Emphasis* 0.883 0.008 0.906 0.005 0.906 0.005 0.911 0.004

Long Run Emphasis* -0.797 0.032 -0.809 0.028 -0.802 0.030 -0.737 0.059

Long Run High Gray Level 
Emphasis 

-0.316 0.490 0.725 0.065 0.658 0.108 0.772 0.042

aLong Run Low Gray Level 
Emphasis*

-0.820 0.024 -0.827 0.022 -0.821 0.024 -0.832 0.020

aLow Gray Level Run Emphasis* -0.989 0.000 -0.955 0.001 -0.944 0.001 -0.948 0.001

Run Length Non uniformity 0.721 0.068 0.862 0.013 0.697 0.082 0.483 0.272

Run Percentage* 0.767 0.044 0.836 0.019 0.765 0.045 0.608 0.147

Short Run Emphasis 0.749 0.053 0.857 0.014 0.621 0.136 0.418 0.351
aShort Run High Gray Level 
Emphasis*

0.894 0.007 0.906 0.005 0.893 0.007 0.897 0.006

aShort Run Low Gray Level 
Emphasis*

-0.816 0.025 -0.980 0.000 -0.966 0.000 -0.965 0.000

Table 4c. Radiomics Texture Feature Variability with Respect to ROI Segment Density in GLRLM Feature   

a, indicates that the feature from the four image modalities had a strong correlation with significant p-value<0.05; *, indicates that the feature from 
the four image modalities had a strong correlation with r>0.5

Figure 4b. GLCM Feature Relationship was Compared with Density Pearson’s Correlation Coefficient in the Four 
Images and the Correlation Significances were Above r=0.75 and below r=-0.75

Neighbor Intensity
Difference Feature

CT CBCThead CBCTthorax CBCTpelvis

Pearson (r) Sig p-value Pearson (r) Sig p-value Pearson (r) Sig p-value Pearson (r) Sig p-value

Busyness 0.07 0.881 -0.453 0.307 0.031 0.947 -0.237 0.609

Coarseness -0.787 0.036 -0.244 0.599 -0.603 0.152 -0.129 0.783

Complexity* 0.68 0.093 0.549 0.202 0.658 0.108 0.54 0.211

Contrast 0.743 0.056 -0.048 0.918 0.669 0.1 0.468 0.289

Texture Strength -0.103 0.827 0.428 0.338 0.121 0.796 0.06 0.899

Table 4d. Radiomics Texture Feature Variability with Respect to ROI Segment Density in NID Feature   

a, indicates that the feature from the four image modalities had a strong correlation with significant p-value<0.05; *, indicates that the feature from 
the four image modalities had a strong coefficient with r>0.5

Finally, out of 5 NID features, only one feature showed 
strong correlation with CT, which is in accordance with 
findings of Mahmood et al.’s study. Thus, we found that 
the intensity and the GLRLM feature category of the CT 

were reproducible by the radiomics features of CBCT. The 
other two feature categories of the CT, namely GLCM 
and NID, which were considered not reproducible across 
scanners even under idealized circumstances remained 
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Figure 4c. GLRLM Feature Relationship was Compared with Density Pearson’s Correlation Coefficient in the Four 
Images and the Correlation Significances were Above r=0.75 and Below r=-0.75

Figure 4d. NID Feature Relationship was Compared with Density Pearson’s Correlation Coefficient in the Four Images 
and the Correlation Significances were Above r=0.75 and Below r=-0.75.

the same for the CBCT radiomics features. 
 

ICC was calculated to measure the similarities of each 
feature category between the seven density materials of 
the CT and CBCT

This analysis demonstrated reproducible feature 
category from different density image segments among the 
four scans. ICC of the images in the dissimilar mediums 
of four selected feature categories was compared in box 
plot wispier. In this comparison, the interquartile range of 
NID differed from the other three feature categories. The 
density materials of NID, namely Acrylic and Air, ROIs 
ICC= 0.418, P=0.209, ICC=0.607, P=0.09 demonstrating 
non-significant p- value . This is because of less uniformity 
in ROIs physical density (Fave et al., 2015). NID texture 
features are calculated from the spatial distribution of 
voxel intensities or CT numbers. Moreover, CBCT is an 
ancillary modality and considered for image guidance, its 
pixel units values are likely less accurate than CT pixel 
units and CBCT pixel mapping differs from CT images. 
In addtion, CBCT image formation method is different 

from CT modality. 
In a nutshell, 39% of the 49 selected computed features 

had strong and significant correlation with CT. While the 
remaining 61% features, had low and medium correlation.  
These findings further substantiated the probabilities of 
interrelation amongst the imaging modalities of discrete 
density material textures, thereby incrementing the 
reliability of our study. According to the ICC results, the 
four feature categories, namely intensity, GLCM, and 
GLRLM, showed significance/significant p value. This 
range of reproducible features can be helpful to provide 
unique information from anatomical tissues. However, the 
clinical studies showed different outcomes as compared 
to phantom study. Therefore, further studies correlating 
clinical with phantom studies would probably clarify the 
present limitations and possibly aid in better understanding 
of the applications of CBCT radiomics. In conclusion, 
as CBCT images are taken regularly, we had considered 
it for our study. According to findings of this phantom 
study, CBCT radiomics could probably be considered as 
an independent modality. 
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