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Abstract: Fish scales serve as a natural dermal armor with remarkable flexibility and puncture
resistance. Through studying fish scales, researchers can replicate these properties and tune them
by adjusting their design parameters to create biomimetic scales. Overlapping scales, as seen in
elasmoid scales, can lead to complex interactions between each scale. These interactions are able
to maintain the stiffness of the fish’s structure with improved flexibility. Hence, it is important to
understand these interactions in order to design biomimetic fish scales. Modeling the flexibility
of fish scales, when subject to shear loading across a substrate, requires accounting for nonlinear
relations. Current studies focus on characterizing these kinematic linear and nonlinear regions but
fall short in modeling the kinematic phase shift. Here, we propose an approach that will predict
when the linear-to-nonlinear transition will occur, allowing for more control of the overall behavior
of the fish scale structure. Using a geometric analysis of the interacting scales, we can model the
flexibility at the transition point where the scales start to engage in a nonlinear manner. The validity
of these geometric predictions is investigated through finite element analysis. This investigation will
allow for efficient optimization of scale-like designs and can be applied to various applications.

Keywords: bioinspired designs; dermal armor; fish scales; flexible composites; finite element analysis

1. Introduction

Natural materials serve as a great inspiration in the development of engineering
designs [1–11]. For instance, fish scales can provide inspiration for protective systems and
designs with variable flexibility [12–14]. Recent studies on fish scale designs have shown
that fish scales offer remarkable mechanical properties, such as resistance to penetration,
while being highly flexible, lightweight structures [15–18]. The fish scale structure of inter-
est in this study closely resembles elasmoid scales [13,19]. This type of scale is among the
most commonly found fish scale types and overcomes significant tradeoffs in mechanical
properties for armor design applications [20,21]. Elasmoid scales are flexible, due to their
thin structure, but also have an equivalent stiffness compared to thicker scale types [22].
Elasmoid scales are able to maintain a similar puncture resistance and be more flexible
than thicker scale types because of their overlapping scale feature and hierarchical struc-
ture [23,24]. The hierarchical microstructure also allows for interchangeability between
flexible and stiff mechanical behavior, due to the scales’ stiff outer mineralized layer and
soft inner collagen layer of the scales [20,24]. At a macroscopic level, the overlapping
feature is what enables the fish to have varying stiffness and flexibility throughout its body,
while providing an effective barrier against penetration. This enables the fish to have more
flexibility towards the tail for locomotion and more stiffness around the vital organs for
protection [25]. Areas near the vital organs are stiffer because there is an increase in overlap
amongst the scales, increasing the scale interactions. The scale interactions between these
overlapping scales exhibits nonlinear behaviors, and as the interactions between the scales
increase, the flexural response also changes [26–28].
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Overlapping scales are structures whose mechanical response highly depends on
their configurational state at the instant of load application. The scales exhibit both linear
and nonlinear behaviors, which play a significant role in the scaled design’s mechanical
properties. As shown in Figure 1, the presence of scales, even before scale engagement
starts, increases the stiffness of the structure [23]. Studies in literature have found that when
the scales behave linearly, they do not interact with each other. In this linear region, the
effect on the structure’s curvature remains minor [29]. When the scales begin interacting
with each other, the structure begins to behave nonlinearly. In this nonlinear region, the
scale interactions increase as the structure’s curvature increases; thus, the effect of the
interactions on the mechanical response of the structure significantly increases. After
analyzing different scale interaction phases, studies found that as the scale engagement
increases, the structure becomes stiffer and eventually reaches a maximum curvature point
where the scale structure becomes rigid [30]. Overall, these findings show that the transition
point from linear-to-nonlinear, in scale behavior, plays a critical role in the stiffness and
flexibility of scaled systems.
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Figure 1. Analyzing fish scale model, adapted from reference [25]. (a) A 3D-printed fish scale, inspired from real fish scale.
(b) Schematic of the fish scale interaction.

Stiffness and flexibility are two of the most critical characteristics that measure the
applicability of an armor system [13]. Current studies on fish scales focus mainly on
analyzing the parameters that affect these mechanical behaviors but do not cover the
methodologies that can be directly used for design applications. Using elasmoid scales
as inspiration, this research focused on finding a simplistic method that can analyze the
connection between the design variants of the fish scale structure and the corresponding
flexibility at the transition point. In this paper, we develop a geometric model that can
describe the flexibility of the fish scale model using three simple design variants. As shown
in Figure 2a, the design variants of focus in this study are the spacing in between the
scales, length of the scales, the angle between the scale and the hypodermis substrate.
This geometric derivation takes these fish scale parameters as input and determines the
structure’s flexibility, in terms of maximum curvature before scale-to-scale contact (at the
transition point). To validate the accuracy of the derived equation, the fish scale model
is simulated, using finite element analysis (FEA), to reproduce the interaction between
scales. Advances in additive manufacturing have enabled the rapid prototyping of various
materials and designs [31–38]. As a result, we have fabricated a 3D-printed fish scale model
prototype, using polylactic acid (PLA) and Ninjaflex, to demonstrate the applicability of
the geometric model. This study demonstrates the possibility of using a geometric model
to predict the properties of the fish scale model, and its potential applicability in the design
of scale-inspired flexible armor. Using this geometric model, the effect that each varying
parameter has on curvature can be tested without having to manufacture each individual
scale and substrate configuration.
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Figure 2. Schematic of the simplified fish scale model shown for (a) a neutral state and (b) when scales first interact.

2. Methods

The fish scale structure is a very complex system that constitutes multiple stiff scales
inserted in a soft substrate. Each scale can have varying properties, such as size and
overlapping ratio. Therefore, in this study, the effects of these variables on the fish scale
model were simplified into a 2D model, as shown in Figure 2a. The model represents two
scales, as two lines. We assumed the left scale was long enough that the P2 always landed
on the left scale. We also limited the distance between two scales, so that the substrate
deformed with a uniform radius of curvature and the two angles (θ1, θ2) stayed constant.
This research focused on studying the effects on the curvature of the substrate system,
as the spacing, length of the scale, and the angles between the scale and substrate varies.
The spacing, angle, and length were chosen as key parameters in this research, due to
their dominant influence on scale-to-scale interactions, which, in return, directly affects the
flexibility of the fish scale structure and needs to be taken into consideration.

2.1. Geometric Model

Firstly, we created a geometric model that could analyze the fish scales’ interaction.
To tackle the complexity of interacting scales, the structure was simplified to a two-scale
system. After simplification, there were a total of three design degrees-of-freedom in the
geometric fish scale model. Comparatively, the only motion degree-of-freedom was the
radius of curvature. As shown in Figure 2a, the parameters of importance for this study
were the lengths of both scales (l1, l2), spacing in between the scales (s), and the angles
of each scale, with respect to the substrate (θ1, θ2). After targeting the key variables, the
equation could be constructed through the geometric relationship between each variable.
To derive the geometric equations, the focus was on P1 (x1, y1) and P2(x2, y2), as shown in
Figure 2b. Since the contact point was critical in this study, the geometric equations were
derived at the point where P2 first came into contact with the left scale. The term (s) is
defined as the spacing between the scales. Once force was applied to the system and the
second scale started moving towards the first scale, the spacing (s) became the arc length
of the curved structure. Through defining coordinates P1 and P2, a relationship was formed
between arc length and the arc angle (γ). Using γ = s

r , the following geometric equation
for the radius of curvature (r) was found:

− tan(θ1) =
y2

x2
=

r(1− cos(γ) ) + l2 sin(θ2 − γ)

r sin(γ)− l2 cos(θ2 − γ)
(1)

Equation (1) relates the radius of curvature to the parameters in Figure 2b (see
Appendix A for the derivation of Equation (1)). By taking the inverse of this radius of
curvature, the curvature of the structure was determined to get direct information about
the flexibility of the scaled design. This is an important parameter in flexible armor design,
for example, because if the substrate curves more, the curvature value will increase, which,
in return, shows that the model is more flexible. To solve the radius of curvature from
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Equation (1), Taylor series was used to approximate the roots of the equation. After simpli-
fication, the above equation became a quintic polynomial, for which all the roots could be
easily found using numerical approximation (see Appendix B for the simplified equations.
By inputting the length, spacing, and angle values into Equation (1), the geometric model
can provide an estimate of the flexibility of the fish scale design.

2.2. FEA Model

To validate the results from the geometric equation, the fish scale structure was tested
using finite element analysis in ANSYS. In order to replicate the difference in stiffness of
the fish mode, the FEA was set up using two materials in Figure 3a. The substrate was set
to have a Young’s modulus of 3.3 GPa and a Poisson’s ratio of 0.36, which matched the
material properties of the PLA in the experiment [29,39]. The scale had a Young’s modulus
of 12 MPa and a Poisson’s ratio of 0.48, matching the material properties of the Ninjaflex in
the experiment [39,40]. Plane stress was used in the FEA model, and the element type of the
simulation was plane183, which was a quadratic element. Additionally, the model had 882
nodes and 213 elements. As shown in Figure 3b, the left tip of the substrate was assigned
to be the fixed support. By restricting a boundary condition on the first scale, the second
scale would not pass through the first scale to avoid penetration. A vertical upward force
was then applied at the right edge of the substrate to simulate the bending. In Figure 3b,
the right edge of the first scale, the midpoint between two scales, and the left edge of
the second scale on the top side of the substrate were marked as target points (labeled
Pa, Pb, Pc, respectively) in the simulation. As the applied force increased, the displacement
in both the x and the y directions of these points was recorded, to calculate the substrate’s
curvature during the simulation. After knowing the initial and final positions of these
three points, the curvature of the substrate created by these points could be calculated,
using a perpendicular bisector theorem [41]. Assuming that the final position of Pa was
(x1, y1), Pb was (x2, y2), and Pc was (x3, y3), the y-intercept of the perpendicular bisector
(b1) between P1 and P2 could be determined using Equation (2). Similarly, the y-intercept
of the perpendicular bisector (b2) between P2 and P1 could be determined using Equation
(3). After knowing the y-intercept, the center of curvature (x, y) could be calculated using
Equations (4) and (5). In the end, from the position of the center of curvature, the curvature
of the substrate (k) could be calculated using Equation (6).
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Figure 3. Fish scale model in FEA. (a) A schematic to show the FEA simulation setup including the material properties and
boundary conditions. (b) FEA solution of equivalent strain with relevant points (Pa, Pb, Pc) and dimensions (γ, s) for the
calculation of the radius of curvature (r). The color bar represents the elastic strain of the model.

(x1)
2 − (x2)

2 + 2b1(y2 − y1) = (y2)
2 − (y1)

2 (2)

(x2)
2 − (x3)

2 + 2b2(y3 − y2) = (y3)
2 − (y2)

2 (3)

x =
b1 − b2(

x2−x3
y3−y2

)
−
(

x1−x2
y2−y1

) (4)
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y =

(
x2 − x3

y3 − y2

)
x + b2 (5)

k =
1√

(x− x1)
2 + (y− y1)

2
(6)

The y-displacement of the top end of the scale was also recorded from the simulation
and used to determine the time at which the scale first came in contact. Due to the applied
force, the tip of the second scale will move closer to the substrate, causing an increase in
the y-displacement, until it touches the first scale. Using this phenomenon, the first scale
intersection time can be determined by the maximum y-displacement of the tip. Analyzing
the simulation data using Equations (2)–(6), the curvature of the substrate, when the two
scales are first engaged, can be automatically calculated.

3. Results
3.1. Geometric Model Result

After deriving the geometric equation, we validated the derived numerical method
through the analysis of curvature trends and simulation results. Using the data from the
derived geometric Equation (1), the contour plots analyzed how the structure’s curvature
was affected by the equations’ varying parameters. As shown in Figure 4a–c, the three
plots represent how the curvature changed when key parameters, such as the spacing in
between the scales, the length of the second scale, and the angle of the second scale, varied.
In Figure 4a, the curvature was a function of the length of the second scale and the spacing
in between the scales. Here, the curvature decreased as the length of the scale increased
and the curvature increased as the spacing in between the scale also increased. In addition
to discovering the effects of spacing and length on curvature, Figure 4b,c further confirmed
this trend and showed that increasing the angle between the scales and substrate caused an
increase in curvature. The angle of the scales, with respect to the substrate, has a dominant
role in the effect of curvature. Overall, these figures provide not only insight into curvature
trends but also a confirmation of consistency, regarding how curvature is affected when
the key parameters vary.
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Figure 4. Geometric curvature trends. (a) The effect on curvature as the length of the second fish scale and spacing in
between the scales vary. (b) The effect on curvature as the angle of the second fish scale and the spacing in between the
scales vary. (c) The effect on curvature as the length of the second scale and angle of the scale varies.
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3.2. FEA Model Result

After investigating both the analytical and the FEA models (Figure 5a,b), the two
methods were compared using a comparison plot. In Figure 5c, the x-axis is the curvature
result from the geometric equation, and the y-axis represents the curvature from the finite
element analysis. Inside the FEA data group, the scale lengths were 4-inch, 5-inch, and
6-inch; the spacing between the two scales varied from 1-inch, 1.5-inch, to 2-inches; and the
angles varied from 30, 45, and 60 degrees. We observed that the slope of the curvature vs.
force plot was relatively constant until the scales started engaging, and the slope decreased
beyond the contact point. Using this discovery, a second method to automatically generate
the curvature was compared with the y-displacement method in Table 1. Both methods
had a percentage of error of about 10%, relative to the geometric equation, which shows
the geometric equation has the ability to predict the curvature of the fish scale structure.
Comparing the two curvature generating methods in FEA, the slope method was more
accurate than the y-displacement method. Overall, the smallest percentages of error
between the curvature results found in the slope and the y-displacement methods were
3.30% and 7.94%, respectively, which is reasonably good.
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Table 1. Comparison between geometric and FEA results using a fish scale model with a scale length
of 4 inches, scale spacing of 2 inches, and angle of 30 degrees.

Geometric Model FEA by Slope FEA by y-Displacement

Curvature [1/in] 0.1599 0.1457 0.1430

Percent Error [%] - −8.880% −10.57%

4. Discussion

The geometric equation provides a convenient way to predict the flexibility of the
fish scale model. This equation presents a good structure property estimation of the
next generation materials inspired by fish scales, without the need to model every single
scenario. Three significant parameters that affect the flexibility of the model are isolated to
perform an in-depth analysis of the interaction between the fish scale and its substrate. The
trend of how these parameters influence the bending of the fish model is demonstrated in
Figure 4a–c. As the spacing between the two scales increases, the curvature of the substrate
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increases; as the angle between the scale and the substrate increases, the curvature of the
substrate also increases. If all other parameters are held constant but the length of the
scale is increased, the curvature of the substrate decreases. This provides a useful tool
for designing flexible armor systems, where the local flexibility of the system needs to be
freely customized.

The plots in Figure 4 not only allow us to comprehend curvature trends, but they also
serve as a verification for the derived geometric equation. The comparison plot and the
representative data (Table 1) between the geometric equation result and the FEA simulation
result shows the accuracy of the geometric equation. The curvature trends from both results
match up completely. However, we discovered that the percentage of error grew, as the
deformation of the FEA model increased. Additionally, during the simulation, material
properties and the thickness of the fish scale model were considered while calculating the
curvature of the substrate. Although the geometric equation simplifies the fish model and
does not consider the material properties, it can correctly estimate the flexibility of the fish
scale, with a small percentage of error, compared to the FEA model.

To imitate the real fish scale structure’s material features, a 3D-printed fish scale
sample was fabricated using PLA and Ninjaflex (Figure 6). The infill of the scale and the
substrates were 100% and 50%, respectively. After printing, the scales and the substrate
were assembled using super glue. This figure demonstrates the physical testing of the
fish scale sample. The holding station was 3D-printed and glued on a piece of wood to
provide fixed support of the fish scale during the testing. A wire was tied in a hole, located
on the right edge of the substrate. When the wire was pulled, it caused the substrate
to bend and the scales to interact, due to the force being applied to the sample. When
modeling the bending process, using the 3D-printed sample, the interaction between the
scales was the same as was predicted in the geometric equation and FEA simulation.
This further demonstrates the applicability of the analytical model. The curvature of the
3D-printed model needs more investigation, due to the increasing number of varying
parameters during the printing and measuring process, such as the infill percentage and
infill geometry. A systematic study on the 3D-printing settings and method for finding
the primary parameters (that contribute to the differences between the three methods) can
improve the results.
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Future work may include discovering the compatibility of the geometric equation,
in which different material and printing parameters are used in the fabrication process.
Finding other fish scale parameters, such as the thickness of the fish scale and the width of
the 3D model, as well as applying optimization and machine learning techniques, could
further enhance the accuracy of the curvature prediction [42–46]. On the other hand, using
the geometric equation as the basic principle, a prediction tool for flexible material designs
can also be developed to accommodate a more complex 3D fish scale structure.

5. Conclusions

Fish scales serve as a natural dermal armor with remarkable properties, such as
stiffness and flexibility. By thoroughly understanding fish scale structure mechanisms,
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researchers can develop flexible armor without compromising stiffness. Past studies have
focused on understanding fish skin mechanics, but the analysis done in this study focuses
on creating a quick and effective method for design applications. By inputting parameters
into the derived geometric equation, the curvature can be quantified, and one can easily
get a simple assessment for their armor design. The geometric equation is derived at the
transition point where the simplified two-scale system first comes into contact. This is a
crucial point because it defines the transition where the scale interactions start to play a
role in the design’s stiffness or flexibility. The radius of the curvature from the geometric
equation is then further verified using FEA. The simulation curvature and geometric
equation curvature results are close in value, with a small percentage of error (three
percent). A 3D-printed sample is also presented in this study as a visual representation of
the scales’ interaction in the fish scale model. By using the validated geometric equation
introduced in this study, one does not have to individually manufacture and test the
effect that each varying scale parameter has on curvature. This allows the designer to
easily obtain a preliminary assessment, in which value is needed for the scale length,
spacing, or angle, in order to have interchangeable flexibility or stiffness throughout the
material design.
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Appendix A

x1 = r sin(γ)

y1 = r− r cos(γ)

|x2 − x1| = l2 cos(θ2 − γ)

|y2 − y1| = l2 sin(θ2 − γ)

x2 = r sin(γ)− l2 cos(θ2 − γ)

y2 = r(1− cos(γ)) + l2 sin(θ2 − γ)

Appendix B

x = −s tan(θ1) + L2(tan(θ1) cos(θ2)− sin(θ2)

x1 = L2(tan(θ1) sin(θ2) + cos(θ2)−
s
2
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