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Abstract: Two new photopolymerizable vinyl (2-(allyloxy) 1,4-naphthoquinone, HNQA) and epoxy
(2-(oxiran-2yl methoxy) 1,4-naphthoquinone, HNQE) photoinitiators derived from lawsone were
designed in this paper. These new photoinitiators can be used as one-component photoinitiating
systems for the free-radical photopolymerization of acrylate bio-based monomer without the addition
of any co-initiators. As highlighted by the electron paramagnetic resonance (EPR) spin-trapping
results, the formation of carbon-centered radicals from an intermolecular H abstraction reaction was
evidenced and can act as initiating species. Interestingly, the introduction of iodonium salt (Iod) used
as a co-initiator has led to (1) the cationic photopolymerization of epoxy monomer with high final
conversions and (2) an increase of the rates of free-radical polymerization of the acrylate bio-based
monomer; we also demonstrated the concomitant thiol–ene reaction and cationic photopolymeriza-
tions of a limonene 1,2 epoxide/thiol blend mixture with the HNQA/Iod photoinitiating system.

Keywords: lawsone; photopolymerizable photoinitiators; free-radical photopolymerization; cationic
photopolymerization; thiol–ene process

1. Introduction

In the past few years, photopolymerization gained an increasing interest and became
the cornerstone of many investigations related to microelectronics, adhesives inks, dentistry,
and the elaboration of (3D) biomaterials [1]. The success of photochemistry is undoubtedly
based on undeniable advantages [2] over the thermal process, e.g., polymerizations under
low-temperature conditions without the addition of hazardous solvent, reduced reaction
times, the spatial control of the light penetration inside the photosensitive resins, and
the capability to adjust overall properties of the photoinduced materials. However, the
use of UV-light irradiation still remains an issue of concern in photopolymerization, and
alternatives must be found.

In light of these considerations, huge efforts have been made to propose efficient
visible-light photoinitiating systems [3–5]. These systems can be classified into two distinct
categories according to how radicals are generated. Norrish I and II type photoinitiators,
acting in the visible range, are well-known to perform free-radical and cationic photopoly-
merizations. Even if type I photoinitiators, which can cleave under light activation, are
extensively used in industries, the irreversible consumption of these kinds of photoinitia-
tors during polymerization is clearly the main drawback. Therefore, scientists have turned
their efforts towards developing Norrish type II photoinitiators. In particular, relevant
reviews [3,4,6] have described the recent progress photoinitiating strategies envisaged
to perform polymerization under light irradiation. Notably, new photocatalytic systems
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based on three-component photoinitiating systems [7,8] have been put to the forefront
without considering environmental issues.

In order to meet environmental challenges, the use of bio-resources appears to be
a credible alternative. Surprisingly, even if the use of bio-based monomers [9] for poly-
mer synthesis is now gaining interest from industry and academic researchers, the use
of photoinitiators based on natural products is scarce. The first study describing the in-
terest of riboflavin as a photoinitiator for the free-radical polymerization (FRP) of acrylic
monomers was published in 1967 [10]. In 2005, Crivello presented the first example of
photoinitiating systems based on curcumin [11], a π-conjugated system extracted from
the rhizomes of Curcuma longa: curcumin was used for the sensibilization of onium salts
and the ring-opening polymerization of cyclohexene oxide at 407 nm. According to the
extended absorption spectrum of curcumin into the visible range up to 535 nm, and the
recent development of household light-emitting diodes (LEDs), Lalevée et al. developed
a three-component photoinitiating systems (i.e., curcumin/diphenyliodonium hexafluo-
rophosphate/triphenylphosphine) for dental applications [12]. Curcumin has also been
used concomitantly as a photosensitizer for the cationic photopolymerization (CP) of
epoxidized soybean oil and as an antibacterial agent under visible-light exposure [13].
Recently, Versace et al. demonstrated the pivotal role of curcumin, judiciously used as a
two-photon FRP initiator and as a photogenerator of biocide reactive oxygen species for
antibacterial applications [14]. In the same way, Versace et al. used β-carotene as a visible
absorbing photosensitizer for the cationic photopolymerization of epoxidized bio-based
limonene derivatives for the synthesis of innovative antibacterial materials [15]. Paprika
was investigated as a visible photoinitiator [16] when combined with diphenyliodonium
salt for the free-radical-induced cationic photopolymerization of a gallic acid derivative
under visible-light exposure. Dihydroxyanthraquinone and polyhydroxyanthraquinone
derivatives [17–19], which are essentially extracted from the madders of the dyers, have
been also exploited. Due to their high molar extinction coefficients in the visible range,
their capability to initiate FRP, CP, or the thiol–ene process in combination with an appro-
priate electron acceptor, electron donor, or H-donor molecule, was demonstrated upon
visible-light irradiation. Some studies have also investigated the photoreactivity of natural
flavones [20] (i.e., quercetin, myricetin, and chrysin) in acrylate and epoxy blend mixture
for dental and antibacterial applications [21]. Very recently, vanillin was used as the initial
building block to design a new type I cleavable photoinitiator [22] in the UV range. In
2020, two natural dyes [23], namely 5-hydroxy-1,4-naphthoquinone and 2-hydroxy-1,4-
naphthoquinone were examined as co-initiators in two- or three-component photoinitiating
systems for FRP of acrylates under visible-light irradiation at low light intensity. Despite
the high absorption properties of naphthoquinones, low final acrylate conversions were
obtained.

The limited studies concerning the use of 2-hydroxy-1,4-naphthoquinone (lawsone)
and its low initiating properties for FRP and CP in the visible range prompted us to design
new lawsone-derived structures. The novelty of this study is to functionalize lawsone with
vinyl or epoxy group to obtain photopolymerizable photoinitiators.

Lawsone (HNQ) is an orange dye derived from the leaves of the henna plant (Lawsonia
inermis), usually used in textiles, cosmetics, tattoo inks, and in medical domains. Lawsone
is also known for its anti-fungal [24,25], anti-corrosive [26], and anti-cancer [27] properties
and can be used for the detection of fingerprints [28].

In the present study, two new bio-based photoinitiators derived from lawsone were
designed. Their photochemical behavior under irradiation was described in detail by
steady-state photolysis and fluorescence experiments. Their photoinitiating properties
as a single photopolymerizable photoinitiator and co-initiator combined with electron
acceptor (iodonium salt) and/or H-donor thiol molecule for the FRP, CP, and thiol–ene
reactions were evaluated by real-time infrared Fourier transform spectroscopy (RT-FTIR)
under LEDs@385 and 405 nm. Soybean oil acrylate and limonene 1,2-epoxide were used as
completely bio-based monomers for the kinetic studies. Mechanistic investigations and
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the proposed mechanisms were fully supported by electron paramagnetic resonance (EPR)
spin-trapping.

2. Experimental Section
Materials

Metachloroperbenzoic acid (m-CPBA), tetraethylammonium bromide (TEAB), 2-hydroxy-
1,4-naphthoquinone (lawsone, HNQ), allyl bromide, potassium carbonate (K2CO3), soy-
bean oil acrylate (SOA), 3,4-epoxycyclohexane)methyl-3,4-epoxycyclohexylcarboxylate
(EPOX), limonene 1,2-epoxide (>97%), trimethylolpropane tris(3-mercaptopropionate)
(trithiol, >95%), 5,5-dimethyl-pyrroline N-oxide (DMPO), and bis(4-methylphenyl) iodo-
nium hexafluorophosphate (Iod) were purchased from Sigma-Aldrich. Cyclohexane, ethyl
acetate, and silica gel were obtained from commercial suppliers. Table 1 displays the
chemical structures of the main compounds used in this investigation.

Table 1. Chemical structures of the monomers and photoinitiating systems used in this study.
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Synthesis of the allylic derivative (HNQA). HNQ (435 mg) and tetraethylammonium
bromide (TEAB) (81 mg—0.25 mmol—0.1 equivalent) were mixed together with NaOH
(100 mg—2.5 mmol—1 equivalent) and K2CO3 powder (1.382 g—10 mmol—4 equivalents)
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and transferred to a 30 mL capacity microwave tube, where 6 mL of allyl bromide was
added. Reaction was carried out in a microwave reactor under pressure at 75 ◦C for
1 h. The mixture obtained after reaction in the microwave reactor was transferred to a
separatory funnel containing 100 mL of water. The product of interest is extracted three
times with 50 mL of diethyl ether. The organic phases are washed with water and dried
with magnesium sulfate (MgSO4). The solution was filtered into a flask and evaporated.
The crude product was purified by column chromatography (silica gel) with the eluent
cyclohexane/ethyl acetate in 80/20 proportion. The separation of the compounds was
followed by thin-layer chromatography (TLC), and the tubes containing the product of
interest were collected in a tared flask, and the contents evaporated. A 1H NMR and a 13C
NMR spectrum were performed to check the structure of the product obtained. The vinylic
photoinitiator HNQA is a yellow powder. Yield = 48%. 1H NMR (400 MHz, CDCl3) δ
8.12 (d, J = 7.2, 1.9 Hz, H3 or H6), 8.07 (d, J = 7.2, 1.9 Hz, H3 or H6), 7.72 (m, H4 and H5),
6.16 (s, H9), 6.05 (ddt, J = 16.9, 10.9, 5.4 Hz, H12), 5.48 (d, J = 16.9, 1.5 Hz, H13a), 5.40 (d,
J = 10.9 Hz, H13b), 4.61 (d, J = 5.4, 1.5 Hz, H11) (see supporting information Figure S1).
13C NMR (100MHz, CDCl3) δ 185.08 (C1 or C8), 180.21(C1 or C8), 159.31 (C10), 134.41 (C4
or C5), 133.47 (C4 or C5), 132.06 (C2 or C7), 131.23 (C2 or C7), 130.59 (C12), 126.83 (C3 or
C6), 126.27 (C3 or C6), 120.16 (C13), 110.97 (C9), 70.19 (C11) (see supporting information
Figure S2).

Synthesis of the epoxide derivative (HNQE). Lawsone vinylic derivative HNQA
(0.3 g—1.4 mmol—1 equivalent) was dissolved in degassed dichloromethane. m-CPBA
(2.408 g—14 mmol—10 equivalents) was added four times over 10 h. Each addition must
be made after cooling the solution to 0 ◦C. The solution was then slowly brought to room
temperature. After the complete addition of m-CPBA, the solution was evaporated. The
epoxidation was monitored by thin-layer chromatography (TLC) by regular sampling to
observe the disappearance of the HNQA stain. The crude product was purified by column
chromatography (silica gel) with cyclohexane/ethyl acetate as eluent in a 60/40 ratio. The
epoxidized photoinitiator HNQE is a yellow powder. Yield = 10%. 1H NMR (400 MHz,
CDCl3) δ 8.11 (dd, J = 7.2, 1.9 Hz, H3 or H6), 8.06 (dd, J = 7.0, 2.0 Hz, H3 or H6), 7.72 (m,
H4 and H5), 6.21 (s, H9), 4.29 (dd, J = 11.5, 3.0 Hz, H11a), 3.97 (dd, J = 11.5, 5.9 Hz, H11b),
3.44 (m, H12), 2.95 (m, H13a), 2.79 (dd, J = 4.5, 2.5 Hz, H13b) (see supporting information
Figure S3). 13C NMR (100 MHz, CDCl3) δ 185.29 (C1 or C8), 180.16 (C1 or C8), 159.69
(C10), 134.78 (C4 or C5), 133.89 (C4 or C5), 132.32 (C2 or C7), 131.48 (C2 or C7), 127.16 (C3
or C6), 126.62 (C3 or C6), 111.25 (C9), 70.41 (C11), 49.50 (C12), 45.07 (C13) (see supporting
information Figure S4).

Photopolymerization experiments. The photopolymerization experiments were car-
ried out using real-time Fourier transform infrared spectroscopy (RT-FTIR). The kinetics
of photopolymerization were carried out with a time-resolved Fourier transform infrared
spectrometer (JASCO 4100 series) to evaluate the absorbance decrease of acrylate, epoxy,
vinyl, and thiol functional groups at 1636 cm−1, 842 cm−1, 1645 cm−1, and 2560 cm−1,
respectively. Formulations were deposited on a BaF2 pellet and were irradiated in laminate
(with the addition of a transparent polypropylene film on the top of the photosensitive
layer) or under air upon LED@385 and @405nm irradiation at room temperature.

Steady-State photolysis. Steady-state photolysis of HNQ, HNQ/Iod, HNQA, HNQA/
Iod, HNQE, and HNQE/Iod systems was conducted by UV-visible spectroscopy (Cary 60
UV-visible spectrometer from Agilent Technologies) in acetonitrile, under air, in a 1 cm
quartz cell, and upon LED@385 nm exposure (44 mW/cm2).

Irradiation Sources. Thorlabs light-emitting diodes from THORLABS (LEDs@385 and
405 nm) were used to initiate cationic and free-radical photopolymerizations. Intensities of
LED@385 and 405 nm were 44 mW/cm2 and 60 mW/cm2, respectively.

Fluorescence Experiments. Fluorescence experiments were performed and collected
at room temperature with a FluoroMax+ spectrofluorometer from HORIBA. For flu-
orescence measurements, ACN solution of HNQ, HNQA, or HNQE were excited at
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λexc = 330 nm. The fluorescence quenching of the lawsone derivatives was evaluated
after the addition of a gradual concentration of Iod.

Cyclic Voltammetry. Cyclic voltammetry measurements of HNQ, HNQA, and HNQE
were performed at room temperature under argon atmosphere according to a previously
described method18. Glassy carbon, saturated calomel, and gold wire electrodes were used
as the working electrode, reference electrode, and counter electrode, respectively. For cyclic
voltammetry measurements, the three electrodes were immersed in an ACN solution of
HNQ, HNQA, or HNQE containing a supporting electrolyte solution of tetraethylammo-
nium tetrafluoroborate at 10−3 mol. L−1. The free energy change ∆GeT for an electron
transfer reaction between HNQA, or HNQE and Iod can be evaluated from the classical
Rehm−Weller equation [29].

Electron paramagnetic resonance (EPR) spin-trapping. The X-band cw-EPR spec-
tra (modulation frequency of 100 kHz) were monitored with the EMXplus spectrometer
(Bruker) equipped with the High Sensitivity Probe-Head (Bruker) in a small quartz flat cell
(Wilmad-LabGlass, WG 808-Q). The solutions prepared in acetonitrile and saturated with
argon were irradiated at 295 K directly in the EPR resonator utilizing a LED@400 nm source
(λmax = 400 nm; Bluepoint LED, Hönle UV Technology). The EPR spectra were recorded
in situ during/after a defined exposure as described previously in Reference [18]. The
g-factors were determined with an uncertainty of ± 0.0001 exploiting a nuclear magnetic
resonance teslameter (ER 036TM, Bruker) and integrated frequency counter. The experi-
mental EPR spectra were analyzed by the WinEPR software (Bruker), and the calculations
of simulated spectra were performed with the EasySpin toolbox working on the MatLab®

platform [30]. The standard EPR spectrometer settings were as follows: microwave fre-
quency, ~9.43 GHz; microwave power, ~10.5 mW; center field, ~336.0 mT; sweep width,
2–8 mT; gain, 2.00 × 105–5.02 × 104; modulation amplitude, 0.025 mT–0.10 mT; sweep time,
45 s; time constant, 10.24 ms or 20.48 ms; the number of scans, 5 or 10. Sample compositions
comprising the reagents are discussed in the text.

Computational method. Standard MP2 method [31,32] and cc-pVTZ basis sets for
all atoms [33] were used for geometry optimizations of the anionic compounds under
study in acetonitrile in doublet ground spin states. Solvent effects were approximated by
the Solvation Model based on the Density [34] (SMD) continuum model. The stability of
the optimized structures was confirmed by vibrational analysis (no imaginary vibrations).
Subsequently, their isotropic hyperfine coupling constants in acetonitrile were calculated
by DFT method using standard B3LYP hybrid functional [35], EPR-III basis sets for all
atoms [36], and SMD solvent model [34]. All calculations were performed using the
Gaussian16 [37] program package.

3. Results and Discussion

Synthesis of the lawsone derivatives. Allylated (HNQA) and epoxidized (HNQE)
lawsone were synthesized from lawsone in a one or two-step procedure, following the
procedure described in Scheme 1. The synthesized molecules have been fully characterized
by NMR spectroscopy (see supporting information). Allylation of lawsone (HNQ) is ex-
pected according to a previously reported synthesis [38] using allyl bromide (co-reactant)
with NaOH/K2CO3 as a base catalyst. Prior to the addition of the allyl bromide, a deproto-
nation of the alcohol group of HNQ occurs and leads to an alcoholate formation, which
ensues a nucleophilic SN2 type reaction with allyl bromide. The purification of the crude
on silica gel chromatography led to the expected allylated lawsone with a yield of 48%.
Interestingly, new proton signals attributed to the vinyl function [38,39] of HNQA appear
accordingly at 6.1 ppm (H2C=CH-) and at 5.5 ppm (H2C=CH-). The oxidation of HNQA
was performed in degassed dichloromethane at room temperature with m-CPBA to convert
the allyl bonds into epoxides [39]. After purification of the crude, HNQE was obtained
with a 10% yield. A complete disappearance of the allyl protons of HNQA is observed,
leading to the apparition of new signals, which are attributed to the protons of the HNQE
epoxy group between 2.8 and 3.5 ppm [39].
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Steady-state photolysis and fluorescence. The UV-vis absorption spectra and the
molar extinction coefficient of the lawsone derivatives are displayed in Figure S5. The pho-
tophysical properties of the lawsone derivatives are gathered in Table 2. Lawsone deriva-
tives exhibit high molar absorption coefficients in comparison with common visible-light
photoinitiators [40] (e.g., camphorquinone or benzophenone) and display a low absorption
band in the visible range. This makes lawsone derivatives probable visible photoinitiators
in the UV-vis range. The overall photoreactivity of the lawsone derivatives with oxidative
compounds was first studied by steady-state photolysis and fluorescence experiments.

Table 2. Photophysical properties of HNQ, HNQE, and HNQA in acetonitrile.

λmax (nm) λmax
Em (nm) ES (eV) Eox (V/SCE) ERed (V/SCE) ∆GeT (S) (eV)

HNQ 335 - - +1.82 -
HNQE 330 411 3.024 +1.44 −1.372
HNQA 329 410 3.016 +1.33 −1.499

Iod −0.2

Photolysis of HNQ, HNQA, and HNQE upon LED@385 nm exposure, without and with
Iod, are given in Figure 1A−F. Under light irradiation, the absorbance of HNQ, HNQA, and
HNQE alone (Figure 1A,B,C) decreases, and an isosbestic point is clearly observed for each
photoinitiating system, suggesting the formation of a new species. Radical species resulting
from the irradiation of the naphthoquinone derivatives are likely to appear as EPR spin-
trapping could further demonstrate. New carbon-centered radicals are expected to be formed
through an H-abstraction reaction as previously described with thioxanthone derivatives [41].
Surprisingly, the absorbance decrease of the lawsone derivatives was not accelerated when
adding Iod (Figure 1D–F). Quenching of fluorescence was performed to learn about the
reactivity of HNQA, and HNQE excited singlet states toward the addition of Iod. Fluorescence
spectra of HNQA and HNQE were recorded in ACN (see Figures S6 and S7, respectively),
and the maximum emission wavelength was observed at 410 and 411 nm, respectively.
A quenching rate of fluorescence was observed for HNQA and HNQE in the presence of Iod
(Figures S6 and S7), with KSV

Iod (HNQA) = 4215 M−1 and KSV
Iod (HNQE) = 110 M−1. The

negative ∆GeT(S) values calculated from the Rehm–Weller equation29 and the potentials of
oxidation (see Figure S8 for Eox(HNQA) and Figure S9 for Eox(HNQE)) demonstrate that a
thermodynamically favorable electron transfer reaction between the excited singlet states of
HNQA or HNQE and Iod (Table 2) may occur.
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Figure 1. Steady-state photolysis of (A) HNQ, (B) HNQA, (C) HNQE, (D) HNQ/Iod, (E) HNQA/Iod, and (F) HNQE/Iod
upon LED@385 nm exposure (44 mW/cm2). UV−vis spectra were recorded at different irradiation times under air after 420
s of irradiation. [HNQ] = 2.1 × 10−4 M, [HNQA] = [HNQE] = 5 × 10−4 M, [Iod] = 1.7 × 10−3 M.

EPR experiments. The photoexcitation of HNQ in the deoxygenated acetonitrile so-
lution under given experimental conditions resulted in the generation of EPR signal (g =
2.0044) shown in Figure 2A, assigned to the corresponding radical anion [42] (HNQ•−).
Due to its low intensity, it was not possible to acquire EPR spectra with the lower modula-
tion amplitude, which prevented us from obtaining the better resolved hyperfine structure.
Consequently, the simulation interpretation of the experimental spectrum of HNQ•− rep-
resents the hyperfine interaction of four dominant hydrogen nuclei with the unpaired
electron. As the EPR spectra of HNQ•− found in the literature are significantly affected
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by the experimental conditions [43], the assignment of hyperfine couplings of individual
hydrogen atoms is based on the theoretical data evaluated by the B3LYP/EPR-III/SMD
(acetonitrile) calculations (Table 3). HNQ•− contains three oxygen sites where, in principle,
the hydroxyl H atom can be located. MP2/cc-pVTZ/SMD (acetonitrile) geometry opti-
mizations of the corresponding structures confirmed the highest stability of the 2-hydroxy
isomer, whereas the concentrations of the 1- and 4-hydroxy isomers are vanishing because
their Gibbs free energies at 298 K are higher by 109.1 and 33.1 kJ/mol, respectively. While
a low-intensity EPR spectrum was obtained during irradiation of HNQA in acetonitrile
under given experimental conditions (g = 2.0047; Figure 2B), the photoactivation of HNQE
in acetonitrile upon LED@400 nm is analogous, but a better-resolved EPR spectrum is
achieved (g = 2.0047; Figure 2C); the signals are attributed to the corresponding radical
anions of HNQA and HNQE, respectively (Table 3).

Table 3. The hyperfine coupling constants of 2-substituted naphthoquinone radical anions calculated
at B3LYP/EPR-III/SMD (acetonitrile) level of theory in comparison with those elucidated from the
simulations of experimental EPR spectra (in italic).
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HNQA•−

(R=allyloxy)
−0.014, 0.023 (CH2)

<0.02
−0.235
0.098

−0.015
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−0.086
0.083

−0.055
0.057

−0.045
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HNQE•−

(R=oxiran-2-yl-methoxy)
−0.012, 0.030 (CH2)

<0.02
−0.238
0.083

−0.015
<0.02

−0.086
0.073

−0.054
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The continuous in situ LED@400 nm irradiation of HNQ/acetonitrile/argon in the
presence of DMPO spin trap resulted in the immediate generation of six-line signal
(Figure 2D) with the spin-Hamiltonian parameters characteristic for the DMPO-adduct
with a ketyl radical [44] (•C(OH)R1R2, Table 4). On the other hand, the irradiation of
deoxygenated acetonitrile solutions of HNQA and HNQE containing DMPO led to the
formation of •DMPO-CR adduct (Figure 2E,F), which correspond to the carbon-centered
radical in α-position of the vinyl or epoxy group of HNQA or HNQE, respectively, and
formed after an intermolecular H-abstraction reaction.

Table 4. Spin-Hamiltonian parameters of DMPO spin-adducts evaluated from the simulation spectra
measured in acetonitrile at 295 K.

Radical Added to
DMPO Spin Trap aN, mT a, mT g-Factor

•C(OH)R1R2 1.515 ± 0.005 2.411 ± 0.005 (Hβ) 2.0059 ± 0.0001
•CR 1.436 ± 0.003 2.090 ± 0.010 (Hβ) 2.0060 ± 0.0001

•Phenyl(4-methyl) 1.438 ± 0.005
2.116 ± 0.005 (Hβ)

0.773 ± 0.03 (2 × 13C), 0.604 ± 0.01 (13C),
0.532 ± 0.01 (13C)

2.0060 ± 0.0001

•SR’ 1.369 ± 0.003
1.308 ± 0.003 (Hβ)
0.080 ± 0.003 (Hγ)
0.072 ± 0.003 (Hγ)

2.0062 ± 0.0001
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Figure 2. The normalized experimental (1) and simulated (2) EPR spectra obtained upon continuous in situ LED@400 nm
exposure: (A) HNQ, (B) HNQA, (C) HNQE, (D) HNQ/DMPO, (E) HNQA/DMPO, and (F) HNQE/DMPO in acetonitrile
under argon. Modulation amplitude: 0.1 mT (A,B) and 0.025 mT (C–F).
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The effective generation of DMPO-adducts with ketyl and phenyl(4-methyl) radicals
is well evidenced upon irradiation of HNQ/Iod/DMPO/acetonitrile/argon solutions, also
reflecting the efficient electron transfer from the photoexcited HNQ to Iod (Figure 3A).
The electron transfer reaction from the photoactivated HNQA and HNQE molecules to
Iod producing phenyl(4-methyl) radicals upon LED@400 nm exposure is demonstrated
in Figure 3B,C: a well-resolved EPR signal of the DMPO-phenyl(4-methyl) adduct [45]
is only observed. The EPR spectra measured upon in situ LED@400 nm irradiation of
2-substituted naphthoquinone derivatives in deoxygenated acetonitrile solutions contain-
ing DMPO/Iod/TT are shown in Figure 3D–F. The EPR spectrum obtained under given
experimental conditions for HNQ represents a superposition of three individual DMPO-
adducts: (i) •DMPO-C(OH)R1R2; (ii) •DMPO-phenyl(4-methyl); and (iii) •DMPO-SR; the
spin-Hamiltonian parameters are gathered in Table 4. Surprisingly, EPR spectra mea-
sured for the photoactivated HNQA and HNQE under identical experimental conditions
(DMPO/Iod/TT/acetonitrile/argon) demonstrated the presence of two latter signals only
(•DMPO-phenyl(4-methyl)17 and •DMPO-SR17).

According to the EPR results, various active radical species are produced under light
irradiation of the lawsone derivatives photoinitiating systems, i.e., HNQA (or HNQE)/Iod
and HNQA (or HNQE)/Iod/trithiol, and a proposed mechanism is described in Scheme 2
with HNQA (Equations (a)–(c)).
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Free-radical polymerization of SOA. HNQ, HNQA, and HNQE have been first used
as a one-component photoinitiating system without the addition of any co-initiators
(Figure 4A,B). The free-radical polymerizations of SOA were followed in laminate by
RT-FTIR under LEDs@405 nm and 385 nm irradiation. The final acrylate conversions of
SOA are displayed in Table 5. Interestingly, HNQA and HNQE alone can initiate the FRP
of SOA with interesting acrylate conversions. These results confirm the previous EPR
results and highlight the capability of the resulting carbon-centered radicals (Figure 2E,F)
to initiate FRP of acrylate monomer. This is particularly interesting in terms of the green
chemistry approach as only one component photoinitiating system is used, reducing the
carbon atoms consumption. Not surprisingly, when HNQA (or HNQE) is combined with
Iod, the final acrylate conversions and the rates of polymerization (Rp/[M0]) strongly
increase whatever the LEDs used, as described in Table 5 and Figure 4C,D. This confirms
the formation of phenyl-derived radicals as highlighted by EPR spin-trapping (Figure
3B,C); such radicals can also initiate the FRP of SOA. Unfortunately, HNQ and HNQ/Iod
systems cannot initiate FRP as 1) the anion radical HNQ•− is not an effective initiation of
radical species, and 2) even if phenyl-derived radicals are generated from the photolysis of
HNQ/Iod (Figure 3A), ketyl radicals, also produced by the photolysis of HNQ/Iod, can
act as a terminating agent of the polymerization reaction [46].
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 Figure 3. The normalized experimental (1) and simulated (2) EPR spectra obtained upon in situ LED@400 nm exposure of

2-substituted naphthoquinone derivatives in acetonitrile under argon in the presence of DMPO spin trap: (A) HNQ/Iod, (B)
HNQA/Iod, (C) HNQE/Iod, (D) HNQ/Iod/TT, (E) HNQA/Iod/TT, and (F) HNQE/Iod/TT. Irradiation time: 450 s (A–C)
and 225 s (D–F). Modulation amplitude of 0.025 mT.
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Figure 4. Kinetic profiles for the free-radical photopolymerization of SOA with the following initiating systems: (A) HNQA
(0.5 wt%), (B) HNQE (0.5 wt%), (C) HNQA/Iod (0.5/2% w/w), and (D) HNQE/Iod (0.5/2% w/w) upon (1) LED@405 nm
and (2) LED@385 nm in laminate.

Table 5. Final acrylates conversions (determined by IR) in laminate upon LED@385 nm (44 mW/cm2)
and LED@405 nm (60 mW/cm2) irradiation for 600s in the presence of HNQA (or HNQE) (0.5 wt%)
or HNQA (or HNQE)/Iod (0.5%/2%, w/w).

Acrylate Conversions (%) 100xRp/[M0] (s−1)

Photoinitiating Systems LED@385 nm LED@405 nm 385 nm 405 nm

HNQE/SOA 51 63 0.5 1.3
HNQE/Iod/SOA 81 83 5 5.7

HNQ/SOA - - - -
HNQ/Iod/SOA - - - -

HNQA/SOA 30 34 0.5 0.9
HNQA/Iod/SOA 62 76 3.8 3.3

Cationic photopolymerization of EPOX. The kinetics of EPOX polymerization (epoxy
conversion vs. irradiation time) in the presence of HNQA (or HNQE)/Iod photoinitiating
systems under different LEDs irradiation under air are described in Figure 5. HNQ/Iod has
been used as a reference photoinitiating system for comparison. When Iod is used alone,
no photopolymerization of EPOX occurs under LED irradiation (385 and 405 nm) because
Iod shows a maximum absorption band around 250 nm. Cationic photopolymerizations of
EPOX successfully take place (Figure 5) when using both photoinitiating systems (HNQA
(or HNQE)/Iod) under LEDs@385 and 405 nm exposure. Accordingly, the final conver-
sions of epoxy groups reach 50% after 600 s of irradiation without any inhibition period
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(Figure 5). These results are in accordance with the production of photoacids (according to
the rhodamine B method21, Figure S10), responsible for the cationic photopolymerization
of EPOX. In comparison, the HNQ/Iod photoinitiating system was also tested, and no
cationic photopolymerization was observed: hydroxyl group of HNQ may be responsible
for the termination of the growing polymer chain during photopolymerization, thus in-
hibiting the cationic photopolymerization of EPOX. As a comparison, and under the same
irradiation conditions, two well-known type II photoinitiators (i.e., BP and CQ) fail to initi-
ate the photopolymerization of EPOX when coupled with Iod, therefore demonstrating the
superior initiating properties of HNQA (or HNQE)/Iod systems. Therefore, only HNQA
(or HNQE)/Iod systems will be considered in the following study.
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Figure 5. Kinetic profiles for the cationic photopolymerization of EPOX under LEDs@ (A) 405 nm and (B) 385 nm irradiation
with (1) HNQA/Iod (0.5/2% w/w) and (2) HNQE/Iod (0.5/2% w/w) under air.

Concomitant cationic photopolymerization and thiol–ene reactions of a limonene 1,2
epoxide/trithiol blend with HNQA/Iod (Figure 6) and HNQE/Iod (Figure 7) photoinitiat-
ing systems. The vinyl, thiol, and epoxy groups were followed under air and in laminate
under LEDs@385 and 405 nm. Effective kinetic profiles for the concomitant thiol−ene
process and cationic photopolymerization of the limonene 1,2 epoxide/trithiol blend mix-
ture are observed under LEDs@385 and 405 nm exposure with HNQA/Iod (Figure 6) and
HNQE/Iod systems (Figure 7). Interestingly, the final vinyl bond conversions reach 100%
after 600 s of LED exposure in laminate or under air (Table 6), and still remain higher than
those of thiol, thus demonstrating that the limonene 1,2 epoxide polymerization occurs
through a thiol–ene reaction (Equation (1)) and albeit to a lesser extent in a radical process.
Indeed, according to EPR results, the phenyl(4-methyl) radicals that are produced from the
photolysis of HNQA (or HNQE)/Iod systems (Figure 3B,C) may add to the vinyl group of
limonene 1,2 epoxide or favor a H-abstraction reaction to generate thiyl radicals according
to Equation (c). Under air, the thiyl and phenyl(4-methyl) radicals react with dissolved
oxygen to form peroxide radicals (ROO•, see Equation (2)) responsible for the slowing
down of the limonene 1,2 epoxide polymerization. Therefore, the rates of polymerization
are twice as high in laminate than under air. The following proton transfer reaction be-
tween ROO• and trithiol (Equation (2)) regenerates thiyl radicals that can add to the vinyl
group, explaining that the thiol–ene reaction occurs under air whatever the LED used. Sur-
prisingly, the cationic photopolymerization of limonene 1,2 epoxide occurs only with the
HNQA/Iod photoinitiating system (Figure 6C). This could be easily explained by the fact
that the polymerization of limonene 1,2 epoxide/trithiol blend mixture with HNQE/Iod
system is faster than the one involving HNQA/Iod, increasing thus the viscosity of the
formulation, reducing the diffusion of cationic species in the blended mixture, therefore
inhibiting the cationic ring-opening polymerization of limonene 1,2 epoxide.
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RS• + R’-CH =CH2 (limonene 1,2-epoxide)→ R’-CH•-CH2-SR + RS-H→ R’-CH2-CH2-SR + RS• (1)

R• + O2 → ROO • + RS-H→ ROOH+ RS• (2)
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Figure 6. Kinetic profiles for the thiol–ene and cationic photopolymerization of limonene 1,2 epoxide
(50wt%)/trithiol (50wt%) blend mixture with HNQA/Iod (0.5/2%, w/w) photoinitiating system,
upon LEDs@ (1) 385 nm and (2) 405 nm irradiation under air; and in laminate under LEDs@ (3) 385
nm and (4) 405 nm. (A) Vinyl conversions, (B) thiol conversions, and (C) epoxy conversions.
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Figure 7. Kinetic profiles for the thiol–ene reaction of limonene 1,2 epoxide (50 wt%)/trithiol (50 wt%)
blend mixture with HNQE/Iod (0.5/2%, w/w) photoinitiating system, upon (1) LED@385 nm and
(2) LED@405 nm under air; and in laminate under (3) LED@385 nm and 4) LED@405 nm. (A) Vinyl
conversions and (B) thiol conversions.

Table 6. Vinyl, thiol, and epoxy final conversions (determined by IR) after 600s of irradiation of
limonene1,2 epoxide/trithiol (50 wt %/50 wt%) blend mixture under LED@385nm (44 mW/cm2)
and LED@405nm (60 mW/cm2) irradiation under air and in laminate. Photoinitiating systems =
HNQA/Iod (0.5/2%, w/w) and HNQE/Iod (0.5/2%, w/w).

Vinyl Conversions
(%)

Thiol Conversions
(%)

Epoxy Conversions
(%)

Photosensitive Formulations LED@
385 nm

LED@
405 nm

LED@
385 nm

LED@
405 nm

LED@
385 nm

LED@
405 nm

HNQA/Iod/(limonene 1,2
epoxide/trithiol)

96 a

98 b
98 a

98 b
43 a

64 b
47 a

53 b 30 a 16 a

HNQE/Iod/(limonene1,2
epoxide/trithiol)

98 a

99 b
100 a

100 b
53 a

62 b
59 a

58 b - -

a under air, b in laminate.

4. Conclusions

Two new photopolymerizable lawsone derivatives bearing vinyl (HNQA) or epoxy
(HNQE) groups have demonstrated effective initiating properties for the free-radical pho-
topolymerization of a bio-based acrylate (SOA) when used alone. According to EPR
investigations, the carbon-centered radicals in α-position of the vinyl or epoxy group
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of HNQA or HNQE, respectively, and formed through an intermolecular H-abstraction
reaction, can initiate the FRP of SOA under LED@385 and 405 nm irradiation. Furthermore,
the addition of Iod, an electron acceptor and co-initiator of the lawsone derivatives, leads to
effective free-radical and cationic photopolymerizations of acrylate and epoxy monomers,
respectively, under visible-light irradiation. Notably, the rates of free-radical polymer-
ization with Iod strongly increase whatever the LEDs are used. We also demonstrated
that the HNQA/Iod system could promote both the concomitant thiol–ene reaction and
the cationic photopolymerization of a limonene 1,2 epoxide/trithiol blend mixture upon
LED@385 and 405 nm exposure with final vinyl bond conversions of around 100% even
under air. On the contrary, the thiol–ene reaction toward limonene 1,2 epoxide double
bonds is so effective using the HNQE/Iod system that the diffusion of cationic species is
reduced in the blended mixture, thus inhibiting the cationic ring-opening polymerization
of limonene 1,2 epoxide.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13122015/s1, Figure S1: 1H NMR spectrum of HNQA, Figure S2: 13C NMR spectrum
of HNQA, Figure S3, 1H NMR spectrum of HNQE, Figure S4: 13C NMR spectrum of HNQE,
Figure S5: Molar extinction coefficient of 1) HNQ, 2) HNQE and 3) HNQA in ACN, Figure S6:
Fluorescence quenching of HNQA upon gradual addition of Iod in ACN. Insert: Stern-Volmer
plot I0/I as a function of the concentration of Iod for the calculation of the fluorescence quenching
constants KSV, Figure S7: Fluorescence quenching of HNQE upon gradual addition of Iod in ACN.
Insert: Stern-Volmer plot I0/I as a function of the concentration of Iod for the calculation of the
fluorescence quenching constants KSV, Figure S8: Cyclic voltammogram of HNQA in ACN + 10−3

M tetraethylammonium tetrafluoroborate measured at a scan rate of 100 mV/s. [HNQA] = 10−3 M,
Figure S9: Cyclic voltammogram of HNQE in ACN + 10-3 M tetraethylammonium tetrafluoroborate
measured at a scan rate of 100 mV/s. [HNQE] = 10-3 M, Figure S10: Steady-state photolysis
of HNQA/Iod/rhodamine B in ACN after irradiation by LED@405 nm (60 mW/cm2) under air
conditions. [HNQA] = 5 × 10−4 M, [Iod] = 1.7 × 10−3 M and [RhB] = 3.10−3 M.
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