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The qualitative and quantitative evaluation of agricultural products has often

been carried out using traditional, i.e., destructive, techniques. Due to

their inherent disadvantages, non-destructive methods that use near-infrared

spectroscopy (NIRS) coupledwith chemometrics could be useful for evaluating

various agricultural products. Advancements in computational power,machine

learning, regression models, artificial neural networks (ANN), and other

predictive tools have made their way into NIRS, improving its potential to be a

feasible alternative to destructive measurements. Moreover, the incorporation

of suitable preprocessing techniques and wavelength selection methods has

arguably proven its practical feasibility. This review focuses on the various

computation methods used for processing the spectral data collected and

discusses the potential applications of NIRS for evaluating the quality and safety

of agricultural products. The challenges associated with this technology are

also discussed, as well as potential future perspectives. We conclude that NIRS

is a potentially useful tool for the rapid assessment of the quality and safety of

agricultural products.
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Introduction

Agro-based processing industries are trending toward the

production of fresh and minimally processed commodities. In

this context, new processes and products are now available

on the market, driven by consumer interest. Agricultural

products are the main raw material for many food industries

(1, 2). They are highly perishable in ambient conditions and

thus have a limited shelf life, which can be extended under

refrigerated storage conditions. Because fruits and vegetables

cannot be stored for a long time due to their susceptibility

to deterioration, particularly microbial and chemical spoilage,

the various processes in the post-harvest supply chain, such

as grading and sorting, should be completed immediately

after harvesting.

The use of proper analytical methods to ensure the quality

and safety of end products is necessary before processing

and throughout the post-harvest supply chain (3). However,

conventional methods for detecting defects in fruits and

vegetables have several disadvantages: The evaluation of raw

fruit quality, cultivar authenticity, and damage to the products

pose challenges to The evaluation of the quality of the raw fruit

and the authenticity of the cultivar, as well as the assessment of

any damage to the product, pose challenges to collecting good

quality inputs from farmers or wholesale dealers. Many kinds

of damage cannot be detected with a visual inspection alone,

thus rendering the process of selecting high-quality products

insecure. Conventional testing methods, such as sampling from

big lots, are time-consuming and expensive (4–7). Moreover,

a significant amount of product is often destroyed during

conventional testing and sampling.

Specific techniques are needed to, for example, detect sun

scaling in apples and weed out the defectives, as such injuries

do not have any chemical treatments (8). Apples can also have

internal browning issues that are not visible on the surface

(9), thus again ruling out the possibility of visual detection.

Similarly, fruits are often kept in refrigerated conditions to

extend shelf life, but this poses a risk of causing chilling injury,

which cannot be detected by peel color or any other aspect of

external appearance (10). Therefore, the standard practice of

local markets is to determine the price of fruits and vegetables

based on their physical attributes, estimated quantitatively and

qualitatively (11).

Non-destructive analytical methods thus play a vital role in

overcoming the challenges of conventional laboratory methods.

In this aspect, near infrared spectroscopy (NIRS), combined

with predictive algorithms, is best suited to assessing product

quality and damage detection and for identifying cultivars (12).

A NIR spectroscopic system consists mainly of an

interconnected light source, spectrometer, and computer,

as shown in Figure 1. (This diagram shows the simplest

representation possible, and does not account for a more

practical NIRS system). The light source emits photons in the

infrared region, which come into contact with the sample, and

their further interactions create vibrations or stretching (13) in

the molecules in the interior of the sample. These vibrations

create a spectrum dependent on the properties of the molecule

and their corresponding chemical bonds. These spectral profiles

are dominant in specific parts of the spectrum. For instance,

molecules like chlorophyll vibrate in the 500–750 nm region

(8, 9) and O-H bonds in water in the 970–1,150 nm region (9).

The spectra have to be analyzed with specific preprocessing

techniques to eliminate noise and unwanted and redundant

information. Later on, preprocessing techniques is implemented

to find the effective wavelength, which spans certain portions

of the spectrum in a way that can precisely classify the product,

as shown in Figure 2. A properly built model can ably classify

the product with little or no mistakes. Care should be taken

when designing a NIR spectroscopic system to conduct a perfect

analysis, using standard methods, with minimum time delay

and high accuracy. The standard error in a laboratory (SEL) may

lead to a standard error in prediction (SEP), which should be

minimized during quantitative prediction with proper methods.

NIR spectroscopy applications have been reviewed for the

processing of cereals processing (14) and seafood (15), for

various applications with dairy products (16), and for quality

analysis of meat and spices (4, 17). Nevertheless, it is paramount

to understand the various applications of NIRS for agricultural

products, as these applications could pave the way to preparing

high-quality end products from these raw materials. In this

context, the present review discusses various NIR spectroscopy

measurement techniques and optimization strategies used in

agricultural products.

Applications of spectroscopic
techniques

Quality parameters

Food products, and their reliability, depend on the quality

of the products from which they are derived. NIR spectroscopy

is one of the best methods for predicting the primary

characteristics of these products, viz. total soluble solids

(TSS), soluble solids content (SSC), titratable acidity (TA),

and pH, using spectral signatures and algorithms. The various

applications of NIRS for determining the quality of agricultural

products are shown in Table 1.

A study conducted by Lan et al. on apple quality evaluated

the characteristics of the puree produced from the same. The

apples’ spectral details were used to predict viscosity, cell wall

content, dry matter, SSC, and puree product TA. The parameters

mentioned above showed R2 values greater than 0.8, indicating

the method’s accuracy (18). The study’s spectral measurements

were carried out in a range of 800–2,500 nm using an automatic

sampling wheel with 18 different positions. However, methods
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FIGURE 1

Spectral data collection unit.

using six optical fibers (9) or manual positioning are more

realistic and accurate. This may be due to the consistency of the

sampling wheel setup. The SSC content determination resulted

in an R2 value of 0.92 due to the homogeneity of the puree

product (18).

The algorithms perform best when the product is

homogeneous rather than inconsistent. Similar investigations

were conducted on calçot onions and on apple purees, and also

obtained accurate predictions for soluble solids, glucose, malic

acid, and dry matter (33, 34). These studies indicate that the

quality evaluation of purees can be successfully performed using

spectral analysis.

In these scenarios, the use of partial least squares (PLS)

models with TSS prediction resulted in R2 = 0.95, better than

any other parameters (27). However, rheological constants and

color values were found to underperform. Thismay be due to the

non-linear nature of rheological variations or the overlapping

of spectral bands (33). Prediction of puree characteristics by

evaluating the quality of intact apples was challenging and semi-

quantitative, suitable for the industrial process (33). NIRS works

based on the chemical compositions and photon response; thus,

processing commodities and converting raw produce to value-

added end product will drastically alter the product’s chemical

nature. This may be why more latent variables and lower

accuracy are obtained in predicting the quality characteristics of

processed products.

Khodabakhshian et al. conducted internal quality studies

on pomegranates using both transmittance and reflectance

modes in the 400–1,100 nm range. Their study evaluated the

model performance by using the predicted residual error sum

of squares (PRESS) method as a cross-validation technique in

the regression analysis. The usual pretreatments, particularly

standard normal variate (SNV_ and multiplicative scatter

correction (MSC), were carried out, thus accounting for the

morphological variation in the pomegranate varieties (27).

Practical case scenarios always need to account for

morphological variation. Therefore, while SNV and MSC

preprocessing can be used, it may not be the same for all

situations. The overall characteristics of both the reflectance

and transmittance spectra were similar and formed peaks

in the 750 and 970 nm ranges, though more noise was

observed in the transmittance spectra (27). The spectra

obtained with wavelength depicted irregular spikes all over

the data, indicating the noise problems. Distinctive peaks for

spectral signature are the preferred method for NIRS analysis.

Interestingly, preprocessing techniques remained similar for

most of the quality traits irrespective of the crop, demonstrating

the potential for efficiency at the point of analysis. Both

transmittance and reflectance methods performed similarly,

though the latter had a slight upper hand due to its higher

penetrating power (21, 35, 36) and more robust system. Thin-

peeled fruits such as pomegranate obtained improved results in

reflectance mode, suggesting that this method can be used for

thick-walled fruits such as coconut, areca nut, and cocoa.

An extensive study on SSC determination conducted by

Hu et al. studied various measuring configurations, variable

selection algorithms, and classification models with Hami

melons. In this context, the calyx model performed the best,

which could be due to the higher SSC content in the calyx

region (23). This result can be further interpolated to obtain the

best prediction results after all preprocessing. The measurement

should be taken at the most prominent part of the attribute.

A similar study performed on apples incorporated a

greater number of orientations, which resulted in the selection

of stem-calyx vertical, with stem upward, as the optimal

direction (29). This suggests that whether one orientation

performs better than others is due to the prominence of

the factor in the oriented region. Various combinations of

variable selections and prediction algorithms suggest that the

Monte Carlo–uninformative variable elimination–successive
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FIGURE 2

Flow chart depicting the NIRS modeling process.

projections algorithm (MC-UVE-SPA) attained the best results

with all prediction algorithms for SSC determination (Rp >0.8)

(23). Xia et al. found that CARS-SPA-PLS performed best for

SSC prediction in apples, obtaining a low root mean square error

of prediction (RMSEP) of<0.573◦ brix. They also found that the

determination of effective wavelength from a global model could

help reduce the effect of orientation to a certain limit (29).

Selecting effective wavelengths that correspond well to the

regions that classify samples can reduce equipment expenses,

as demonstrated by a study on a banana quality evaluation

where the lowest possible wavelength window was suggested

(37). The effective wavelength of each agricultural product

varies and therefore needs to be standardized during spectral

analysis. In bananas and apples, this variation of change in

the effective wavelength may be due to differences in color

and overall composition. We can thus deduce that orientation,

effective wavelength, products used, and equipment design

should be considered while designing an online measuring

system for optimum performance. Various studies have been

able to predict SSC content with R−p > 0.9, obtaining better
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TABLE 1 Uses of NIRS to determine the quality aspects of various agricultural products.

Agricultural

product

Spectral range Software

package

Number of

samples

Accuracy Findings References

Apple and apple

purees

800–2,500 nm OPUS v. 5.0,

XLSTAT, MATLAB

v. 7.5, R v. 3.5.2

240 Classification accuracy of

apples= 82% and

purees= 88%

Viscosity, cell wall content,

dry matter, SSC, and titratable

acidity showed best prediction

(R2 > 0.8). Final apple puree

conditions were predicted

from those of apples.

(18)

Apple 350–2,500 nm MATLAB 2014a,

Unscrambler v.

10.5x

120 SSC: (R2
= 0.87,

RMSEP= 0.55)

pH: (R2
= 0.72,

RMSEP= 0.009)

Denoising with wavelet

transform before

pretreatment was found

effective.

(19)

Tangerine 700–1,100 nm MATLAB v. 7.0 275 94.0% using SSOM SSOM is a non-linear

classifier successfully used to

detect MC, SSC, TA, and

granulation.

(20)

Elderberry 800–2,500 nm OPUS v. 7.2,

Unscrambler 10.4,

Statistica v. 8.0

Fruits from 11

orchards, blended

97.06% TSS and SSC correlated well

with spectral data, and pattern

recognition was possible.

(21)

Apple 800–2,500 nm OPUS v. 7.2 214 TA: (R2
= 68.17%,

RMSEP= 0.12)

TSS/TA: (R2
= 82.62%,

RMSEP= 0.43)

TSS: (R2
= 90.93%,

RMSEP= 0.61)

Spectral intensities varied

according to the

spectroscope used. GA

significantly improved the

prediction quality.

(22)

Hami melons 550–950 nm Unscrambler v. 9.7 120 RMSEP= 0.95–0.99 SSC determination obtained

the best result for the

MC-UVE-SPA-MLR

combined preprocessing and

non-linear prediction

algorithm.

(23)

Grapes 800–1,100 nm Unscrambler v. 10.5 120 TA: (R2
= 0.716,

RMSEP= 0.103)

pH: (R2
= 0.547,

RMSEP= 0.395)

SSC: (R2
= 0.971,

RMSEP= 0.522)

Considerable variation was

observed in connection with

various pretreatments.

Improvement in calibration

results does not always

improve validation results.

(24)

Pineapple 740–1,070 nm MATLAB v. 9.5.0 90 85% Good prediction accuracy for

TSS with RMSEC= 0.95 and

RMSEP= 0.84.

(25)

Olives 2,307–2,348 nm UCal 100 (12 cultivars) R2
= 0.964 and 959 Oil content was predicted

prior to oil extraction.

(26)

Pomegranate 400–1,100 nm ParLeS v. 3.1,

AvaSoft7

100 TSS: (R= 0.95,

RMSEC= 0522)

Reflectance mode was better

than transmission mode for

determining TSS and pH.

(27)

(Continued)
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TABLE 1 (Continued)

Agricultural

product

Spectral range Software

package

Number of

samples

Accuracy Findings References

Persimmon 1,000–2,500 nm NIRware v. 1.2 147 R > 0.75, RPD < 1.5 SSC predictions obtained the

best result with MSC

pretreatment.

(28)

Apple 550–950 nm Unscrambler v.

10.1, MATLAB

2016a, SpectraSuite,

Visual Studio 2010

180 rp = 0.842,

RMSEP= 0.453

Keeping the stem-calyx axis

vertical, with stem upward,

was found to be the

best orientation. PLS and

LS-SVM were used to create

compensation models, CARS

and SPA to select

effective wavelengths.

(29)

Grape 450–2,500 nm Vision software,

GenStat

120 TSS: (R2
= 0.896,

RMSEP= 0.308)

TA: (R2
= 0.835,

RMSEP= 0.066)

TSS/TA: (R2
= 0.812,

RMSEP= 0.451)

The balance between sugar

and acid was taken as a

quantitative parameter, which

was correlated with the

perception of taste.

(11)

Tomato 400–1,100 nm

900–1,700 nm

MATLAB R2016 600 pH: (rp =0.819) SSC:

(rp =0.800)

Spatially resolved

spectroscopy was found

effective for agricultural crops

with heterogeneous structures

and chemical compositions.

(30)

Tomato 930–1,650 nm SpectraWiz, ParLeS

v. 3.1

120 Lycopene: (rcv = 0.840,

RMSECV= 2.256)

Vitamin C: (rcv = 0.818,

RMSECV= 1.087)

MSC combined with first

derivative was able to predict

lycopene and vitamin C

content through the

PLS model. The NIR process

used here does not afford

high accuracy.

(31)

Oranges and grapes 450–2,500 nm Vision TM v.

3.5.0.0, GenStat

120 Grapefruit

120 Oranges

TSS: (R2
= 0.927,

RMSEP= 0.283)

TA: (R2
= 0.929,

RMSEP= 0.017)

TSS/TA: (R2
= 0.958,

RMSEP= 0.2)

TSS: (R2
= 0.896,

RMSEP= 0.308)

TA: (R2
= 0.835,

RMSEP= 0.066)

TSS/TA: (R2
= 0.812,

RMSEP= 0.451)

The sweetness and flavor

attributes of oranges and

grapes were studied. The

organoleptic parameter

BrimA (Brix minus acids)

was evaluated.

(32)

SSC, soluble solid content; RMSEP, root mean square error of prediction; SSOM, supervised self-organizing map; MC, moisture content; TA, titratable acidity; TSS, total soluble solids; GA,

genetic algorithm; RPD, residual predictive deviation; MSV, multiplicative scatter correction; MC-UVE, Monti Carlo–uninformative variable elimination; SPA-MLR, successive projection

algorithm–multiple linear regression; CARS, competitive adaptive reweighted sampling; RMSECV, root-mean-square error of cross-validation.

results than with other factors, such as TA and pH (24).

Similarly, the TSS content of pineapple was compared by

combining various algorithms (25). This latter study, which

used a handheld spectrometer, obtained an accuracy rate

of 85% with an RMSEC of 0.95 and an RMSEP of 0.84

(25). This technology offers the best practical results in

terms of feasibility and future perspectives, even with using

handheld equipment.
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Kanchanomai et al. (24) investigated potential rapid

evaluation techniques by determining the quality of grapes

using SSC, pH, and TA. The SSC prediction obtained an Rp

value of 0.97, whereas TA (Rp = 0.71) and pH (Rp = 0.54)

were comparatively less accurate. Firmness and seedlessness

were also studied, but these factors also had low prediction

accuracy. The researchers concluded that a NIR range of 800–

1,100 nm could be suitable for predicting internal quality in

grapes. Similarly, table grapes were analyzed using various

preprocessing techniques and a NIR range of 400–1,000 nm

(27, 38). The proper preprocessing technique improved the

RPred from a range of 0.6 to 0.8052 and above when Savitzky-

Golay’s second derivative (SG2) was applied. This suggests that

various factors such as pH, TSS, and firmness can be predicted

by applying SG2 preprocessing in table grapes. The better results

obtained can be justified using the proper wavelength range and

preprocessing technique used on table grapes.

A combination of back propagation neural network

(BPNN), generalized regression neural network (GRNN), and

particle swarm optimization (PSO) was used in order to

determine SSC and total acidic content (TAC) in apples (39).

This study focused on developing a hybrid artificial neural

network (ANN) model, as mentioned with earlier techniques;

this was necessary to overcome the inherent limitations within

ANN. The results showed that, during SSC prediction, the

hybrid model and BPNN model had nearly the same RMSEC

and RMSEP values (<0.6 and <0.7, respectively), whereas

the GRNN did not perform well (values of >0.6 and >0.9,

respectively). However, during TAC determination, the GRNN

and hybrid models had low RMSEC and RMSEP values (<0.1),

whereas BPNN did not perform well (>0.2). This confirms that

an adaptation of hybrid models indeed increased the versatility

of the algorithms to determine various quality attributes rather

than having them to be changed with the parameter.

In terms of online determination methods, various systems

have been explored for use with apples, mangoes, and bananas.

Proper orientation of the product, as indicated in the previous

finding, proved to be one of the key challenges facing the

online system design. In an effort to address this challenge,

the use of the CARS-SPA-PLS model after SGS was studied

and was found to be effective in apples (29), with an rp >

0.8. A similar system of MCARS-SPA-PLS was suggested for

online apple prediction with higher accuracy. These algorithms

can handle biological variability and tackle orientation issues

during prediction. Online systems were found highly suitable for

squash (40) and juice products, irrespective of the orientation

challenges. This is likely due to the inconsistency in the fruits

and homogeneity in the value-added products.

Highly perishable produce such as banana needs rapid

quality analysis measures. An online conveyor system for the

same was designed that took TSS, pH, dry matter (DM), and

acid-brix ratio (ABR) into account (37). During the validation

phase, corresponding R2 values of 0.81, 0.78, 0.78, and 0.87

were found, indicating highly accurate prediction results. The

study also selectively carried out preprocessing for both pH

and ABR, which improved the prediction results. The accuracy

of online detection was higher for apples, as the combination

of algorithms ’successfully managed the difficulties of product

orientation. Therefore, similar combination algorithms need

to be adapted for online systems, given the challenges of

performing these measurements with precise orientation.

Textural properties

Texture is one of the key factors influencing the quality,

feel, and appearance of agricultural products. Themost common

parameters used to measure the textural quality of fresh produce

are firmness and penetrometer readings (41, 42). Some studies

have analyzed a wider variety of parameters, viz. fracture

force, hardness, apparent modulus of elasticity, compressive

energy (43), initial firmness, average firmness, rupture force

of peel, rupture distance, penetration energy, and penetration

force (42). These parameters can distinguish varieties (41), as

different species and biological conditions have unique ranges.

It is also worth noting that some studies have opted to use a

universal testing machine (UTM) rather than a textural analyzer

for evaluating the firmness and penetration depth of more

oversized objects.

The summary of the various applications of NIRS for

measuring the textural qualities of agricultural products is

depicted in Table 2. Sánchez et al. (44) analyzed spinach texture

using a handheld NIR device connected to a micro-electrical

mechanical system (MEMS). The researchers used a simple

handheld device for NIR measurement, thus demonstrating the

utility of compact, practical technologies over more complex,

high-cost instruments. The response of the NIR spectroscopy to

CH, OH, and NH bonds and their absorbance patterns creates

crests and troughs (41) in the spectral signature, which is the

base of analysis. It was observed that the use of the handheld

spectrometer resulted in an R2 value nearly equal to 1. The

commodities used in the experiment were taken from different

farms in Spain. Practices like this (i.e., that aggregate a greater

amount of varieties and biological variations) allow for better

calibration and data processing, which in turn contributes to

the building of more robust prediction systems and, ultimately,

yields better results.

This assertion is supported by findings from other studies,

an investigation of methods for determining tomato texture

in which tomatoes in similar maturity groups gave distinct

clusters in a scatter plot (41). Distinct clusters will not account

for the various maturity stages and varieties present in the

sample; therefore, the sample size should be increased to create

a better performing model. The textural tests were performed

using a universal testing machine rather than a textural analyzer

(44, 47). The food matrix tested for puncture force, toughness,
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TABLE 2 Uses of NIRS to determine the textural properties of agricultural products.

Agricultural

product

Spectral range Software package Number of

samples

Accuracy Findings References

Mango 800–2,500 nm OPUS v. 7.0.129 85 R= 0.7–0.75 Penetration parameters,

firmness, and rupture

force were predicted.

(42)

Spinach 1,600–2,400 nm WinISI II v. 1.50 149 R2
cv = 0.74 Consumer acceptance

parameters, dry matter,

and textural properties

were identified.

(44)

Tomato 800–2,500 nm OPUS 30 R2
= 0.7–0.97

RMSECV= 0.4% Brix

SSC content was

predicted using

PLS analysis. The

textural prediction

was accurate.

(41)

Tomato 950–1,650 nm SPSS 13.0, PermutMatrix

v. 1.9.3, Unscrambler v.

9.7, MATLAB 2017

90 R2
p = 0.85–0.966

RMSEP < 0.5

Raw spectra

outperformed

preprocessed ones. ELM

obtained the best

prediction over PLS

and SVM.

(45)

Kiwi 800–900 nm ImageJ, RGS-AvaCam v.

3.7.0, MATLAB R2016b,

Unscrambler v. 9.7

116 R2
= 0.68–0.77 Firmness was influenced

by similar gray pixels.

PLS give slightly better

results than ANN.

(46)

Olive 1,100–2,300 nm SNAP 2.03, Unscrambler

v. 9.7, SigmaPlot v. 10.0

100 R2
= 0.8–0.99 A large data set can

account for several

factors and thus achieve

accurate prediction. A

rapid and inexpensive

technique was used.

(47)

Pear 380–1,030 nm Spectral Image System,

Unscrambler v. 9.7,

ENVI v. 5.0, MATLAB v.

8.1

135 R2
p = 0.89–0.92 Scanning speed > 1.5

m/s is needed for

real-time application.

Deep learning using

SAE-FNN

was performed.

(48)

Pistachio 200–1,100 nm AvaSoft7, ParLeS v. 3.1 81 R2
= 0.754–0.91

RMSEP= 0.253–26.049

The SNV model

performed better

than MSC. Among

textural parameters,

fracture force was

predicted the

most accurately.

(43)

SSC, soluble solid content; RMSEP, root mean square error of prediction; RMSECV, root-mean-square error of cross-validation; PLS, partial least squares; ELM, extreme learningmachines;

SVM, support vector machines; ANN, artificial neural network; SAE, stacked auto encoders; FNN, fully connected neural network; MSC, multiplicative scatter correction.

stiffness, fracture point (44), and firmness (47). Maximum force

to puncture the leaf (r2cv = 0.67; RPDcv = 1.72), toughness

(r2cv = 0.62; RPDcv = 1.62), stiffness (r2cv = 0.69, RPDcv =

1.79) and the displacement of the probe necessary to fracture

each leaf (r2cv= 0.62, RPDcv= 1.61) (44). Similarly, a firmness

measurement performed on olives recorded a high R2 value of
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0.997, indicating excellent-quality predictions of this parameter

(47). There is a significant improvement inR2 value with suitable

preprocessing, as illustrated by a study on pistachio kernels

comparing raw data and various preprocessed data (43).

The selection of the preprocessing method to be used with

textural analysis depends on the parameter under study and

the instruments used in the measurement. A study conducted

by Mohammadi-Moghaddam et al. (43) was able to model

better-performing PLS models for textural analysis after various

pretreatments. It is worth noting that pretreatment is not always

necessary, and that better results were obtained in determining

the firmness of pears (via PLS regression) without preprocessing

(48). Direct comparison between different pretreatments to

determine the best choice is not possible, as it depends on

several factors.

In olives, firmness is understood to correlate with maturity

and oil content (47) due to the relationship between oil and

dry matter. As these factors are mechanically and structurally

connected, defining the mouth feel via NIRS can offer a

non-destructive method of measurement. Although firmness

prediction is a bit complicated, one study on olives obtained

readings of 1,248, 1,449, 1,758, 1,917, 1,990, and 2,238 nm

at peak regions using PLS regression, thus delivering high

correlation and low error rates (47). A similar study using cherry

tomato resulted in a firmness prediction of R2 = 0.966 (45). The

algorithm for the extreme learning machine used in this study

works by optimizing the hidden layers in the cross-validation

step, thus solving practical problems (45).

Compression and penetrometer tests were performed

together on tomatoes by Camps and Gilli (41), with the

compression test demonstrating better prediction performance

(R2 = 0.85–0.97). This observation is further supported by

a study conducted on juicy stone fruits that found that the

compression test was significant as the fruit matured (49). A

textural analysis on tomatoes revealed that there are about 7–

10 latent variables for compression parameters and anywhere

between 3 and 8 for penetrometer parameters (41), and that data

clustering may be the reason behind better R2 results. However,

although clustered data can improve R2 values, the RMSE values

may not differ much.

Studies on the correlation between texture and quality in

mango suggest that, based on the R2 value, the parameter should

either be used for rough screening or for thorough evaluation.

On this basis, one study found that the parameters of pulp

penetration force, peel rupture force, and penetration energy

in the pulp can be used for rough screening (42). The authors

also discussed the relationship between textural parameters and

other factors such as maturity, storage time, and processing

stage. Processing operations such as roasting can also cause a

decrease in moisture content, resulting in more reflectance (43);

similarly, a difference in amplitude of peak has been observed in

pistachio kernels after processing. Camps and Gilli (41) studied

three tomato varieties with 90 samples outperformed this study

on the same parameters, although the sample size was 80 on

a single variety. These results confirm both the highly variable

characteristics of tomatoes and the research gaps regarding these

characteristics. Yu et al. (48) proposed a deep learning model

with a stacked auto-encoder (SAE) and fully connected neural

network (FNN), where SAE was used to extract the features

which were given as FNN input. An investigation conducted on

pear fruit compared the PLS regression with a deep learning

algorithm, and significantly better results were obtained for

SAE-FNN (48). Deep learning predicted the R2 value in the

range of 0.9, whereas the PLS regression could only reach values

near 0.8 (48). Experiments on firmness prediction in kiwi fruit

found that, on average, PLS (R2 = 0.77) performed better than

ANN (R2 = 0.72) (46).

Variety/cultivar identification and
authentication

Authentication and traceability throughout the supply chain

are essential, especially where technologies such as block-chain

methods are implemented. Today’s consumers are focused on

authenticity; they demand traceability and strict quality controls

in production. In recent years, NIRS, along with classification

algorithms, has been integrated into supply and production

chains to meet these demands.

The development of models that can discriminate between

different genotypes of apples (50–53), bell peppers, (54),

mangoes (55), pears (56), potatoes (57), and mulberries (7)

using the NIR spectrum is summarized in Table 3. In practical

terms, the sorting of these commodities should be done on

a fast-moving conveyor system, but designing a spectrum-

collecting system for this environment is troublesome. Because

even agricultural products of the same variety can have different

surface properties, obtaining multiple spectral samples, as large

as 250 readings (7, 55, 59), is necessary. The sample size and

the number of measurements needed are determined by the

heterogeneity and complexity of the sample, such as whether the

product is sliced (59). The heterogeneous nature of the sample is

accounted for by techniques such as taking three or four different

types ofmeasurements; by the use of 120 and 90-degree rotations

(54, 58); and by the use of fabricated fruit holders (59, 61) or

by using the arrangement in the spectrometer. Standard NIR

models require whole fruit cover scanning using arrangements

of diode-array instruments (44), the integration of the sphere

around them to recover information that is otherwise lost (52),

and methods to keep the distance from fruit to measurement

probe constant, irrespective of the size (50).

Most researchers are using the existing spectrometer system

directly, and therefore more emphasis has been given to the

classification methods. A broader range of photometers and a

larger sample size can significantly improve the model (54).
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TABLE 3 Summary of variety and cultivar identification for various agricultural products using NIRS.

Agricultural

product

Spectral range Software

package

Number of

samples

Accuracy Findings References

Bell pepper 1,600–2,400 nm Win ISI II v. 1.5,

MATLAB 2015a

394 88.28–91.37% Preliminary screening using

SSC and dry matter was a

success. The importance of

SEP and SEL was discussed.

(54)

Mulberry 909–1,649 nm PLS Toolbox v.

6.21, MATLAB

R2009

468 84.1% Dendrobium officinale Kimura

et Migo (DOK) was

distinguished from

Dendrobium devonianum

Paxt (DDP).

(7)

Apple 1,000–2,500 nm MATLAB 7.11,

Antaris II System

180 74.44% Among PCA, PCA+LDA,

SDA, and DPLS, SDA was

found to have better

performance for feature

extraction.

(58)

Apple 1,000–2,500 nm Fiber Optic Solids

cell, NIRWare

Unscrambler,

410 77.9% Classification of apples

according to various terrain

types.

(51)

Tangerine, red

cabbage,

cornichons, kale

and applesauce

1,100 nm and

2,100 nm

PAS LABS v. 1.2,

SIMCA v. 14.1

15 99% NIRS prediction was possible

for commodities kept

inside glass. OPLS-DA

outperformed PCA

and PLS-DA.

(59)

Potato 964.13–1645.01

nm and 2502.50–

16666.67 nm

SpectralCube,

OPUS v. 7.2,

PLS-toolbox v. 8.6,

Unscrambler v.

10.1, MATLAB

R2017b

240 RP= 0.954

RMSEP= 0.421

A PLSR model was used to

find the degree of doneness

and predict the variety.

(57)

Apple 300–1,100 nm ModelBuilder, R

Statistical software

640 R2 values were 0.90 and

0.92 and RMSE were

0.67%.

Individual models for

cultivars performed better

than the combined model.

(53)

Mango 1,200–2,200 nm Unscrambler 1,310 Alphonso and

Banganapalli (99.07%,

99.58%), Dasheri and

Malda (98.37%, 94%)

A distinct score plot allowed

for more accurate

classification.

(55)

Apple 400–1,021 nm Ocean View,

MATLAB R2014b

300 SPA-SVM 85.83%

SPA-ELM 95%

Among BPNN, SVM and

ELMmodels, ELM performed

better. Feature selection with

SPA combined with ELM

produced better results than

PCA.

(60)

(Continued)
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TABLE 3 (Continued)

Agricultural

product

Spectral range Software

package

Number of

samples

Accuracy Findings References

Pears 350–1,800 nm

350–1,000 nm

1,000–1,800 nm

Unscrambler v. 9.7 110 R2 0.90–0.92 RMSEP

0.23–0.30

Feature selection was

obtained better with CARS

than with MC-UVE and SPA.

CARS-MLR and CARS-PLS

accurately determined SSC.

(56)

Apple 1,000–2,500 nm MATLAB R2014a 208 98.1% Geographical region had a

significant effect on SSC.

CARS feature selection and

PLS-DA had good prediction

accuracy.

SSC, soluble solid content; SEP, standard error in prediction; SEL, standard error in laboratory; PCA, principle component analysis; LDA, linear discriminant analysis; SDA, stacked

denoising autoencode; DPLS, dynamic partial least squares; OPLS, orthogonal partial least-squares; PLS-DA, partial least-squares discriminant analysis; PLSR, partial least squares

regression; BPNN, back propagation neural network; SVM, support vector machines; ELM, extreme learning machines; SPA, successive projection algorithm; CARS, competitive adaptive

reweighted sampling; MC-UVE, Monti Carlo–uninformative variable elimination; SPA-MLR, successive projection algorithm–multiple linear regression.

Broader models are useful for obtaining unique peaks in

the spectrum that can discriminate between varieties. Because

fluctuations in temperature and light play a vital role in creating

the NIR model, care should be taken to keep the surrounding

environment the same for all measurements (53).

For cultivar prediction, the input data are preprocessed

using methods such as multiplicative scatter correction (MSC)

(51, 55, 60), EMSC (50, 62), standard normal variate (SNV)

(7, 51, 56), detrend (51, 55), normalization (58, 59), Savitzky-

Golay (7, 50, 51, 61), and Norris gap (55). These are independent

reference techniques for eliminating the unwanted effects of

irrelevant information in the spectra (52). Without these

techniques, the noise would be learned along with the true

calibration data, causing over-fitting (53). The application of

the various treatments is based on the corrections required by

the scenario, and it is up to the researcher to decide which

corrections are suitable. Preprocessing is a necessary step in

variety detection because the produce being measured is in raw

form, and the noise level can therefore be high. However, it

should be kept in mind that the use of smoothing techniques,

such as those listed above, to process raw data can result in the

loss of valuable information.

The investigation of fruit and vegetable spectra using

produce housed in glass containers during preprocessing did

not yield better results than raw data, at least in a scenario

where a reference-dependent orthogonal partial least squares

(OPLS) model contained an integrated OSC filter (59). The

filter’s effectiveness was evaluated by a response permutation set

and performance matrices, viz. sensitivity, specificity, efficiency,

false negative, false positive, and true negative (59).

A direct spectral comparison may not always be possible

due to crossovers and overlapping. Li et al. (60) measured

300 samples of apple and observed spectra between 400 and

1,021 nm, and all of which were largely similar to each other. The

observed spectra consisted of various attributes, so dimension

reduction techniques such as PCA and the score plot were later

used for classification. Dimension reduction was necessary to

eliminate irrelevant and redundant spectral variables (56). In the

context of cultivar identification, PCA was able to retain 98%

of the data for apple cultivation (51), which makes it an ideal

feature extraction method.

Jha et al. (55) investigated the classification of apple varieties

and obtained 99.07% and 99.58% accuracy for Alphonso and

Banganapalli mangoes, respectively. Score plot variance typically

decreases from PC1, PC2, and PC3; thus, most researchers use

the first two (51) or the first three (50). The variety inherent

within the identification process needs a score plot where similar

results are grouped or clustered in one area. However, choosing

PC2 and PC3 regardless of PC1 can result in better models with

a better grouping (54). Variable selection should be made using

the genetic algorithm (GA), the successive projection algorithm

(SPA), Monte Carlo–uninformative variable elimination (MC-

UVE), and competitive adaptive reweighted sampling (CARS),

and these selected variables should be combined with PLS or

multiple linear regression (MLR) in a later stage for predicting

(7, 54, 61). Comparative evaluations of these techniques have

suggested that CARS has the best performance, resulting in

Rp values near 0.9 and RMSEP values near 0.5 (7, 52, 56).

Pattern recognition can also be achieved using machine learning

methods such as backpropagation neural networks (BPNN),

support vector machines (SVM), and extreme learningmachines

(ELM). These methods are suitable for identifying the variety

and geographical origin of fruits based on the spectrum. The

number of factors and groups plays a substantial role in the

performance of the model. Reducing the number of possible

predictions increases the model’s accuracy. In one study of
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apples from different orchard levels, for example, the models

performed well only for classification between valley and

mountain—i.e., a 2-variable model (51).

Individual models are more accurate than multivariate

models (53), but multivariate models need to be developed

in practical scenarios. In cases where individual models are

deliberately selected for cultivar predictions, data overfitting

and insufficient external validations are possible pitfalls (53).

Model development requires a suitable training and testing

set, and it is ideal to have the same number of training and

testing sets for each of the varieties that need discrimination.

If the number of elements is not equal between the training

and testing sets, there can be a class imbalance, which can

lead to biases within the model. Imbalances are usually dealt

with by using under- and oversampling techniques, though

other methods are possible; Zimmer and Schneider (59), for

example, evaluated a well-handled model without treating class

imbalance. Models are trained with data from destructive

methods and laboratory evaluation. Therefore, the model’s

standard error in prediction (SEP) depends highly on the

standard error in the laboratory (SEL). Sánchez et al. (54)

suggested that SEP values greater than or equal to 5 times the

SEL value indicate a model of unacceptable quality. For this

reason, in a quantitative prediction, it is better to estimate the

repeatability and reproducibility of measurements for better

understanding. Most of the research comes with the significant

caveat that external evaluation is lacking (53), but evaluation of

this kind is necessary for a model used to predict cultivars and

varieties from various places.

In the case of variety and cultivar identification, the models

are used to classify qualitative data, and this automatically

enables a quantitative classification (54), i.e., different cultivation

locations confer a set of internal qualities that are unique to each

variety (60). Eisenstecken et al. (51) and Li et al. (61) conducted

experiments to determine varieties grown at different elevations,

where quantitative factors (viz., carbohydrate, fructose, sucrose,

glucose, sorbitol, and citric acid) displayed a predictable

variation according to the elevation at which the fruit was

cultivated. This knowledge, combined with a multi-origin

regression model, can predict quality parameters such as pH,

firmness, acidity, and moisture (52). Nevertheless, the models

created during one season are not suitable for the next season

due to natural variation in the environment, which in turn

creates variation in crop attributes (53).

Maturity detection

Maturity detection is one of the main uses of NIR in the

context of agricultural products. Due to variations in biological

factors, many crops do not have standard maturity indices (63).

While there is no way to directly predict the maturity of the fruit,

factors such as color, firmness, TSS, TA, and dry matter are often

correlated withmaturity. Among these parameters, color and the

pigment component responsible for color are frequently used for

maturity detection. Thismay be because thematurity of fruit was

traditionally determined by analyzing the color with the naked

eye. One NIR study of lipophilic antioxidants and firmness in

tomatoes found a particular trend in the spectral lines as they

approached maturity (64). Although this study is not directly

related to maturity prediction, the results suggest the potential

of NIR for maturity detection.

Fuzzy logic algorithms are among the most recent

technologies introduced for maturity detection. Chen et al. (65)

evaluated pomelo maturity using a least square support vector

regression (LSSVR) model and PCA algorithm with “fuzzy-

optimized” NIR data. Compared to ordinary PCA, the fuzzy

transform PCA inhibits original data noise and emphasizes PC

(65). The LSSVR model is represented by Equation 1.

Y = ω.∅ (x) + b (1)

where ω =matrix of regression weight; ϕ(x) = kernel function,

which is taken as radial basis function (RBF); b= threshold.

The study divided the samples into three categories, viz.

calibration, validation, and test. The test samples are not related

to calibration or validation; therefore, they can be used to

check whether the model is representative (65). The maturity

parameter, which reflects color (L, a, b) values, is thus obtained

using the model.

The various applications of NIRS for maturity detection are

presented in Table 4. A study of maturity detection in grapes

using PLS modeling included variable factors such as cultivar,

location, ripeness level, and season (66). Compared with a study

that considered only varieties collected from a single vendor

for classification, validation, and testing, the former approach

is more practical and industry-relevant. Creating the model on

the 2016 variety and validating it with the 2017 variety (66)

proved the model’s long-term robustness. Obtaining the best

possible prediction results for each of the parameters under

study required the use of different preprocessing techniques;

some examples are MSW+MSC for TSS and SNV for TA (66).

The maturity of kiwi fruit and mango was predicted by

measuring dry matter (DM) content and solid soluble content

(SSC) (63, 73). Although SSC can be used for maturity detection

by measuring the starch in the mesocarp converted to sugar, this

method is not recommended in mangoes (63). An investigation

of avocado fruits predicted theirmaturity by estimatingmoisture

content (MC), but this method did not fit well due to the poor

spectra obtained (67). The experiment underperformed at first

due to poor peel penetration, but improved once the peel was

removed. This suggests that NIR cannot be used for all purposes.

Evaluations carried out with and without flesh had the same

number of latent variables, but the former’s R2 value was 0.6,

which later improved to 0.8 (67). In light of these issues, the

corresponding challenges in fruits with similar properties to
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TABLE 4 Uses of NIRS for the maturity detection of various agricultural products.

Agriculture

produces

Spectral range Software package Number of

samples

Accuracy Findings References

Grape 800–2,500 nm OPUS v. 7.2 267+ 71 R2
p = 0.28–0.77, RMSEP

= 0.14–7.83

TSS and TA parameters

can discriminate

between grape varieties.

Consumer needs and

sensory parameters

are correlated.

(66)

Avocado 940–1,798 nm Latentix v. 2.12 > 10,000 R2
= 0.732, RMSEP=

1.83

Evaluated the

performance of a

portable NIR device.

Conducted external

validation with

different seasons.

(67)

Mango 306–1,140 nm Unscrambler v. 10.3 149 R2
cv = 0.84–0.87,

RMSEcv = 139%

PLS prediction worked

well for SSC and DM.

Firmness had

poor calibration.

(63)

Watermelon 802–805 nm OOIBase32,

Unscrambler v. 9.7,

MATLAB v. 7.10 R2010b

200 76.7–85.1% RPP and NDIP

techniques were used.

Over-maturity

was identified.

(68)

Tomato 285–1,200 nm Model Builder v.

1.1.0.105, SAS v. 9.2

R2
= 0.67–0.86, RMSCV

= 0.64–1.082

Readings of lipophilic

antioxidants were only

partially correct, an

destructive measurement

techniques were used.

Online measurement is

possible with

suitable improvements.

(64)

Banana 400–1,000 nm 45 R2
= 0.89, RMSE=

0.000598

Chlorophyll content

was predicted. Skin color

was related to maturity.

(69)

Pomelo 400–2,500 nm 168 RT = 0.893–0.912,

RMSET = 0.87–7.28

Fuzzy logic application

in LSSVR with

RBF kernel. Online

quality determination

with Vis-NIR is possible.

(65)

Pomelo 380–2,520 nm QualitySpec Pro Rp = 0.913–0.997,

RMSEp = 0.59–5.82

MOPLEC preprocessing

and MWPLS were

combined to form a

robust model. Color

parameters L*, a*, and b*

were close to

LabMeas values.

(70)

Blueberry 400–2,500 nm Sisvar 3.0, IBM SPSS

Statistics 19

300 R= 0.714–0.970 IAD variations and

anthocyanin levels were

related.

(71)

(Continued)
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TABLE 4 (Continued)

Agriculture

produces

Spectral range Software package Number of

samples

Accuracy Findings References

Apple 200–1,100 nm Spectrawiz 170 93.27–99.62% The color and maturity

of apples were correlated.

Prediction was carried

out using ANN-SA and

was successful.

(72)

Kiwi 729–975 nm SAS v. 8.2, F-750 Model

Builder

100 R2
= 0.73,

R= 0.48–0.74

Dry matter and SSC can

be estimated from NIRS.

The edible quality of

baby kiwi fruit was

predicted from the

unripe stage.

(73)

Mango 700–990 nm Spectrasuite, XLSTAT

2014.1, SAS v. 9.4

1,200 70–72% Maturity can be

determined using NIR

measurements of DM

and TSS.

(74)

Pineapple 740–1,070 nm MATLAB v. 9.5.0 90 100% Organic and

conventional cultivation

was perfectly

determined.

(25)

TSS, Total soluble solids; TA, Titratable acidity; RMSEP, Root mean square error of prediction; RMSECV, Root mean square error of cross validation; PLS, Partial least squares; SSC, Soluble

solids content; DM, Dry matter; RPP, Ratio of intensity between peak1 and peak2; NDIP, Normalized difference intensity of peak; LSSVR, Least square support vector regression; RBF,

Radial basis function; MOPLEC, Modified optical path length estimation and correction; MWPLS, Moving window partial least squares; ANN-SA, Artificial neural network simulated

annealing algorithm.

avocado need to be addressed, and proper methods need to

be formulated.

Temperature has a direct impact on spectral data due

to the changing behavior of chemical compounds. Therefore,

temperature should be stabilized before measurement, as has

been done with kiwi fruit spectra (73). Kim et al. (73) also

evaluated the use of Ca-Chitosan coating on kiwi fruit and

its effect on maturity. The application of NIRS was able

to increase SSC content due to a decrease in the ripening

rate (73). The model was able to predict maturity, with

R2 values of 0.73 (73), an acceptable result. Fascinatingly,

these results show that applying coatings can change the

spectral behavior due to the interaction between photons and

the new chemical compounds. However, due to the use of

algorithms and processing techniques, all coated fruits with the

same compounds will show spectral differences only in other

variables, such as SSC and DM, given that a uniform application

is performed (Figure 3).

Investigations of banana maturity by Saputro et al. (69)

correlate chlorophyll content with maturity determination. A

combination of PCA, PCR, and SVM achieved an RMSE value

of 0.000598%, implying a good performance. The chlorophyll

bands are situated in the 680–700 nm range, which was

estimated with the help of NIRS (69). In mangoes, SSC

FIGURE 3

The spectral patterns of products at various stages of maturity.

determination was in the range of 699–999 nm and DM at

699–981 nm, which resulted in R2 = 0.874–0.87 in cross-

validation (63).

Ribera-Fonseca et al. (71) evaluated the potential of a non-

invasive tool to predict the fruit harvest date using maturity

parameters. The device measures an index of absorbance

difference (IAD), which has a high correlation with fruit quality

parameters (71). This approach could not make use of any

conventional algorithms; therefore, it relies on IAD values only.

Maturation studies of mangoes by Polinar et al. (74) created a
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classification model that predicts mature and immature fruit. It

was based on days after flower induction (DAFI) by setting the

threshold as floaters <25%. Prediction of the ripe stage using

these techniques was able to detect artificially ripened fruit with

a bland taste (74). These innovations can be used to create

auto sorting, identify higher-quality fruits, and prevent fraud

in markets.

Watermelon maturity prediction was carried out using the

ratio of peak (RP) method. The RP is used when two peaks have

opposite intensity variation as the fruit matures. In watermelon,

after calculating the ratio of the intensity of peak 1 and peak

2, the normalized difference intensity of peak (NDIP) was

used to determine the maturity stage of the fruit (68). The

SPA successive projection algorithm (SPA) was used for feature

extraction, and least square support vector machines (LS-SVM)

was used for classification purposes (68). The plot of the ratio of

intensity between peak 1 and peak 2 (RPP) vs. maturity stages

was able to distribute the fruit according to different maturity

stages (68). Thus, the RPP alone distinguished various maturity

stages, without performing PCA or LDA to plot with the highest

variations. The correct classification rate (CCR) was highest for

corrected RPP values (88.1%) with NDIP (85.1%) and lowest for

LS-SVM (76.7%) (68). A high level of CCR is desirable, but at the

same time, error parameters also need to be evaluated, which was

not mentioned in this study.

Many studies rely on SSC and DM models that use PLS

to predict maturity. Taking the spectral analysis to the next

level requires the use of different applications, such as those

that are used in robotics or that can process video. One

study of Fuji apples applied NIR spectral analysis to video

frames to detect maturation (72). Rather than the use of

quantitative data and correlation, expert panelists were chosen

to determine maturity. The processing computer used in the

study had “entry-level” specifications by 2020 standards, thus

demonstrating the affordability of the analysis, in contrast to

“high-end” specifications. The classification model used was

ANN combined with simulated annealing (SA). The SA sends

out different vectors to ANN and finds the most suitable ANN

structure (72). The method performed well, with accuracy rates

above 90%, using the wavelength regions of 535–560 nm, 835–

855 nm, or 950–975 nm (72).

Chen et al. (70) determined Shatian pomelo maturity by

correlating color and maturity levels. Rather than conventional

preprocessing methods, the multiplicative effect correction

(MOPLEC), which corrects the change in optical path length,

was used (70). This technique performed better in comparison

to Savitzky-Golay smoothing and increased the signal-to-noise

ratio (70). The preprocessing was followed by a moving window

partial least square (MWPLS), which found a high signal

wavelength combination for PLS modeling (70). MWPLS varies

the location and number of adjacent wavelengths to find

the optimum combination for PLS modeling (70). The study

compared the raw data, SG- processed, andMOPLEC-processed

data and found that Rv was highest for MOPLEC-processed

data, showing on-par or better values than SG-processed data

(70). The new techniques were able to perform better overall in

predicting the maturity of pomelo from color. Therefore, these

techniques need to be explored for other fruits to determine

whether color prediction can be improved for them as well.

Damage detection

Fresh and minimally processed food commodities are in

high demand these days, which raises the stakes on delivering

commodities with minimal damage. Well sorted and less-

damaged products increase consumer satisfaction, too. There is,

however, a great deal of variation among horticultural products:

Highly perishable commodities such as tomatoes can show

the effects of bruises or damage within 48 h (75), whereas

apples can take more than 50 days (8) to show any signs of

damage on the outer surface. Harvested commodities should

be promptly evaluated for damage to receive the commodity

and then convert to any value-added products. Due to the short

evaluation period, many food researchers and industries use

non-destructive techniques such as NIR spectroscopy that can

detect damage without any effects on the products (Table 5).

Defects such as internal bruising in blueberries can be detected

as soon as 30min after mechanical impact, with an R2 of 0.7

(76). Because we can estimate the spoilage period and extent

of damage, characterizing spectral signatures so as to detect

damage or abnormalities could improve crop utilization (75).

Damage predictions are conducted by spectral examination

of the outer skin, known as the epidermis. Because the

epidermis is the “interface” of the fruit structure, any unfavorable

conditions can cause small changes (75) that may not be

apparent in the 500–900 nm range (i.e., visible to the naked

eye) (79). These changes can, however, be detected using

NIR spectroscopy. However, some changes, such as oxidative

browning, can be detected by the human eye due to the

significant time lag involved (76).

In terms of collecting input for spectral processing, various

configurations have been studied, viz. taking measurements

in 90-degree rotations (10) or 120-degree rotations (13),

contacting the epidermis (8), using 360-degree measurements

(9), and taking multiple measurements at different points and

averaging the values (75). In a comparison of apples held at

different orientations for measurement, orienting apples along

the equatorial region showed the highest potential for defect

detection (9). This may be because this orientation exposes a

greater amount of curved surface area, which allows for more

sensitive measurements. However, the equatorial alignment

yielded the worst results in detecting chilling injury in kiwifruit;

in this context, results were better with alignment at the stylar

end, likely because chilling symptoms begin at the end of the

fruit (10). It was observed during a hyperspectral analysis of
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TABLE 5 Summary of NIRS applications for damage detection in agricultural products.

Agricultural

product

Spectral range Software

package

Number of

samples

Accuracy Findings References

Peach 400–2,500 nm

325–1,100 nm

930–2,548 nm

ENVI v. 4.6, Isuzu

Optics

200 Bruise detection= 96.5,

Sound sample detection

= 97.5

SW-NIR was found more

suitable than LW-NIR.

Improved watershed segment

algorithm used.

(61)

Blueberry 950–1,650 nm LabVIEW,

MATLAB 2016b,

ENVI v. 4.7

320 70.8%−100% Prediction accuracy increased

with time. Calyx side bruise is

difficult to detect.

(76)

Apple 400–1,100 nm MATLAB, Neural

Network Toolbox v.

4

550 Correlation of prediction

= 0.87, SEP= 5.8N

Back-propagation neural

network, combined with

input ratios of scattering

profile, predicted fruit

firmness and SSC.

(77)

Olive 1,100–2,300 nm R v. 3.1.3

SNAP! V. 2.04

744 96% QDA was found better than

LDA.

(78)

Apple 550–1,650 nm MATLAB R2017a,

PLS Toolbox v. 8.6

430 92.9% The influence of different

positioning on spectra

acquisition was studied. The

equatorial orientation was

found best.

(9)

Kiwi 400–1,100 nm MATLAB R2018a,

PLS toolbox v. 8.7

129 Water-soaked tissues have

lower potential for damage

detection after the SNV

process.

(10)

Coconut 900–2,500 nm OPUS v. 6.5,

Unscrambler v. 9.8

202 94.03% The NIR model performed

better than the acoustic

method for detecting cracks

in coconut shells.

(13)

Apples 350–1,100 nm Unscrambler v.

10.5.1, MATLAB

R2017b, PLS

Toolbox

393 R2
= 0.59 Sun scaling causes changes in

chlorophyll content.

(8)

Cherry 350–2,500 nm RS3, MATLAB

2011a, ENVI v. 4.6,

ViewSpec Pro v.

6.2.0, Origin8 SR0,

Unscrambler X10.1

300 93.3% Color, firmness, and SSC were

consistent with the

Vis-NIR reflectance. LS-SVM

combined with SPA detected

bruises within the sample.

(79)

Peach 300–1,150 nm OMNIC v. 8.2, R

Studio, SPSS v. 22.0,

OriginPro 2017

840 Rp = 0.71–0.92,

RMSEP= 0.17–20.34

Good correlation between

physiological indicators and

absorption spectra. GA-PLS

performed the best.

(80)

Tomato 5,555.56–

11,111.11 nm

MATLAB 2016 83–97% PCA-LDA identified G.

candidum infection.

(75)

SW-NIR, Shortwave near infrared; LW-NIR, Longwave near infrared; SSC, Soluble solid content; QDA, Quadratic discriminant analysis; LDA, Linear discriminant analysis; SNV, Standard

normal variate; LS-SVM, Least square support vector machine; GA-PLS, Genetic algorithm partial least square; PCA-LDA, Principal component analysis and linear discriminant analysis.
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blueberries that the calyx end was misclassified as bruised; these

data needed to be excluded to reduce the false positive rate and

reduce the RMSEP of 0.1 to 0.13 (76). Therefore, the design of

NIR systems to measure fruit characteristics should take into

account both the defect to be detected and the algorithm used

for analysis.

A 6-fiber individual measurement system performed better

than the conventional single-point measurement system (9), as

accuracy increased from 0.8% to 1.7%when average spectra were

used. There is no single method best suited for measurement,

because all measurements are post-processed using different

methods. Re-orienting can take up a large amount of time

needed for developing a commercial online system, which is

not suitable. During the training, care should be taken to avoid

any outliers, which can affect the classification accuracy by

causing overfitting problems. Outliers, in the context of damage

detection, refers to commodities that are severely damaged.

These cause the PCA and LDA algorithms to underperform. An

analysis of sunscald apples followed this procedure to avoid the

highly damaged ones, thus increasing the classification accuracy

(8). In practical terms, this is possible because severe defects are

visible to the naked eye.

An experiment conducted to detect cracked coconut shells

found that a PCA plot itself can be used to find the outliers

in cases where it is impossible to observe the shell inside the

husk (13). The PCA analysis will yield more relevant results

once it is run only with effective wavelengths and with outliers

eliminated. A PCA analysis of bruising on peaches, with effective

wavelengths of 781, 816, 840, 945, and 1,000 nm, yielded a PC4

with high-contrast bruised area (60).When selecting the optimal

wavelength, the successive projection algorithm (SPA) follows

an iterative process, adding one more wavelength with each

step, which reduces the complexity of dealing with the whole

spectrum (79). During a bruise analysis of cherry, SPA with 3

variables had an accuracy rate of 96.6%, while the full spectra

with 2 variables had a 96% accuracy rate with less computational

load (79). A lower computational load, i.e., a shorter analysis

time, is essential for the design of an inline system. During the

bruising analysis, it was found that even slight damage to the

control samples can cause a partiality in the classification model

(76). One more caveat is the need to use an independent set of

crops from a different region or season. The influences of spatial

and temporal variability are still not accounted for by the usual

classification algorithms, due to high biological variability. As

seen in the detection of sunscald in apples from different years,

the RMSEP for prediction was three times that of the calibration

(8). The variability caused by biological variation, temperature

fluctuation, and measurement positions can be accounted for,

to an extent, by using classification models such as least square

support vector machines (LS-SVM) (76).

The classification of defect detection is usually done

subjectively, i.e., not quantitatively, meaning that human error

can occur (10). When the spectra are used for chemometric or

qualitative measurement, they should be immediately assessed

after the spectral measurement to reduce errors caused by the

increase of time (80).

The detection regions are explored by comparing the sound

and damaged fruits using their spectral reflectance curves.

These depict the reflectance vs. wavelength plot for both

samples. Due to the changes caused by damage, there will be

significant variation in some parts of the plot between sound

and damaged produce, and these differing bands are used for

classification. As far as the classification is considered, sound

fruits are more homogeneous, and therefore easier to classify,

than damaged ones (61). A consistent variation in the spectral

sign is desirable for accurate separation (52). This approach

also reduces redundant information and the time needed for

processing. For SW-NIR and visible NIR, wavebands are selected

instead of wave points, to reduce the complexity (80).

In an analysis of bruising on peaches, it was found that SW-

NIR (7,801–1,000 nm) was more efficient than LW-NIR (1,000–

2,500 nm) due to better contrast difference in the bruised area

(60). During the analysis of HIS, wave points and regions of

interest (ROI) are selected for analysis (61, 76), and they also

provide the spatial distribution of the bruises. Upon correlating

the significant effect of the epidermis and spectral curve on

research, we observe that pigments such as carotenoids and

chlorophyll bands provide promising regions of variation, viz.

at around 670 nm for the chlorophyll band (8, 10, 52), 550 nm

for the anthocyanin band (79), and 740 nm for the carotenoid

band (8). Defects in fruits with lower chlorophyll content

may not show significant chlorophyll band variation, as is

the case with internal browning in apples (60). Evaluating

specific chemical bonds and determining the wave points is

significantly easier than characterizing TSS or SSC, each of

which contains several compounds (80) and is thus tedious to

identify on a spectral reflectance plot. The wavelength range of

SSC for cherries was 900–2,500 nm, a large waveband that needs

further analysis (79).

One study of bruising in blueberries followed the analysis

of the cut piece’s pixels to evaluate the degree of bruising (76),

which was more accurate than a subjective human evaluation.

Supplementary techniques such as inverse adding doubling

(IAD) can also be conducted on the optical properties of water-

soaked tissues (10). The water absorption peaks were found to be

at the 970 nm and 1,200 nm regions. A bruise capable of causing

cell membrane rupture will undoubtedly differ significantly in

this region (76).

The traditional methods followed the PCA and PLS

methods, which project all variables to reduce dimensions and

increase separability, respectively. During PCA analysis, the

first few PC are selected for classification due to their feature-

rich plots. Nevertheless, an analysis of bruising on peaches

found that PC4 had the best bruise distinction, with retention

of effective wavelengths (61). Therefore, while performing a

PCA, the resultant plot should be observed to check whether
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it fits the purpose. To further enhance the efficiency, non-

linear optimizations should be carried out, such as the genetic

algorithm (GA), where the feature selection follows the natural

selection procedure (80). One study of an online system

suggested that the band ratio method can be used as a real-time

and cost-effective method, with accuracy rates above 90% (76).

Detection of microbial/fungus
contamination

Horticultural crops are prone to microbial contamination.

Here, we explore early detection of microbial and fungal

contamination using NIRS. Early non-destructive detection

within 24 h, in the case of Botrytiscinerea and Colletotrichum

acutatum, can stop cross-contamination and economic loss (81).

Studies conducted by Matulaprungsan et al. (82) on cabbage

contamination by E. coli and S. typhimurium created artificial

conditions and inoculated samples of shredded cabbage for

various time periods to explore the potential of NIR analysis

(Table 6). During spectral analysis, this method showed a

spectral shift due to the leaking from cabbage cells and the

growth of bacteria (82). This shifting behavior was treated using

the SG-derivative method (82), followed by tomato pathogen

analysis (83). Spectral analysis revealed that the shredded

samples had better separation between inoculation times than

the ground samples (82), which makes the former the method

of choice for analysis. Shredded cabbage, therefore, resulted in

a higher r-value (r = 0.91–0.95), indicating reliable prediction

(82). E. coli detection in lettuce also resulted in an accuracy

rate of 100% in the validation set using NIR spectroscopy

and partial least-squares discriminant analysis (PLS-DA) (36).

Various concentrations of E. coli were able to be classified using

five different techniques, viz. PLS-DA, SVM, PCA, hierarchical

cluster analysis (HCA), and soft independent modeling by

class analogy (SIMCA). PCA and HCA trended toward a

coarser classification, whereas SIMCA and SVM produced

finer classifications into subgroups. The E. coli analysis was

carried out in baby spinach using the PLS method (35). For

contamination studies, outliers need to be eliminated using

feature selection techniques such as PCA. In studies carried out

to detect E. coli and Z. rouxii, PCA used to remove outliers

(6, 35). In the case of E. coli detection in spinach, Q-residual-

Hotelling’s T2 plot was used to find out the outliers (35). E.

coli was detected using PLS-DA supervised learning in the 450–

994 nm range, with a 100% accuracy rate in the prediction

set (35). The model could not predict unsafe samples in the

early stages. Therefore, when the cell concentration reached

6.67 log CFU/mL, it was detected as unsafe during statistical

analysis (35).

A study on tomato pathogen analysis achieved a

classification accuracy rate of 99.3% on the first and second day

using PCA followed by an SVM classifier (83). Although higher

classification rates were achieved as the mixing of samples

began, the SVM classification could not handle multiple factors

affecting the same. The high classification rates were able to

detect F. oxysporum and R. solani fungi, as well as bacteria such

as B. atrophaeus and P. aeruginosa (83).

The analysis of liquid samples created problems due to

transparency (82). NIR essentially works through photons and

their response to corresponding compounds, so as a solution

becomes clear, it becomes non-homogeneous and therefore

changes the spectral response. In this context, it is best to use

the SW-NIR technique for analysis due to its higher penetration

power and lesser interference from water bands (83). However,

the study on microbial contamination in lettuce suggested

that the water band corresponding to 970 nm O-H stretching

needs to be accounted for (36). The differences in microbial

cell count can cause molecular vibration patterns (36). In

studies of solid lettuce samples, preprocessing techniques such

as standard normal variate (SNV) and multiplicative scatter

correction (MSC) were used to remove scatter effects (36).

Elimination of end bands and spectral resolution enhancement

can be performed in order to bring greater focus to prominent

wavelengths (36). Preprocessing is carried out to avoid noise

and the inclusion of unwanted information that does not add to

prediction accuracy. A ratio of prediction of deviation between

1.5 and 2.0 indicates well-calibrated models (82).

Fungal infection caused by B. cinerea and C. acutatum

in strawberry was analyzed using spectroscopy. The analysis

extracted regions of interest (ROI) in the spectral range of

450–2,500 nm with 3500 pixels (81). The data were analyzed

using four different classification methods, viz. backpropagation

neural network (BPNN), random forest (RF), naïve Bayes (NB),

and support vector machine (SVM) (81). The classification

accuracy decreases once the fungal activity is reduced, which

was observed after 4 days in C. acutatum–infected samples.

However, this technology has its challenges, viz. problems

with reproducibility, recovery, and the negative effects of

humidity and temperature (81). The insight into the influencing

factors was a new finding, and the results of this study

can thus be used to improve techniques through control of

the same.

Yeast species tend to cause deterioration of high-sugar

products, particularly fruit products. The yeast species

Zygosaccharomyces rouxii, which displays this behavior, was

analyzed by Niu et al. (6) using NIR to perform non-destructive

detection. During preprocessing, it was found that either SG

smoothing or direct orthogonal signal correction (DOC) can be

used (6). Terminologies such as the limit of detection (LOD)

and limit of quantification (LOQ) were introduced in this

study, and they varied along with various preprocessing and

classification algorithms (6). These terms can be treated as the

threshold values for performing detection using the model. The

model was able to detect Z. rouxii according to the existing
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TABLE 6 Summary of NIRS applications for the detection of target microbial/fungus contamination in agricultural products.

Agricultural

product

Spectral range Software

package

Number of

samples

Accuracy Findings References

Tomato 550–1,100 nm Unscrambler v.

10.3, SpectraSuite

45 74–90% F. oxysporum f. sp. lycopersici,

R. solani, B. acillusatrophaeus,

and P. aeruginosa infections

were detected.

(83)

Strawberry 400–1,000 nm Unscrambler X v.

10.1, SpectralDAQ

v. 2.1 for

STATISTICA 10

2,700 97% B. cinerea and Collatotrichum

acutatum infections

were detected. The BNN

model exhibited the highest

predictive accuracy.

(81)

Kiwi 833–2,500 nm OPUS v. 5.5,

MATLAB 2012a,

Libsvm v. 3.20

352 R2
= 0.961–0.999 Z. rouxi, Hanseniaspora

uvarum, and C. tropicalis

infections were detected. The

SVMmodel was on par with

the plate counting method.

(6)

Lettuce 350–1,100 nm SpectraWiz,

Unscrambler X10.3

200 87.1–89.39% E. coli ATCC infection

was detected. SIMCA and

SVM outperformed

HCA, PCA. E. coli content

varied with the chemical

compositions, creating

non-linear relationships.

(36)

Cabbage 700–1,100 nm CAMaker,

Unscrambler

20 g R= 0.47–0.91, SECV=

0.45–1.17

E. coli, S. typhimurium

infections were detected.

Shredded leaves were more

suitable for detection. Not a

directly

non-destructive approach.

(82)

BPNN, Backpropagation neural network; SVM, Support vector machine; SIMCA, Soft independent modeling by class analogy; HCA, Hierarchical cluster analysis; PCA, Principal

component analysis.

standards, with an accuracy rate >85% for both the calibration

and prediction models (6).

Challenges and future prospects

NIR is one of the most researched non-destructive methods

in the food processing industry due to its fast-paced analysis,

minimal need for sample preparation, cost-effectiveness, and

non-destructive nature (84). However, like all technological

advancements, NIRS also comes with some disadvantages to

be tackled, viz. standard error in the laboratory (SEL) causing

standard error in prediction (SEP); variations in orientation

(29); and performance issues due to biological variation (8).

Apart from these challenges, which are related to spectral

measurements, regression tools, machine learning, and ANN

can also cause problems such as overfitting (53), low correlation

values (making the method a primary sorter only), pattern

recognition problems (39), and a lack of proper knowledge for

choosing the best techniques among the plethora available.

Because these problems have been around since the

beginning, some solutions have also been found for them. These

include testing and optimizing orientation for parameters, like

the testing done with SSC determination that determined that

keeping the stem-calyx axis vertical, with stem upward, was best

due to the presence of SSC in the stem region (29). Duringmodel

preparation, the conditions need to be perfect to avoid SEL and

SEP, because a single error can cause themodel to underperform.

Biological variation remains a challenge, especially when

testing with another sample of the same variety from the next

season. This is primarily because machine learning works on

pattern recognition, and every single year, a large number

of biological variables change, which alters the parameters of

the product. The way to solve this problem is to have a

large training set from various seasons, which is, however,

practically impossible.
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In order to solve this issue, the techniques of the

preprocessing and prediction phases need to be modified so as

to adapt the pattern; otherwise, every year, the model must be

taught from scratch. This is not possible, since perfect conditions

would be needed to recreate a model with minimum errors.

Neural network–related issues are being tackled using various

techniques such as BPNN, GRNN, and PSO, which performed

better when it was left individually (39). Although these methods

seem to solve the problem to a certain extent, they can increase

the computational load. Cloud computing–based models from

various parts of the world may become the next solution, since

most of the advanced systems are built around such a setup.

However, machine learning aided by ANN seems to be the

foremost approach for NIR analysis, since it deals with biological

commodities. The extensive variations in agricultural products

can be accounted for using neural networks and pattern

recognition algorithms. Predetermined algebraic equations and

models created on exact mathematics can be expected to fail

in this scenario due to their inability to account for complex

phenomena underlying the products’ life cycles. Whereas, NIRS

got its start as a series of offline systems, today’s researchers

can create online rapid analysis prototypes, demonstrating the

current pace of technology.

The research matrix shows that a significant portion of the

studies to date have been conducted on apples, and a huge list of

agricultural crops are waiting to be explored. Compact handheld

systems have been shown to perform satisfactorily with NIRS,

spurring hopes for the next era, when these technologies

will hopefully be more widely available and more affordable.

Many contemporary smartphones come with IR blasters, light

detection and ranging (LIDAR) hardware, and many other

sensors. Soon, we all might have NIRS scanners with cloud-

based models that can also account for biological variations.

Conclusion

Spectroscopic techniques can create unique signatures for

chemicals due to the particular behaviors of various molecular

levels. This allows the quantitative and qualitative analysis of

agricultural crops and the selection of those products with the

most desirable characteristics. Spectrometer data are used to

perform regression analysis and machine learning, by which

the evaluation of agriculture crops is conducted. What began

as offline test measurement is now capable of performing

rapid online measurements without destroying the samples.

Advances in computation have greatly improved the technology

without much economic expenditure. Current methods involve

the creation of hybrid models, which can address biological

variations to a certain extent by taking the best parts of various

techniques and combining them. Apart from this advancement,

challenges remain on the technical side, i.e., the need to

address the variation of products, data accusation, and model

optimization. There is still an urgent need for a compact, non-

destructive technology that can characterize a wide variety of

horticultural commodities.
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