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Abstract 

Artificial intelligence (AI) can acquire characteristics that are not yet known to humans through extensive learning, 
enabling to handle large amounts of pathology image data. Divided into machine learning and deep learning, AI 
has the advantage of handling large amounts of data and processing image analysis, consequently it also has a great 
potential in accurately assessing tumour microenvironment (TME) models. With the complex composition of the TME, 
in-depth study of TME contributes to new ideas for treatment, assessment of patient response to postoperative 
therapy and prognostic prediction. This leads to a review of the development of AI’s application in TME assessment 
in this study, provides an overview of AI techniques applied to medicine, delves into the application of AI in analys-
ing the quantitative and spatial location characteristics of various cells (tumour cells, immune and non-immune cells) 
in the TME, reveals the predictive prognostic value of TME and provides new ideas for tumour therapy, highlights 
the great potential for clinical applications. In addition, a discussion of its limitations and encouraging future direc-
tions for its practical clinical application is presented.
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Introduction
The extracellular matrix, a plethora of reactive chemicals, 
immune cells including lymphocytes, macrophages, and 
neutrophils, together with non-immune cells like fibro-
blasts and vascular endothelial cells, make up the highly 
complex components of the tumor microenvironment 
(TME). The TME exerts a crucial part in tumour occur-
rence, growth, prognosis and metastasis [1]. Characteri-
sation of the tumour microenvironment as a predictor 
of a patient’s prognosis, and also affects the sensitivity 
of the tumour to treatment, amongst other things, ena-
bling doctors to assess a patient’s disease progression and 

survival, and to develop a personalised treatment plan for 
the patient.

Current pathologists use histopathology-based micros-
copy to evaluate TME along with the quantification 
and localization of cells therein, which are prone to the 
risk of sample bias and subjectivity. Additionally, stand-
ard methodologies are unable to swiftly and intuitively 
extract the multi-dimensional features of the tumor 
microenvironment due to its multi-dimensional features, 
which encompass both quantitative and spatial char-
acteristics of various parameters. Single-cell genomics, 
spatial transcriptomics, multiplex immunofluorescence 
and other analytical methods are applied to the study 
of TME [2]. Nevertheless, these approaches are costly, 
labor-intensive, time-consuming when dealing with large 
amounts of data that can only be obtained from a single 
data source (e.g., gene expression, cellular images), as 
well as insufficiently tapping into the large number of cel-
lular interactions to completely capture the diversity and 
dynamics in the TME, hampering a thorough study of 
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spatial aspects specific to the TME [3–5]. Therefore, it is 
necessary to apply more precise, convenient, and objec-
tive analytical methods to assess TME. Artificial intelli-
gence (AI) has been used to digital pathology images for 
use in activities linked to cancer diagnosis, prognosis, 
and prediction. AI has the ability to integrate data from 
different sources, such as genomics, transcriptomics, 
imaging, etc., to provide more comprehensive informa-
tion about the TME. When it comes to handling large 
data sets, AI also has a major advantage. By analyzing 
TME-related data quickly and efficiently, AI is able to dis-
cover hidden biological features, disease mechanisms or 
potential therapeutic targets in TME. Deep learning (DL) 
and machine learning (ML) are two aspects of AI. DL and 
ML techniques have become powerful tools to evaluate 
TME, for instance, it is used to study the interaction and 
number of immune cells and tumour-associated cells 
in TME for observing the impact on patient prognosis. 
AI learns the spatial location of each cell in the TME 
through supervised learning methods, so as to further 
analyses whether cells in various locations have varied 
relevance in the TME [6].

Drawing briefly on the application of deep learning and 
machine learning to pathological images based on hema-
toxylin and eosin (H&E) staining, this paper focuses on 
the study of the application of AI in analysing the quan-
tity and spatial location of TME and its cellular com-
ponents, mainly in terms of tumour cells, immune cells 
(TILs, TAMs, TANs), and non-immune cells (CAFs). It 
also highlights the considerable advantages that AI has 
in analysing TME, and the integration of AI with tech-
nologies such as spatial transcriptomics in the future 
will enable more precise access to cellular interactions 
and positional relationships, as well as reveal differences 
in the expression and spatial distribution of genes at the 
level of different regions within the tissues, different 
cell types, and even individual cells, which will help to 
explore the mechanisms of diseases, discover potential in 
TME therapeutic targets, etc.

Overview of artificial intelligence
AI is the computer system’s simulation of human intel-
ligence processes. By leveraging large-scale datasets, AI 
models learn intricate patterns and features, surpassing 
traditional methods in detecting subtle morphological 
changes indicative of various cancers. ML, a branch of 
AI that uses statistical techniques to optimize task-spe-
cific models [7]. Predictive models can be constructed 
by extracting information related to patient prognosis 
from tumour pathology images. DL, while one of the 
most advanced ML methods, applies neural networks 
to learn deep patterns in image data, which can enhance 
the analysis of images [8]. AI improves the digitisation 

of pathology with the capability of effectively identifying 
tissue biological features on pathology slides. Numerous 
pathological image processing and classification activi-
ties, such as tumor classification, grading, prognosis pre-
diction, and treatment, can also be accomplished with 
it. In addition to minimizing diagnostic errors brought 
on by pathologists’ technical differences and conserving 
diagnostic time, AI makes it possible for pathology analy-
sis to go from qualitative to quantitative analysis.

Machine learning
ML is the process of building predictive models by using 
labelled training set data, identifying and extracting fea-
tures, applying the learned rules to new data and mak-
ing predictions or decisions without the need for explicit 
programming. There are routine steps of data prepara-
tion, model selection, model training, model evaluation, 
parameter tuning and prediction in machine learn-
ing [9]. According to the training method, ML can be 
divided into three main categories, supervised learning, 
unsupervised learning [10], and reinforcement learn-
ing. Currently ML applied to pathology images is usu-
ally supervised learning, which requires professional 
pathologists to annotate the images before allowing the 
ML model to train the data for the further development 
of the prediction model. By integrating genomic, tran-
scriptomic, proteomic, and metabolomic data, ML is able 
to reveal the complex interactions in the TME, which is 
now the latest application of ML in TME [11].

In machine learning methods such as Support Vector 
Machines (SVM) and Random Forests (RF), normally the 
features of most importance for tumor development and 
treatment response are extracted manually for modeling 
and classification, which reduces the data dimensions 
and improves the efficiency of the analysis [12]. However, 
pathological images often exhibit significant variations, 
requiring strong expertise for feature extraction, which 
can be incomplete and thus lead to lower classification 
accuracy.

Deep learning
Compared with machine learning, deep learning makes 
it possible to overcome the limitations of manual fea-
ture extraction and automatically extract complex non-
linear features from data, which has been gradually and 
widely used in the classification of pathology images [13]. 
The application of DL algorithms to pathology images is 
expected to change the way malignant tumour pathology 
is diagnosed and stratified for treatment, and is another 
milestone event in the application of AI in medicine. DL 
frameworks build on the proposal that neural networks 
acquire representations and computations [14] similar 
to those of the biological brain by learning sample data 
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to automatically determine the intrinsic regularities and 
levels of representation existed in the features from the 
input data.

Types of deep learning models
Convolutional neural network
Predominantly composed of convolutional, pooling, and 
fully connected layers, Convolutional Neural Networks 
(CNNs) are currently the most widely used deep learn-
ing algorithm for digital pathology image analysis [15]. 
CNNs are commonly used for pathology image analysis 
and visual feature extraction of tumor tissues to iden-
tify tumor regions and cell types. As can be seen in the 
Fig. 1, a CNN-based deep learning model extracts feature 
and performs learning and classification by perform-
ing convolutional operations and pooling operations on 
input data. Firstly, the WSIs are disassembled into small 
patches. Secondly, preprocess the data such as staining 
normalization and data enhancement. Lastly, construct 
an AI-based model. The processed data can be divided 
into training set and validation set, which are used for 
training optimization of CNN models. The trained mod-
els can be deployed to new data for testing to evaluate 
model performance. CNN has already been employed for 

detection and segmentation tasks of pathological images 
with the ability to be used to identify and quantify cells 
on the one hand and classify them on the other hand. For 
instance, it is possible to sort out various cells in the TME 
such as neutrophils and lymphocytes at the cellular level 
[16], and also separate tumour from non-tumour regions, 
grade the malignancy of tumours, and so on.

Recurrent neural networks
The application of recurrent neural networks (RNNs) in 
medical image analysis is not very widespread than sev-
eral other deep learning algorithms, instead it is often 
applied to text analysis or natural language processing 
[17]. RNNs are neural network model types specifically 
designed to cope with sequential data, which are also 
capable of capturing temporal information in medi-
cal images such as the response to treatment in tumor 
patients over time, or the temporal dynamics of process-
ing gene expression data. Unlike CNNs, RNNs feature 
the ability to process image or numerical data and ana-
lyse tissue images obtained at distinct stages. As depicted 
in Fig. 2, inputs are based on HE-stained WSI, with the 
RNN model outputting classification results by combin-
ing channel attention and spatial attention, which further 

Fig. 1  Typical process of CNN-based approach for pathology image analysis
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predict 5-year survival [18]. There are numerous RNNs 
malformed networks, with the Long Short-Term Net-
work (LSTM) being one of the most widely utilized net-
works. Targeted keywords that help pathologists write 
pathology reports can be obtained by combining LSTM 
with pathology picture recognition. A neural network 
model combining LSTM and CNN was deployed by 
Bychkov et  al. [18] to predict the five-year survival rate 
of colorectal cancer patients using HE-stained pathology 
images. Research results indicated that the model’s pre-
diction accuracy was significantly better than other clas-
sifiers and higher than that of a visual risk score model.

Generative adversarial network
The basic structure of Generative adversarial networks 
(GAN) includes a generator and a discriminator, which 
continuously optimize the loss function through their 
adversarial interplay to generate pseudo data highly 
similar to real data. GANs enable to be used for gener-
ating virtual tumor image data, for training data-poor 
models, or for simulating tumor behavior under differ-
ent microenvironmental conditions. Therefore, GANs 
are often used for color normalization in pathological 
images to reduce the impact of color on classification, 
just as illustrated in Fig. 3. Moreover, extensive research 
applies GANs to virtual staining of pathological images, 
showing potential clinical applications [19]. In order to 
perform virtual immunohistochemistry (IHC) stained on 
the same slide, Xu et al. [20] employed a GAN network 
to transform HE-stained digital pathology images into 
IHC-stained images. This approach eliminated the nega-
tive consequences of destructive IHC-based tissue testing 
while simultaneously improving experimental efficiency 

due to the little amount of manual labelling data required. 
Although virtual staining through GAN provides cost 
reduction, safety, etc., the use of it for clinical use is cur-
rently immature and requires standardization of staining, 
improved robustness of staining results, etc. In addition 
to applying GAN in the field of pathology images, there 
have been studies using it for magnetic resonance (MR) 
image processing. For instance, an adversarial learning 
framework for multimodal MR image fusion was trained 
and validated on the glioma dataset by Liu and his team 
[21], and the results revealed that the method outper-
forms some of the latest techniques in medical image 
fusion.

Transformers
Originally proposed by Vaswani et  al. [22] in 2017, the 
Transformer model has become a groundbreaking tech-
nique that utilizes a "self-attention" mechanism to cap-
ture the intrinsic relationships in the input data without 
relying on traditional RNN or CNN structures, it con-
tains mainly decoders and encoders. Expected results it 
delivers are better than other models, and it parallelizes 
training, which is fast and solves the problem of long-
distance dependence well, with the exception that it is 
based entirely on self-attention, with a certain amount 
of loss of information about location. As shown in Fig. 4, 
the transformer model accomplishes the task of tumor 
segmentation based on HE-stained pathology images by 
means of a decoder, an encoder, and a multilayer percep-
tron used for feature transformations, with classification 
of the benign and malignant tumor. Subsequently, Tran-
sUNet (Transformers and U-Net) was presented, which 
opened up the application of Transformer in the field of 

Fig. 2  The RNN model outputs classification results and predicts 5-year survival
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medical image segmentation. The fusion of Transformer 
and U-Net minimizes the amount of computation, and 
it provides a better advantage in large-scale datasets and 
captures important information effectively.

AI for multidimensional characterization of TME
The phenotype and function of cells in TME may highly 
depend on the precise spatial location of cells and their 
interactions with neighboring cells. Therefore, Accurate 

cell segmentation and classification are necessary to 
analyze the multidimensional spatial characteristics of 
TME. Currently, the assessment of TME by histological 
methods is prone to sample errors due to the difficulties 
associated with obtaining high-quality tissue sections, as 
well as the spatial heterogeneity within the tumor and 
the dynamic evolution of TME. Utilizing machine learn-
ing algorithms to process large-scale tumor tissue section 
images and single-cell data, it is able to construct models 

Fig. 3  GAN model is capable of stain normalization and virtual IHC staining

Fig. 4  Transformer model to segment pathology images and classify the benign and malignant of tumors
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of cell types and spatial distribution in the tumor micro-
environment. In addition, extracting features in tumor 
tissue sections, such as morphological and spatial distri-
bution features, AI is able to perform cell type classifica-
tion and spatial distribution analysis of TME [11].

Application of a single model to characterize TME
As opposed to traditional AI models for segmenting 
tumour images, Zhu et al. [23] developed a CNN-based 
brain tumour segmentation model in their recent study, 
which consisted of three modules combining multi-
modal, spatial and boundary information to analyse 
the global spatiality of the image, which facilitated the 
accurate acquisition of the tumour’s location and inter-
relationships with other tissues on magnetic resonance 
images. The model was validated by external datasets 
with superiority in both performance and computational 
efficiency. Nagy et  al. [24] improved the MultiOmyx 
analysis process based on a DL model developed in the 
NeoGenomics lab. This DL model produced biomarker 
intensities, phenotype counts, phenotype densities, and 
cellular morphological information in addition to seg-
menting and classifying images. In addition to this, it was 
able to perform advanced spatial analyses to pinpoint the 
clustering patterns of different phenotypes, which con-
tributed to the investigation of complex cellular interac-
tions in TME.

Application of fusion models to characterize TME
With the integration of learning, deep learning fusion 
models can combine the strengths of multiple single 
models to significantly improve predictive performance, 
enhance model robustness and stability, and support 
complex data and tasks at the same time.

In order to comprehensively analyze the spatial fea-
tures of tumors, Liu et  al. [25] combined the stronger 
local information extraction capability of CNNs and the 
excellent global representation capability of Transform-
ers to build a hybrid model named TransSea for the task 
of brain tumor segmentation in medical images. By train-
ing and testing the BraTS2020 and BraTS2021 datasets, 
TransSea obtained Dice scores of 86.32% and 90.84%, 
respectively, which is a clear advantage over other 
models.

Although spatial transcriptomics is capable of in-depth 
analysis of the relationship between tumors and TME, 
it is costly and has limitations in practical clinical use. 
Based on this, Gao et al. [26] developed a deep learning 
model based on CNN and GAN (IGI-DL model), which 
is capable of predicting the expression of spatial tran-
scriptomics in patients based on H&E-stained histologi-
cal images by learning pixel intensities and structural 
features, effectively reducing the technical cost of using 

spatial transcriptomics. IGI-DL was also able to char-
acterize the spatial features of TME, determine the het-
erogeneity of TME, and demonstrate that TME plays an 
important role in cancer prognosis. Comparative analysis 
with other models (e.g., HisToGene, DeepSpaCE, etc.) 
showed that IGI-DL exhibits optimal performance in 
predicting 179 target genes, both in the test and valida-
tion sets. Although the model currently performed well 
in only three cancer types, its ability to characterize TME 
could provide an effective bridge for probing spatial gene 
expression.

AI quantification of cells within the TME
Recent advancements in DL and ML techniques, have 
revolutionized the field of pathology by enabling precise 
cell identification, detection, quantification, and localiza-
tion as well as identifying subtle changes in gene expres-
sion, metabolite levels or protein structure associated 
with disease [27].

Deep learning techniques based on segmentation 
of pathology images at the cellular level
DL techniques applied to segmentation of cellular level 
pathology images are U-Net [28], DeepCell [29], CellPro-
filer [30] and so on. With little cellular annotation, U-net 
based on CNN is able to rely on data augmentation to 
improve the robustness and invariance of the model [31]. 
As one of the pioneers in the field of AI-driven cellular 
analysis, DeepCell began by identifying cell populations 
based on morphology alone, and later was able to identify 
intracellular heterogeneity based on subtle morphologi-
cal differences, its continuous development has provided 
an excellent platform for biological experiments at cellu-
lar level as well as for medical research. Owing to its abil-
ity to accurately differentiate between various immune 
cell subtypes, various cancer cells, and stromal cells, it is 
capable of being used for cellular profiling, cell and gene 
therapy development, and stem cell research, among oth-
ers. On the basis of machine learning, CellProfiler [32] is 
able to automate the analysis of individual cells, quickly 
and accurately measuring various characteristics of the 
cells, such as size, shape, brightness, and so on.

Furthermore, the potential of machine learning to eval-
uate the TME is highlighted by the application of super-
vised machine learning to digital images of HE-stained 
tissue microarrays by Väyrynen et al. [33], which classi-
fied and counted lymphocytes, plasma cells, neutrophils 
and eosinophils in intra-epithelial and mesenchymal 
zones of colorectal cancer tumours. It’s not hard to con-
clude that artificial intelligence-based analysis of WSIs 
will accelerate pathologists’ assessment of the complex 
TME and increase the objectivity and reproducibility of 
predictions.
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AI in tumor cells
The technologies currently used to study the complex-
ity and heterogeneity of cells in TME are predominantly 
single-cell sequencing technologies, flow cytometry and 
others. In contrast, AI approaches, such as image analy-
sis of pathology slides, can offer insights into spatial 
relationships between different cell types and their distri-
bution within the TME. Moreover, AI algorithms trained 
on large datasets can potentially identify and characterize 
rare cell types or subtle phenotypic changes with greater 
accuracy and efficiency [34], as illustrated in Table 1.

For the identification and capture of tumour cells, the 
application of CNN is preferable. In order to further 
optimise the cell detection and classification function 
of the VGGNet model, Li et  al. [35] designed a CNN 
model with flow cytometry-derived datasets, which was 
able to achieve precise capture of cancer cells in a few 
milliseconds with more than 95% accuracy. In addition, 
for tumour cell classification, deep learning is able to 
extract features and achieve high accuracy in the clas-
sification of unlabelled cells. To distinguish cancer cells 
derived from cholangiocarcinoma within an unlabeled 
microscopy image, Chawan et al. [36] developed a proof-
of-concept deep learning model by morphological dif-
ferences. However, distinguishing cells by morphology 
alone can mistakenly miss identifying broken cells, cells 
with abnormally large morphology, and non-cellular 
objects that resemble cells, and whose accuracy therefore 
needs to be reconsidered. In addition, in order to differ-
entiate between benign and malignant urothelial cells, 
Masatomo Kaneko et  al. [34] developed a CNN model 
including the EfficientNet B6 and Arcface architectures 
which successfully differentiated between all cellular sub-
types of urothelial cells, achieving up to 90% accuracy.

AI in immune cells
Tumor‑infiltrating lymphocytes
Tumour-infiltrating lymphocytes (TILs) have been 
shown to be tumour-killing and exert an essential effect 
in the identification of tumour antigens [37, 38]. TILs 
contain both positively regulating immune response 
immune cells, such as CD4 T cells, CD8 T cells, NK 
cells, Th1 cells, and Tfh cells, which are capable of sup-
pressing tumors [39, 40]. Conversely, myeloid suppressor 
(MDSC), Treg cells, Th2 cells, etc. are able to promote 
tumor growth, as is shown in the Fig. 5A.

The degree of TILs’ infiltration within the tumour is 
usually positively correlated with the efficacy of immune 
checkpoint inhibitors, with higher levels of infiltration 
being associated with better efficacy and prognosis [41]. 
The number, type, and region of TILs within tumour tis-
sues are important in predicting solid tumour clinical 
prognosis [42]. TILs can be used as a predictor of higher 

pCR rates with neoadjuvant chemotherapy, As shown 
in Table 2. One of the studies had analyzed 498 patients 
with HER2-positive breast cancer treated with neoadju-
vant treatment [43]. The results noted that TILs contrib-
ute to the prediction and prognosis of these patients.

For the purpose of providing standardized and effective 
TIL quantification, automated image analysis approaches 
particularly AI-based methods are required, which offer 
standardized criteria for stringent validation by quali-
fied pathologists and quality control by regulatory bod-
ies [44–46]. Just as Table 1 illustrates, they also increase 
quantitative accuracy, reduce time, and make it easier 
to analyze more complicated spatial patterns. Joel et  al. 
[47] developed a comprehensive approach and an inter-
active tool that incorporated expert feedback into a deep 
learning model based on extensive previous research, 
which could accurately generate TIL Maps from WSIs. 
This iterative feedback increased the overall accuracy 
of the TIL Maps. Both the necrosis segmentation CNN 
and the lymphocyte infiltration categorization CNN were 
applied. The first one distinguished between the little 
areas of the input image that had lymphocyte infiltration 
and those that did not. Initialized with an unsupervised 
convolutional autoencoder (CAE), it was a semi-super-
vised CNN. In order to reduce false positives in necrotic 
zones—where cell nuclei may resemble regions invaded 
by lymphocytes—the latter segmented the necrotic sec-
tions. The study revealed that the degree of TILs penetra-
tion may influence overall survival as well as the spatial 
aspects of the TME. Juha et  al. [33] performed image 
analysis of HE-stained slides of the TME of CRC patients 
by a ML based approach to identify four types of immune 
cells in the TME: neutrophils, eosinophils, plasma cells, 
and other lymphocytes, which were subsequently classi-
fied. Results of the training showed that this automated 
approach to detect and classify immune cells using 
machine learning was highly consistent with pathologists 
and independently trained automated classifiers. The 
findings also revealed that high density of lymphocytes 
and eosinophils was known to be correlated with better 
survival.

Tumour‑associated macrophages
As the most diverse immune cell in the TME: the 
tumour-associated macrophage (TAM), commonly 
linked to poor prognosis and drug resistance, is classified 
into two distinct subtypes according to morphological, 
phenotypic, and functional heterogeneity, namely the M1 
and the M2 types [48, 49]. The two subtypes play diamet-
rically opposed roles in the TME [50, 51]. As is depicted 
in the Fig.  5B, M1 TAMs with anticancer effects can 
release pro-inflammatory mediators such as IL-1, IL-12, 
IL-18, IL-23, and TNFα. M2 TAMs are triggered by IL4 
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Table 1  Application of AI for assessment of cells in TME of different tumors

Cell type Tumor type Aim Type of AI Algorithm Sample size References

Training Validation Testing

Tumor cells TNBC To study cel-
lular phenotypes 
at the tissue level

DL PangNet, Fully 
Convolutionnal 
Net and Decon-
vNet

33 WSIs – – [95]

Various tumors Segmentation 
of overlapping 
nuclei

CNN VGG16 48 WSIs 11 WSIs 47 WSIs [96]

Neuroblastoma Development 
of an automated 
nucleus segmen-
tation method

DL Morphological 
segmentation 
algorithm

– 20 WSIs – [97]

TILs NSCLC Develop an AI–
powered spatial 
TIL analyzer

DL – 3166 slides 2389 slides – [98]

BC Generate 
combined maps 
of cancer regions 
and TILs in rou-
tine diagnostic 
WSIs

CNN VGG16, ResNet34 
and Inception-v4

102 slides 7 slides 284 slides [99]

CRC​ Explore 
the prognostic 
impact of spatial 
distribution 
of TILs

DL Resent18, 
Resent34 
and Shufflenet

9582 patches 1198 patches 1198 patches [100]

luminal BC Assess the prog-
nostic signifi-
cance of TIL

CNN The U-Net 1572 patients 318 patients 659 patients [101]

TNBC Assess the clini-
cal significance 
of AI-powered 
spatial TIL analy-
sis in the pre-
diction of pCR 
after NAC

DL Lunit SCOPE IO, 
an AI-powered 
H&E WSI analyzer

954 patients 261 patients – [44]

MIBC Evaluate 
the prognostic 
value of TILs

ML Artificial neural 
network classifier

133 patients 247 patients – [45]

TAMs Lung cancer Study cell 
interactions 
in the TME

DL Mask-RCNN 12,000 cell 
nuclei

1227 cell nuclei 1086 cell nuclei [59]

- Identification 
of macrophage 
subsets

ML SVM, kNN, RF 50% – 50% [60]

NSCLC Identification 
the prognostic 
value of TAMs 
in the TME

ML RF 477 – 204 [62]

TANs CRC​ Explore 
the prognostic 
value of TANs

ML QuPath v0.1.2 80 patients 934 patients 570 patients [33]

Hematological 
diseases

Explore 
the morphologi-
cal differences 
between neutro-
phils

CNN Transfer learning 
algorithm

4892 neutrophils 1223 neutro-
phils

– [72]
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and M-CSF [52]. M2 TAMs exhibit high levels of expres-
sion for several factors involved in cell adhesion and 
proliferation, including insulin-like growth factor (IGF), 
platelet-derived growth factor (PDGF), betaig-h3 (BIG-
H3), and fibronectin (FN) [53, 54]. TAMs are frequently 
linked to a poor clinical prognosis in cancer patients [48, 
55, 56]. However, more recent research has shown that 
the prognostic significance of TAMs is debatable and 
that the positional distribution and function of TAMs 
affect a tumor’s prognosis. As indicated in the Table  2, 

according to Li et al., a poor prognosis was closely linked 
to the accumulation of CD163 TAMs in lung cancer [55]. 
Interestingly, several clinical studies support the value 
of counting TAMs for prognostic and predictive out-
comes. For example, an in-depth study performed by 
Ruffell et  al. inticated that lymph node metastasis and 
inadequate pathological staging in patients with breast 
cancer were linked to macrophage infiltration (CD68+) 
[57]. Macrophages were not found in breast tissue in 
patients who did not receive chemotherapy; instead, 

Table 1  (continued)

Cell type Tumor type Aim Type of AI Algorithm Sample size References

Training Validation Testing

CAFs Hematological 
diseases

Autodetection 
of CAFs

DL RetinaNet49, 
R-CNN

1000 patches – 100 patches [83]

BC Characterization 
of CAF subtypes

CNN Resnet34 50,000 patches – – [102]

– Development 
of immunosup-
pressive drugs

ML SVM, RF, k-NN 
and ANN

1411 descriptors – 942 descriptors [86]

Fig. 5  The complex tumor microenvironment. A Tumour-infiltrating lymphocytes. B Tumour-associated macrophage. C Tumor-associated 
neutrophils. D Cancer-associated fibroblasts
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they were more common in normal tissues that were not 
adjacent. In contrast, the tumor infiltrating macrophage 
levels were higher in patients undergoing neoadjuvant 
chemotherapy.

TAMs play a key role in TME and tumour biology, and 
few studies have applied AI to TAMs. On the one hand, it 
is because the development of AI and precision medicine 
needs to be further improved, and on the other hand, it 

Table 2  Prognostic value of different cells in the TME

Cell type Tumour type Assessment methods Sample 
Size 
(Case)

Expression in cells Study Result References

TILs BC IHC 12439 CD8+TILs and FOXP3+ Infiltration of CD8+ T cells 
led to a reduction in the risk 
of death

[103]

HCC IHC, quantitative PCR and flow 
cytometry

112 CD20+ B cells and CD3+ T cells Density of tumour-infiltrating 
T and B cells correlated 
with higher survival

[104]

HGSOCs IHC 3196 CD8+TILs CD8+TILs in HGSOCs were 
significantly associated 
with longer OS

[105]

MIBC H&E staining 203 – High sTILs infiltration were 
associated with significantly 
higher OS, TSS and DFS

[106]

TAMs MIBC IHC, scRNA-seq and flow 
cytometry

520 CD8+T cells and NK cells 
in IL-10 TAMs

IL-10 TAMs had a higher predic-
tive value and were linked 
to a worse clinical prognosis

[107]

BC IHC 75 CD68+ in TAMs The presence of diffuse 
inflammation, particularly 
macrophages, was linked 
to increased tumor necrosis, 
tumor size, and tumor grade

[108]

CRC​ IHC and TMA 835 High CD206/CD68 ratio The CD206/CD68 ratio is a use-
ful biomarker for prognosis 
and prediction

[109]

TANs HCC IHC 832 CCL2 and CCL17 CD66b, CCL2, or CCL17 TANs 
were independent prognostic 
indicator

[110]

ICC Tissue microarray and IHC 123 IL-17, FOXP3, CD8, CD66b 
and CD34

IL-17 + cells, CD66b + TANs are 
powerful predictors of prog-
nosis

[111]

CRC​ IHC 448 CD66b Reduced neutrophil infil-
tration around the tumor 
front is a separate predictor 
of a worse prognosis

[112]

PDAC IF staining and IHC 119 MPO, CD11b and CD206 Higher TNM stage, increased 
likelihood of lymph node 
metastases, and worse tumor 
differentiation were all linked 
to lower N1/N2 ratios

[66]

CAFs Rectal cancer IHC 98 α-SMA and ki67 CAFs may favour tumour 
progression

[113]

BC IHC 132 Podoplanin, prolyl 4-hydroxy-
lase, FAPα, S100A4, PDGFRα, 
PDGFRβ, and NG2

The prognostic value of CAF-
associated proteins differed 
when the metastatic site 
of breast cancer differed 
in expression

[114]

HCC IF, western blot analysis 
and Real-time PCR

– CCL2, CCL5, CCL7 and CXCL16 By activating the Hh and TGF-β 
pathways, CAF-derived CCL2, 
CCL5, CCL7, and CXCL16 
increase HCC metastasis 
and were linked to a poor 
prognosis

[115]
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is because TAMs are heterogeneous and their complex-
ity makes the combination of AI and TAMs challenging 
[58]. Classification and medical picture segmentation are 
the main areas of application for neural networks and 
deep learning in TAMs. A recent study developed a deep 
learning-based computational model, Mask R-CNN, for 
segmenting cell nuclei from HE-stained pathological 
images of lung adenocarcinoma, which included segmen-
tation and classification of macrophage nuclei [59]. Addi-
tionally, using machine learning techniques in the Orange 
Data Mining Toolbox, researchers were able to create a 
quick and easy imaging-based approach that could rec-
ognize various macrophage functional phenotypes based 
on cell size and morphology [60]. This machine learning 
approach, which solely examined macrophage morphol-
ogy, demonstrated 90% average accuracy in identifying 
M1 and M2 phenotypes and differentiating them from 
naïve macrophages and monocytes. Random forest (RF) 
is an ML algorithm that ranks each variable’s predictive 
potential and builds predictive models. It is a supervised 
learning technique based on feature stochastic vectors 
[61]. In 2022, in an attempt to investigate the prognos-
tic significance of macrophages and their heterogene-
ous phenotypes in non-small cell lung cancer, Wu et al. 
[62] screened for prognostic markers using a machine 
learning algorithm with a RF model and constructed an 
immune-related risk score based on CD68 to predict dis-
ease-free survival.

To elucidate the regulatory role of macrophage infil-
tration in high-grade plasmacytoid ovarian cancer 
(HGSOC), Chang et al. developed a macrophage-associ-
ated predictive model utilizing the ML LASSO method 
and validated it in different HGSOC cohorts [63]. The 
results showed that high levels of M1 TAMs infiltration 
were related with favorable outcomes, but high levels of 
M2 TAMs infiltration were related with bad outcomes. 
Shen et al. [64] created a DL model to define the immune 
infiltration of the transcriptome with the goal of classi-
fying brain tumours according to their distinct immune 
infiltration characteristics. To handle gene expression 
data, the model made use of an eighteen-layer ResNet 
feature encoder. The feature encoder was trained using 
close to 100,000 transcriptomes from various cancer 
types. The model identified two molecular subtypes, C1 
and C2, of brain tumors, each with a distinct immunolog-
ical infiltration profile and prognosis. It was determined 
that the considerable TAM infiltration of the C2 subtype 
was a key characteristic.

Tumour‑associated neutrophils
Analogously to TAMs, tumor-associated neutrophils 
(TANs) are fall into two distinct phenotypes: Anti-tumor 
phenotype N1 TANs and pro-tumor phenotype N2 

TANs. As can be seen in the Fig. 5C, N1 TANs directly 
produce cytotoxic mediators such as reactive oxygen 
species (ROS) and myeloperoxidase (MPO). In the pres-
ence of interferon β (IFN-β), the N1 TANs are suppressed 
and then converted to the N2 TANs. N2 TANs promote 
tumor invasion and angiogenesis by producing cytokines 
such as matrix metalloproteinase 9 (MMP9), vascu-
lar endothelial growth factor (VEGF), and hepatocyte 
growth factor (HGF). In addition, neutrophils produce 
H2O2, CCL3, CXCL9, CXCL10, ROS, NETs and Arg1 to 
regress tumour.

As shown in the Table 2, the prognosis resulting from 
differences in the relative location of TAN versus tumour 
cells varies, as well as the results of several studies sup-
port a strong correlation between intratumoural neutro-
phils and poor prognosis and a weak correlation between 
peritumoural and mesenchymal neutrophils and poor 
prognosis [65]. Increased neutrophils have been linked 
to a worse prognosis in various malignancies, including 
glioma, metastatic melanoma, and gastrointestinal mes-
enchymal tumors, according to a number of studies con-
ducted over the past few decades. Recently, an in-depth 
study performed by Chen et  al. [66] explored the plas-
ticity of N1 TANs and N2 TANs in TME of PDAC and 
the effect of their immune infiltration on the prognostic 
value of patients. A total of 119 patients undergoing radi-
cal resection were included in this study, and N1 TANs 
and N2 TANs were identified by immunofluorescence 
staining, and the plasticity of N1 and N2 was evaluated by 
the N1/N2 ratio. Multivariate factor analysis showed that 
a low N1/N2 ratio was associated with poorer tumour 
differentiation, milder lymph node metastasis and higher 
TNM stage. While this was not the case for N2 TANs, 
the group with a large number of N1 TANs had a signifi-
cantly longer median OS and RFS than the group with a 
low number of N1 TANs.

It is shown in Table 1, using image processing technol-
ogy and ML algorithms, the quantity of TANs in cancer 
tissue can be evaluated rapidly and precisely, providing 
a significant basis for tumour progression and progno-
sis assessment [67, 68]. Using computational simulation 
and machine learning technologies, the interaction pro-
cess between TANs and tumour cells can be simulated 
to gain an in-depth understanding of their mechanism of 
action. Artificial intelligence-based immunosurveillance 
technology can monitor the dynamic changes of TANs 
in the TME in real time, providing real-time guidance for 
clinical treatment. In the area of drug development, com-
bined with AI technology, TANs can be used as targets 
for drug screening and discovery of new tumour thera-
peutic drugs [69, 70].

Some researchers proposed a deep learning model 
for identifying myeloproliferative tumours based on 
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neutrophil morphology construction, and chose the Pico-
Det deep learning target detection method to determine 
whether a patient is a myeloproliferative tumour and 
myeloproliferative tumour subtype [71]. The outcomes 
demonstrated that PicoDet can identify the cells in the 
bone marrow smear more accurately and achieve four 
classifications of the dataset, whose average accuracy 
rates were all over 70%, achieving a good classification 
prediction effect. Bi et  al. [72] subdivided 6115 neutro-
phils from the WSI of malignant hematological diseases, 
trained these neutrophils using a migration learning algo-
rithm, built a convolutional neural network model based 
on the morphological phenotypes of the neutrophils to 
determine their disease classification, and evaluated the 
model using confusion matrices and subject arithme-
tic characteristic (ROC) curves. The results showed that 
neutrophils from various diseases could be categorized 
into distinct groups, and the accuracy of the DL model 
in judging neutrophils of different diseases reached 
0.896. Differences in neutrophil nuclear morphology may 
underlie the heterogeneity. Therefore, some researchers 
have conducted a preliminary study of neutrophil pheno-
typic heterogeneity in different haematological diseases 
by deep learning [73]. Firstly, neutrophil images were 
manually segmented and then nuclei were segmented 
using the interactive semantic segmentation tool ilastik. 
Validation results showed that the model achieved an 
accuracy of 0.749. The study also analyzed the nuclear 
features of neutrophils through migration learning, a 
machine learning-based pixel classification technique.

Cancer‑associated fibroblasts
Among non-immune cells, cancer-associated fibroblasts 
(CAF) are the most numerous of the TMEs, accounting 
for about 80%, with the involvement in tumour genera-
tion, growth and drug resistance, consequently they are 
considered to be pro-tumourigenic [74]. Through their 
interactions with other TME components, CAFs play a 
crucial role in shaping TMEs, indicating their potential 
utility as therapeutic targets and prognostic variables. 
CAFs are heterogeneous, in that CAFs also exert pleio-
tropic functions in TMEs. MyCAF, apCAF, iCAF, and 
vCAF are the four primary subtypes of CAF [75, 76]. By 
producing cytokines such as TGFβ, IL6 and IL8, CAF 
stimulates tumor growth (As is shown in the Fig. 5D).

A worse prognosis for patients has long been linked 
to the quantity, hardness, and other characteristics 
of the ECM [77]. When evaluating prognosis, it is 
important to measure the overall characteristics of the 
patient’s CAFs and the prevalence of each subtype [78, 
79]. Some CAF subtypes, such as iCAFs, show tumor 
suppressor function and are associated with improved 
treatment outcomes, in contrast to myCAFs and vCAFs 

which often suggest a poor prognosis, whereas apCAFs 
appear to have no prognostic implications [80, 81]. Due 
to the heterogeneity of CAFs and their intra-tumour 
specificity, some researchers have investigated their 
value in the early diagnosis of carcinoma and prog-
nosis prediction as is shown in the Table  2. Cai et  al. 
employed the Estimate the Ratio of Immune and Can-
cer cells (EPIC) algorithm to calculate the proportion 
of CAFs in patients with locally advanced rectal cancer. 
The results indicated a significant difference in can-
cer-specific survival between the two subgroups, with 
patients with a high rate of CAF infiltration exhibiting 
worse clinical outcomes [82].

The morphology of CAFs exhibits spindle-shaped, 
mostly polygonal, and flattened stellate forms, providing 
morphological cues for AI recognition of CAFs. There-
fore, AI can identify CAFs and automatically quantify 
their numbers or ratios. Shen and associates [83] devel-
oped an imaging system which had the ability to iden-
tify CAFs with the accuracy up to 93%. By integrating 
with faster R-CNN cell identification technique, in the 
first step, extensive manual labelling of the CAF was 
performed on slides, and in the second step, the model 
was trained in conjunction with fluorescent images. The 
approach could significantly advance cell-based biopsies 
that go on to diagnose cancer. Furthermore, to extract the 
morphological dynamics and motility properties of cells 
from unlabeled live cell imaging data from CAFs, sev-
eral researchers have combined a range of unsupervised 
and supervised machine learning methods with a deep 
learning-based cell categorization strategy [84]. Wu et al. 
[85] observed that the fibroblast growth factor receptor 
(FGFR) signaling pathway was enriched in the immune-
exclusion phenotype of triple-negative breast cancer 
(TNBC) samples from the TCGA dataset after using DL 
to analyze the TME.

To create more potent targeted medications for immu-
notherapy, Charan et  al. [86] used a collection of 2356 
compounds to create an artificial intelligence-based pre-
diction model for FGFR1 inhibitors. Four machine learn-
ing algorithms were used in this study, including Support 
Vector Machines, Random Forest, K-Nearest Neigh-
bors, and Artificial Neural Networks. With an accu-
racy of 89.8%, the Random Forest model was found to 
be the best-performing model. In addition to this, there 
were other relevant studies applying AI to the detection 
of CAF-related genes. Lv et al. [87] discovered a unique 
gene signature linked to CAF that may be used as a prog-
nostic indicator and treatment response predictor. Inva-
sionInverse convolutional algorithms, such as the xCell 
algorithm, which is based on the enrichment of gene sig-
natures, the Estimated Proportion of Immune and Can-
cer Cells (EPIC) algorithm, and the Microenvironmental 
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Cell Population Counter (MCP-counter) algorithm were 
used to calculate the abundance of CAFs in the study.

Other cellular components
Besides studying tumour cells and immune cells in TME, 
AI has a little application for other cells, such as adipo-
cytes, blood vascular endothelial cells, pericytes, neurons 
and nerves etc. Adipocytes provide the energy needed 
by cancer cells for biosynthesis through a combination 
of adipokine secretion, lipolysis, and reprogramming of 
glucose metabolism. Similarly, neurons contribute to 
tumorigenesis. Compared to immune cells, these other 
cellular components of the TME seem to be in a position 
of underappreciation, and as such, they are not a hotspot 
for AI technology research.

Limitations and prospects of artificial intelligence
Traditional TME research generally depends on labora-
tory techniques and animal models, but is hampered 
by technological limitations and resource expenses. In 
recent years, the rapid growth of AI has brought new 
concepts and approaches for investigating the tumor 
microenvironment. Through technologies such as ML 
and DL, AI can extract useful information from large 
amounts of data, deepen our understanding of tumours 
and the TME, and thus guide more precise treatment 
strategies and prognostic assessments [88]. The develop-
ment of AI technology has brought new opportunities 
and challenges to oncology research. Despite the sig-
nificant progress made by AI in TME research, certain 
obstacles still need to be overcome.

Algorithms to keep up‑to‑date
The complexity of the TME makes it necessary for AI 
algorithms to be continuously optimized and updated to 
adapt to changing research needs.

Data quality and standardization
Absence of standardization of data, data imbalance and 
heterogeneity, as well as lack of training datasets can 
affect model training and prediction [89]. TME research 
involves many types of data, such as gene expression 
data, immune cell infiltration data, etc., and the qual-
ity and standardization of these data may be inconsist-
ent, which needs to be judged by experienced experts to 
develop uniform standards [90].

Interpretability
The black-box nature of deep learning models may limit 
their application in tumor microenvironment research. 
While these models efficiently handle complex data, 
understanding their decision-making processes poses 
challenges for clinical practitioners and researchers [91].

Generalization ability
Models perform well on TME training data for certain 
cancers, while may have insufficient generalization abil-
ity on new data, i.e., results on the validation set are 
considerably divergent from the training set results 
[92]. This may result in the model not performing as 
well as expected in real-world environments, especially 
when the data distribution changes.

Sample size and diversity
Building effective AI models requires large and diverse 
datasets. However, obtaining diverse and ample sam-
ples for tumor microenvironment research, especially 
for rare cancer types or specific populations, may be 
challenging.

Ethical and privacy concerns
Large-scale data collection and usage raise ethical and 
privacy issues, including data security, patient consent, 
and data-sharing policies. These concerns may restrict 
data availability and hinder research progress.

Bright future prospects
With higher efficiency and cost-effectiveness, AI reduces 
the subjectivity and error rate of pathologists’ diagnosis, 
and its clinical application will gradually spread, creating 
an automated and intelligent diagnostic environment for 
us.

The combination of AI with spatial transcription and 
single-cell sequencing has been carried out, as in the 
novel self-supervised deep learning framework called 
BIDCell [93], which combines single-cell transcrip-
tome data and cellular morphology information, which 
not only provides good segmentation of cells, but also 
learns to spatially discriminate between gene expression 
and cellular morphology, providing a direction for mul-
tidimensional characterization of TME. Combining AI 
with other technologies can fully utilize the advantages 
of each technology, which is one of the ways to apply AI 
in the future. Future applications of AI alone could allow 
for spatial analysis of all aspects of TME, replacing other 
costly techniques.

By identifying potential immunotherapeutic tar-
gets within the TME, discovering more biomarkers for 
tumors, etc., AI has the ability to be further employed in 
drug development [94]. In addition, fusion of multiple 
AI algorithms can bring significant advantages in terms 
of improving prediction and decision-making accuracy, 
reducing the risk of a single model, increasing generali-
zation ability and transparency, etc., which is one of the 
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prominent strategies to promote the advancement of AI 
applications.

Conclusions
The application of AI in the TME has now moved from 
macro to micro. Macroscopically, AI has been gradu-
ally applied to e.g. tumour diagnosis, tumour metasta-
sis identification, tumour grading and staging. On the 
microscopic level, AI has been used to analyse the TME 
in a more specific and detailed way by quantifying and 
locating immune cells such as TILs, TANs, TAMs, etc. in 
the TME, as well as non-immune cells such as CAFs, etc. 
Therefore, this paper mainly reviews the application of AI 
to these four types of cells, analyzes the multidimensional 
characteristics of TME, as well as details the similarities 
and differences between single AI models and fusion AI 
models in the study of TME. However, the TME is very 
complex and still has many components that have not 
been covered by the study, which means that we need to 
further develop AI models to explore the TME in depth. 
Through in-depth analysis of the complexity and dynam-
ics of the TME, AI is able to reveal the mechanisms of 
tumour occurrence and development and provide pow-
erful support for tumour treatment. Nonetheless, there 
are still certain obstacles to be addressed. Future appli-
cations of AI in tumor microenvironment research will 
be increasingly comprehensive and in-depth due to the 
ongoing advancement of technology.
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