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A network medicine approach 
to quantify distance between 
hereditary disease modules on the 
interactome
Horacio Caniza, Alfonso E. Romero & Alberto Paccanaro

We introduce a MeSH-based method that accurately quantifies similarity between heritable diseases 
at molecular level. This method effectively brings together the existing information about diseases 
that is scattered across the vast corpus of biomedical literature. We prove that sets of MeSH terms 
provide a highly descriptive representation of heritable disease and that the structure of MeSH 
provides a natural way of combining individual MeSH vocabularies. We show that our measure can 
be used effectively in the prediction of candidate disease genes. We developed a web application to 
query more than 28.5 million relationships between 7,574 hereditary diseases (96% of OMIM) based 
on our similarity measure.

Over recent decades advances in proteomics have resulted in considerable gains in our understanding of 
heritable diseases and our perspective has evolved from simple gene-disease associations to considering 
diseases as perturbations in regions of the interactome – the disease modules1. In this context, related 
diseases are associated with close-by regions2,3. Quantifying disease similarity at molecular level would 
allow the transfer of knowledge between similar diseases4, possibly providing hypotheses for causal genes 
discovery and even suggestions for drug repositioning.

Few methods for quantifying disease similarity at molecular level have recently appeared (see 
Supplementary material § 6). The method proposed by Park et al.5 calculates similarity between diseases 
as an association score between the different disease proteins based on their subcellular co-localisation. 
van Driel et al.4 present a measure based on text-mining analysis of the disease phenotype descriptions 
found in the OMIM compendium of heritable diseases6. These descriptions are mined for a predefined 
set of Medical Subject Headings (MeSH) terms which are used to construct feature vectors for every dis-
ease. Similarity between diseases is then given by the cosine of the angle between their respective feature 
vectors. Zhou et al.7 extract diseases and symptoms from MeSH, and through the mining of PubMed 
metadata they construct feature vectors describing each disease in terms of its symptoms. Similarly to 
van Driel et al., the similarity between two diseases is given by the cosine of the angle between their 
respective feature vectors, followed by a filtering of similarities based on statistical significance. Robinson 
et al.8 explore a different approach by manually constructing the Human Phenotype Ontology (HPO). 
This ontology provides a standardised vocabulary for phenotypic information which is used to annotate 
OMIM diseases. Similarity between diseases is calculated using an information content-based similarity 
measure on the HPO.

Results
The approach we present here attempts to summarize existing information about diseases through large 
scale analysis of hand curated data. Our method is based on the idea that, for a given disease in OMIM, 
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the set of MeSH terms annotating the publications referenced by its OMIM entry accurately describes 
that disease. This allows us to establish a mapping between diseases in OMIM and the MeSH ontology: 
every disease is annotated by the set of MeSH terms associated with its publications. Next, we use the 
structure of MeSH to measure the semantic similarity between the sets of terms annotating the diseases 
(see Methods). Importantly, terms in MeSH are organised into 16 ontologies according to thematic 
domains (e.g. Anatomy). Since a disease can be annotated by terms from several ontologies, this results 
in (up to) 16 similarity scores for each pair of diseases. Our in-depth analysis of MeSH revealed large 
overlaps between the ontologies (see Methods and Supplementary Discussion § 3 and 11) and we 
exploit this interconnectedness between the ontology structures in order to produce a single score which 
effectively encapsulates the diverse information available from the literature. In the following we show 
that our measure accurately reflects associations between underlying genes and proteins, hence charac-
terising the relatedness between diseases at molecular level.

To evaluate our measure and compare it to previous ones, we follow the approach used by van Driel 
et al.4 who proposed to quantify the molecular level similarity between diseases using three relationships 
between their disease proteins, namely physical interactions, domain co-occurrence based on Pfam9 and 
sequence similarity (see Methods and Supplementary material § 8). Thus, the evaluation is reduced 

Figure 1.   Top) Performance Comparison. For each method, the grey bar quantifies its OMIM coverage, 
coloured bars quantify its performance measured by AUCs on the Pfam, PPI and Sequence Similarity 
datasets. The total length of each bar represents the overall performance of each method. Bottom) 
Comparison of score distributions. Distribution of similarity scores for all pairs of diseases (yellow bars) vs. 
distribution of similarity scores for disease pairs sharing one or more disease genes (green bars). 90% of the 
pairs of diseases with shared genes have scores in the 99th percentile or higher.
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to a binary classification problem, where disease similarity scores are used to predict these binary rela-
tionships. The performance of the measure is evaluated by computing the area under the ROC curve 
(AUC). Finally, another important criterion for a disease similarity method to be of practical importance 
is its wide applicability. Therefore, in our evaluation we included coverage, defined as the percentage of 
OMIM diseases for which similarities can be computed (see Supplementary material § 4). Figure 1 Top 
presents a comparison between our method and a representative set of other approaches namely Park5, 
van Driel4 and Robinson8. Both larger AUC values and larger coverage are better, and since these scores 
are all bound between 0 and 1, we sum them into a composite score to compare the methods’ over-
all performance. The figure shows that our method outperforms earlier approaches. We also separately 
evaluated the performance of our measure on multigenic and monogenic diseases and we found it to be 
comparable (see Supplementary material § 19, 23).

To further assess the correlation of our similarity measure with the molecular level similarity, we con-
trast the distribution of similarity scores for all pairs of diseases with that of the subset of pairs sharing 
disease genes. This comparison is shown in Fig. 1 Bottom as normalised histograms. The two distribu-
tions are very different (Student’s t-test P <  10−350). 90% of the pairs of diseases with shared genes have 
high-similarity scores (99th percentile or higher), indicating that high-similarity values are correlated 
with existing knowledge of relatedness at molecular level (see Supplementary material § 7, 12, 14, 21).

For many disease pairs with high similarity scores, we could readily verify that they are indeed similar 
at molecular level by analysing existing medical literature. For example, the score between Budd-Chiari 
(MIM: 600880) syndrome and Myeloproliferative disorder (MIM: 131440) is in the 97th percentile 
and genes associated to these diseases have in vivo verified first-level interactions (JAK2 – PDGFRB). 
Furthermore, it is known that these two diseases are causally related10. The score between Breast Cancer 
(MIM: 114480) and Noninsulin Dependent Diabetes (NDDIM) (MIM: 125853) lies in the 100th per-
centile, and several cancer related proteins are known to interact with NDDIM related proteins (TP53 
– HNF4A, CDH1 – PTPN14, CDH1 – IRS1). Moreover, there exists statistical evidence of increased risk 
of Breast Cancer in Women with type 2 diabetes11. The similarity scores between Type I von Willebrand 
disease (VWD1) (MIM: 193400) and pseudo von Willebrand disease (VWDP) (MIM: 177820), two 
bleeding disorders, lies in the 100th percentile. VWD1 is a consequence of exceptionally low levels of 
plasma von Willebrand Factor (VWF)12, while VWDP is characterised by subtle mutations in the alpha 
subunit of the glycoprotein Ib (GPIbα ) subunit, causing it to bond uncharacteristically to VWF13.

One of the possible applications of our method lies in the transferring of knowledge between diseases 
and particularly in the prediction of candidate disease genes. To assess its effectiveness for this task, we 
built “old” similarity scores using an older version of OMIM (downloaded on April 9th, 2013) and found 
that several pairs of diseases which had high similarity values according to data from 2013, have since 
been shown to be close on the interactome. For example, our 2013 version of OMIM reports no disease 
genes for SHORT syndrome (MIM: 269880), Dermatofibrosarcoma protuberans (MIM: 607907) and 
Right Atrial Isomerism (MIM: 208530). However, our “old” similarity scores indicate SHORT syndrome 
to be very similar at molecular level to Noninsulin-dependent Diabetes Mellitus (MIM: 125853) (99th 
percentile), thus suggesting that disease genes for SHORT syndrome could be located in the neighbour-
hood of Diabetes. This is indeed the case, as the new version of OMIM links SHORT syndrome to gene 
PIK3R1, which has a verified in-vitro interaction with IRS1, a gene associated to noninsulin-dependent 
diabetes. Similarly, our “old” similarity scores indicate Dermatofibrosarcoma to be very similar at molec-
ular level to Juvenile Myelomonocytic Leukemia (MIM: 607785) (100th percentile). The current version 
of OMIM shows an association between Leukemia and the gene PDGFRB, which interacts with PDGFB 
a gene associated to Dermatofibrosarcoma; the “old” score between Right Atrial Isomerism and Tetralogy 
of Fallot (MIM: 187500) is in the 100th percentile and now it has been shown that they share a disease 
gene (GDF1). The list of publications available in the 2013 version of OMIM for each of the above dis-
eases can be found in the Supplementary Discussion § 18.

By exploring simpler measures based on the overlap between sets of MeSH terms, we prove that 
exploiting the structure of the MeSH ontology is essential to accurately quantify similarity between dis-
eases at molecular level (see Supplementary Discussion § 9). Finally, we show that the high accuracy of 
our similarity measure is due to both the quality of the MeSH terms which our approach assigns to OMIM 
diseases, as well as to the way in which our method uses the ontology structure (see Supplementary 
Discussion § 9, 15 and 16).

Our measure allows us to obtain a 3D graphical representation of human diseases3 automatically. 
Figure  2 Top shows the embedding of diseases into 3D space obtained applying t-SNE14, a recently 
developed dimensionality reduction technique. In the figure, each point corresponds to a disease and the 
distance between two diseases relates to our similarity measure. Each disease is coloured according to 
the disease classes of Goh et al.3 who categorise each disease in OMIM into 19 classes according to the 
physiological system it affects. The categories are: Bone, Cancer, Cardiovascular, Connective tissue dis-
order, Dermatological, Developmental, Ear-Nose-Throat, Endocrine, Gastrointestinal, Haematological, 
Immunological, Metabolic, Multiple, Muscular, Neurological, Nutritional, Ophthalmological, Psychiatric, 
Renal, Respiratory and Skeletal. In the figure we show the diseases in the 10 most numerous classes (see 
Supplementary Discussion § 17). This plot reveals that diseases in the same class tend to be grouped 
together. This is interesting, as Goh et al. showed that these classes group diseases that are highly related 
at molecular level (see Supplementary Discussion § 17).
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Notice how some diseases which, from a phenotypical perspective belong to multiple classes, are placed 
appropriately at the boundaries between them (see diseases pointed by arrows in Fig. 2 Top). For exam-
ple the Ring dermoid of Cornea (MIM: 180550), is located at the boundary between the Dermatological, 
Cancer and Ophthalmological classes. This disease is characterised by dermoids (growths with a skin-like 
structure) in the eye; dermoids, in general, exhibit known hallmarks of cancer15. Cerebral dysgenesis, 

Figure 2.  Top) Embedding of hereditary diseases in 3D space using t-SNE. Each point represents an 
OMIM disease. Colours are assigned based on their disorder class according to Goh et al.3. Highlighted 
diseases belong to multiple phenotypic classes and are discussed in the main text. Bottom) Heat map of 
mean class similarities. Each (x, y) tile represents, for the disease classes in Goh et al.3, the mean similarity 
of disease pairs where one disease belongs to class x and the other to class y. The values range from 1.15 
(Gastrointestinal – Ear, nose, throat) to 2.71 (Nutritional-Nutritional). The colours range between the 
minimum mean similarity and 2, with all values above 2 (In the diagonal: 2.01 Bone, 2.05 Immunological, 
2.06 Gastrointestinal, 2.07 Muscular, 2.1 Psychiatric, 2.2 Cancer, 2.5 Respiratory, 2.71 Nutritional) set to 2. 
Inset: the average intra-class similarity is significantly higher than the average inter-class similarity (t-test 
p-value <  10^− 350).
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neuropathy, ichthyosis, and palmoplantar keratoderma syndrome (MIM: 609528) is characterised by 
severe neurological impairment as well as keratoderma and late-onset ichthyosis16. Our embedding 
places this disease at the boundary between the Neurological and Dermatological classes. In other cases, 
diseases that belong to more than one class are placed closer to a class different from the one chosen 
by Goh et al.3, but their position is overall appropriate when considering the diseases’ characteristics. 
For example, lymphoproliferative syndrome, X-linked, 1 (MIM: 308240), exhibits both immunological 
and cancer features. It is characterised by severe immunological dysregulation, and is related to several 
phenotypes (including lymphoma) and often occurs after an infection (Epstein-Barr virus). Our embed-
ding places this disease closer to immunological diseases than to the cancer group. We discuss boundary 
diseases in more detail in Supplementary Discussion § 20.

The clear grouping of diseases is made possible by the difference between average inter- and intra-class 
similarity values – these are visualised as a heat map in Fig. 2 Bottom. We also note that pairs of classes 
with high average inter-class similarity contain diseases which are often related. For example, this can 
be the case for diseases in the immune and respiratory classes as it is known that an abnormal immune 
response can cause chronic respiratory diseases17.

We provide a full interactive browser at http://www.paccanarolab.org/disimweb which enables the 
user to obtain the similarity measure between over 28.5 million pairs of diseases. Connections to OMIM, 
MeSH and UniProtKB databases are also provided. The data and source code used to generate the sim-
ilarity scores as well as the website is available for download from the same website.

We have also developed the Disease Similarity Resource (DSR), a database of disease pairs whose 
similarity is in the top 5%. Each pair of diseases defines an entry with 5 columns: Disease A, Disease B, 
Similarity score, UniProt/KB identifiers of the proteins associated to disease A followed by those associ-
ated to disease B. These 1,552,356 pairs of highly similar diseases are a starting point for the analysis of 
the relationships between diseases as well as for the discovery of new disease genes (see Supplementary 
material § 22). The DSR is available from http://www.paccanarolab.org/disimweb in the “Download” 
section.

Discussion
In this paper we have introduced a method to obtain a high-quality score that characterise disease simi-
larity at molecular level. We have shown that our method can be used to predict diseases whose modules 
are located close on the interactome, allowing the transfer of knowledge between them. We can envision 
an interactive differential diagnosis system that would aid medical practitioners in identifying putative 
alternative diagnoses that are obscured by the complexity and multiplicity of the symptoms.

Our method annotates diseases using the MeSH terms associated to the publications found in OMIM 
and then combines these annotations with the structure of the MeSH ontology. One important question 

Figure 3.  Effects of MeSH’s ontological structure. The performance of our method, which uses the 
MeSH ontology structure, is better than the simpler, overlap based methods. For each method, the grey 
bar quantifies its OMIM coverage, coloured bars quantify its performance measured by AUCs on the Pfam, 
PPI and Sequence Similarity datasets. The total length of each bar represents the overall performance of the 
method.

http://www.paccanarolab.org/disimweb
http://www.paccanarolab.org/disimweb
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is whether the method’s performance is due to the quality of the annotations, or to the way in which it 
exploits the structure of the MeSH ontology, or to both.

In order to quantify the effects of MeSH’s ontological structure, we analysed the performance of sim-
ilarity measures which disregard the ontology structure and are simply based on calculating the overlap 
of the MeSH terms annotating the diseases (See Methods). Therefore, these measures produce scores that 
do not depend on the specificity of the MeSH terms, equally weighing specific terms (e.g. Metatarsus 
- D008684) and broad ones (e.g. Body Regions - D001829). Figure  3 presents a comparison between 
our method and these simple measures on the Pfam, PPI and Sequence Similarity datasets. While the 
coverage is the same as for our method, the performance of these simpler measures is inferior. When 
looking at the ROC curves in detail (see Supplementary figures 3b–3d) we understand that, as expected, 
these measures are conservative, being able to correctly produce high scores for very similar diseases, 
but being unable to provide appropriate lower scores for pairs of less similar diseases. It is important to 
note, however, that while the use of MeSH’s ontological structure improves performance significantly not 
all semantic similarity measures are well suited for the MeSH ontology. A comparison with the seman-
tic similarity measures by Lin18, Jiang19, simUI20 and simGIC20 (see Methods) shows that the measure 
by Resnik, used in our method, performs best (see Fig.  4 and Supplementary Discussion § 10). The 
lower performance of Lin’s and Jiang’s methods is due to the fact that using these measures, if the sets of 
MeSH terms annotating two diseases overlap, their similarity will always be maximal, irrespective of the 
specificity of the terms in the annotations. This is not a problem when calculating semantic similarities 
between genes using the Gene Ontology, as gene GO annotations in general overlap little compared to 
disease Mesh annotations—see Supplementary Figure 5 which compares the overlap of MeSH terms 
for OMIM diseases with the overlap of GO terms for genes in A. thaliana, H. sapiens, M. musculus, S. 
cerevisiae and C. elegans. Therefore, Lin’s and Jiang’s measures produce an incorrectly large proportion of 
high-similarity pairs. Conversely, simUI and simGIC, although they exploit the structure of the ontology 
to expand the set of terms, are ultimately based on the overlap of MeSH terms and therefore behave 
similarly to the aforementioned simpler measures.

In order to quantify the effects of the quality of our disease annotations, we replaced them with the 
OMIM-to-MeSH mapping used by van Driel’s et al. This was possible due to the fact that van Driel also 
uses sets of MeSH terms to annotate the diseases. However, these annotations were obtained text-mining 
the Clinical Synopsis and Text fields of OMIM for terms in the A (Anatomy) and C (Diseases) ontol-
ogies in MeSH. Supplementary figures 29, 30 and 31 show the evaluation results for the Pfam, PPI 
and Sequence Similarity datasets highlighting the fact that the sets of MeSH terms associated with the 
publications for a given disease are informative descriptors for that disease.

Our analysis shows that the MeSH terms associated to the publications referenced in OMIM are good 
descriptors of the diseases themselves, and that the MeSH ontology structure provides valuable infor-
mation for calculating distances between sets of terms. Combining these two, we obtain a high-quality 
score that characterises disease similarity at molecular level.

Figure 4.  Correct use of the ontology structure. The improved performance of Resnik’s measure, used by 
our method, is due to a better use of the ontological structure. For each method, the grey bar quantifies its 
OMIM coverage, coloured bars quantify its performance measured by AUCs on the Pfam, PPI and Sequence 
Similarity datasets. The total length of each bar represents the overall performance of the method.
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Methods
OMIM entries describe individual diseases and are composed of several plain text fields as well as ref-
erences to scientific publications provided in the form of PubMed identifiers. These identifiers provide 
access to the MEDLINE entry for the linked reference from which metadata can be retrieved, including 
the MeSH terms. From the 21st of July 2014 version of OMIM we obtained 7,574 disease phenotypes 
referencing 62,830 publications. These publications were associated with 13,220 MeSH Main Heading 
terms which we used to annotate the OMIM diseases. The “old” OMIM dataset, used to showcase the 
potential of our method to predict disease genes, corresponds to the release of April 9th 2013 of OMIM. 
This version contains 7,525 diseases referencing 61,889 publications annotated with 13,006 MeSH Main 
Heading terms. For details, please refer to Supplementary material § 2 and 11.

Experimental results presented here use the similarity measure proposed by Resnik21. Resnik’s seman-
tic similarity between two terms in an ontology is based on the concept of information content of a term, 
defined as the negative logarithm of the probability of that term (calculated as the ratio between the 
number of diseases annotated by that term and the total number of annotated diseases). The similarity 
of two terms ,c c1 2 is defined as the information content of their common ancestor with highest infor-
mation content, that is:

( , ) = − ( )
( )∈ ( , )

sim c c p cmax log
1c S c c

1 2
1 2

where ( , )S c c1 2  is the set of common ancestors of ,c c1 2 and − ( )p clog  is the information content of term 
c. We defined the similarity of two diseases ,d d1 2 as the maximum similarity for all possible pairs of 
MeSH terms ,c c1 2 annotating the disease pair, that is:

( , ) = ( , )
( )∈ , ∈

sim d d sim c cmax [ ] 2c d c d
1 2 1 2

1 1 2 2

Thus, for every pair of diseases in OMIM, we obtain a different similarity score for each MeSH ontolo-
gy in which both diseases are annotated. Our analysis of the interconnectedness of the MeSH ontol-
ogies allowed us to combine them, thus obtaining a single similarity score for each pair of diseases. 

Figure 5.  Overlap of the MeSH ontologies. Nodes represent MeSH ontologies and links are related to 
the amount of overlap between them. Link colours correspond to the Jaccard coefficient between the set 
of terms in each pair of ontologies. Link thicknesses correspond to the number of shared terms between 
ontologies and only strictly positive links are shown. MeSH Ontologies abbreviations: [A] Anatomy, [B] 
Organisms, [C]Diseases, [D] Chemicals and drugs, [E] Analytical, Diagnostic and Therapeutic Techniques 
and Equipment, [F] Psychiatry and Psychology, [G] Phenomena and Processes, [H] Disciplines and 
Occupations, [I] Anthropology, Education, Sociology and Social Phenomena, [J] Technology, Industry, 
Agriculture, [K] Humanities, [L], Information Science, [M] Named Groups, [N] Health Care, [V] 
Publication Characteristics, [Z] Geographical.
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The basis for the combination lies in the fact that some terms are shared between MeSH ontologies, 
and this overlap creates a series of paths which link them together into a single ontological struc-
ture. Figure 5 shows the pairwise overlap between the different ontologies quantified by their Jaccard 
coefficient. Results presented here are obtained using the ontologies which had an AUC above 60% for 
the PPI dataset while maintaining a high coverage of OMIM diseases, namely Anatomy [A] (6,781 dis-
eases), Diseases [C] (7,321 diseases), Chemicals and Drugs [D] (7,575 diseases), Analytical, Diagnostic 
and Therapeutic Techniques and Equipment [E] (7,000 diseases) and Phenomena and Processes [G] 
(7,018 diseases). We also tried other combinations and we found results to be equivalent as long as we 
included ontologies with high coverage. Performance and coverage of the proposed method in each in-
dividual ontology is shown in the Supplementary Discussion (§ 12, 13 and 14). As for most measures 
of semantic similarity between genes, our disease similarity measure is an unbounded, non-negative 
real number. We chose not to apply any order preserving transformation in order to rescale the scores, 
as it would have no effect on performance and could make it dataset-dependent or lead to misinterpre-
tations (e.g. values constrained between zero and one might be wrongly interpreted as probabilities).

For the evaluation of our disease similarity measure and its comparison with existing measures, we 
follow the approach presented by van Driel et al.4, and assess the accuracy of our scores with respect to 
three binary relationships defining molecular relatedness between the 4,030 diseases with known pro-
teins. The different measures are evaluated by comparing their performance on a classification problem, 
where the disease similarity scores are used to predict molecular level similarity, as represented by the 
three relationships. The relative performance of the different measures can then be compared using the 
Area under the ROC curve (AUC)22. We acknowledge that this evaluation is far from perfect due to 
limitations in the available molecular information of the diseases.

The first relationship proposed by van Driel et al. determines molecular relatedness based on 
protein-protein interactions between disease proteins. Two diseases are related if any of their dis-
ease proteins interact according to the Human Protein Reference Database (HPRD). This relationship 
resulted in 15,515 disease pairs relating 2,512 OMIM diseases. The second relationship is based on the 
co-occurrence of Pfam-A signatures (i.e. families, domains, motifs or repeats), and it relates two dis-
eases if any of their disease-proteins share at least one of these signatures. After excluding disease pairs 
in which Pfam-A signatures associated to proteins in the pair matched a MeSH term as well as disease 
pairs with identical proteins, this relationship results in 33,660 pairs relating 2,647 OMIM diseases. The 
last relationship proposed by van Driel et al. is based on sequence similarity, and it relates two diseases 
whenever any of their disease proteins are similar in sequence. Sequence similarity is determined with 
a Smith-Waterman local alignment of the sequences with a threshold e-value smaller or equal to 10^- 6. 
After excluding disease pairs with identical proteins this criterion results in 37,486 diseases pairs relat-
ing 2,817 OMIM diseases. Further details on the construction of these test datasets can be found in the 
Supplementary Discussion § 8.

The visualisation presented in Fig. 2 Top results from a 3D embedding of the diseases using t-SNE14 
using the default parameters (perplexity set to 30 and number of dimensions for PCA pre-processing set 
to 50). The figure shows the diseases in the 10 most populated classes of Goh et al. (661 diseases in total).

We compared the performance of our measure with that of four simpler similarity measures (Jaccard, 
Dice, Overlap, Num. Common) which are based on calculating the overlap of the MeSH terms annotat-
ing the diseases and do not exploit the MeSH ontological structure. Given two diseases, a and b, their 
similarity sim(a, b), is defined as follows:

1.	 Jaccard: uses the Jaccard coefficient of their respective annotation sets. Formally:

∩
∪

=
( ) ( )

( ) ( ) ( )( , )sim
Annot a Annot b
Annot a Annot b 3a b

2.	 Dice: uses the Sørensen–Dice coefficient of their respective annotation sets. Formally:

∩
=
∗ ( ) ( )

( ) + ( ) ( )( , )sim
2 Annot a Annot b

Annot a Annot b 4a b

3.	 Overlap:

∩
=

( ) ( )

( ( ) , ( ) ) ( )( , )sim
Annot a Annot b

Annot a Annot bmin 5a b

4.	 Num. Common: the size of the intersection of their annotation sets. Formally:

∩= ( ) ( ) ( )( , )sim Annot a Annot b 6a b
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We compared the performance of our method which uses the Resnik measure, with that of four 
alternative similarity measures (Lin, Jiang, simUI, simGIC), which also exploit the ontology structure, 
by considering all the terms in the path to the root (True Path Rule).

1.	 Lin18: uses the normalised Resnik’s measure to account for the divergence between the terms:

=







∗





− ( )





( ( )) + ( ( ))





 ( )

( , )
∈ , ∈

∈ ( , )
sim max

2 max log p c

log p a log p b
7

c
a b

c a c b

S c c

1 2

1 2

2.	 Jiang19: uses a distance measure:

= ∗





− ( )



 − ( ( )) − ( ( ))

( )( , )
∈ , ∈ ∈ ( , )

D max 2 max log p c log p a log p b
8c

a b
c a c b S c c1 2 1 2

This distance measure is then transformed into a similarity score:

= − ( )( , )
( , )

sim 1
D

M 9a b
a b

where M is the maximum possible value of ( , )D a b .
3.	 simUI20:

∩
∪

( ) ( )

( ) ( ) ( )( , )sim
terms a terms b
terms a terms b 10a b

4.	 simGIC20: improves on simUI and it is based on a weighted Jaccard index, where the weight of 
each element is its information content22. Similarity between two diseases a, b is defined as:

=
∑ ( )

∑ ( ) ( )

∩

∪
( , )

∈ ( ) ( )

∈ ( ) ( )
sim

IC t

IC t 11
a b

t terms a terms b

t terms a terms b

Additional details of these alternative similarity measures can be found in the supplementary material 
(see Supplementary Discussion § 5).
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