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Non-stationary statistics and formation jitter
in transient photon condensation
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While equilibrium phase transitions are easily described by order parameters and free-energy
landscapes, for their non-stationary counterparts these quantities are usually ill-defined.
Here, we probe transient non-equilibrium dynamics of an optically pumped, dye-filled
microcavity. We quench the system to a far-from-equilibrium state and find delayed con-
densation close to a critical excitation energy, a transient equivalent of critical slowing down.
Besides number fluctuations near the critical excitation energy, we show that transient phase
transitions exhibit timing jitter in the condensate formation. This jitter is a manifestation of
the randomness associated with spontaneous emission, showing that condensation is a
stochastic, rather than deterministic process. Despite the non-equilibrium character of this
phase transition, we construct an effective free-energy landscape that describes the forma-
tion jitter and allows, in principle, its generalization to a wider class of processes.
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ARTICLE

he connection between the properties of a system at

thermal equilibrium and the geometry of its free-energy

landscape is a powerful concept that dates back to original
ideas developed by Gibbs!. This relation is particularly relevant
near a second-order phase transition, where all the relevant
macroscopic details are described by an emergent order para-
meter. This is, on average, located at the minimum of the free-
energy landscape?3, with its neighbourhood being locally probed
as the system is driven through configuration space by fluctua-
tions (thermal or quantum). While we still lack a universal gen-
eralization of these ideas to non-equilibrium systems, Jaynes has
suggested its possibility?. Some well-established, near-equilibrium
stochastic descriptions of relaxation involving free-energy sur-
faces are known>, but are not necessarily valid far from equili-
brium. A particular example in this direction has been
constructed for the laser®, a fundamentally non-equilibrium sys-
tem whose steady state can be described as the minimum of a
properly defined effective free energy, corresponding to a detailed
balance between driving and dissipation.

While the previous arguments are relevant for systems close to
a steady state, a sudden parameter change, often called a quench,
necessarily brings the system sufficiently far from equilibrium to
question the validity of such approaches. The meaning of a
quench depends on context and, in particular, one can distinguish
between Hamiltonian and non-Hamiltonian cases. The former
consist of time-dependent variations in some sort of interaction
term, involved, for instance, in the Mott insulator-superfluid
transition”>8 or the build-up of anti-ferromagnetic correlations in
Ising models®. Non-Hamiltonian quenches contain a more gen-
eral class of processes. In cold atoms, for instance, the
Kibble-Zurek mechanism!®!! is observed by evaporatively
cooling the system at a finite rate, quenching the system through
a BEC phase transition. We shall refer to a quench as a sudden
change in one of the system parameters that brings it to a far-
from-equilibrium state, without affecting its Hamiltonian.

Photon condensates are ideal platforms to explore both equi-
librium and non-equilibrium physics. A thermalizing medium,
typically a dye solution, is placed inside an incoherently pumped
optical microcavity. The combined rates of thermalization,
pumping and cavity loss enable such a driven-dissipative system
to be tuned between in- and out-of-equilibrium regimes!2-15,
Following the initial observation of Bose-Einstein condensation
of photons!'®, a number of experiments on grand-canonical
fluctuations!”, spontaneous symmetry breaking!®, emergence of
long-range order!®, among other aspects of equilibrium
physics?%?! have been described. Their non-equilibrium coun-
terparts, however, remain greatly unexplored.

Here, we study the transient dynamics of photon condensation
that follows a quench in a dye-filled optical microcavity. Besides
measuring the ensemble-averaged photon number dynamics, we
introduce the non-stationary, two-time, second-order correlation
function g(z)(tl, t,). It provides access to the statistical properties
of the photon condensation transition, and is particularly relevant
in non-stationary systems, when the full knowledge of individual
realizations is inaccessible. While the usual stationary correlation
function, ¢2(1), accurately accounts for fluctuations in steady
state, g2)(t,, t,) is the appropriate quantity to describe the evo-
lution of transient, non-equilibrium systems. The averaged con-
densate intensity as a function of time shows width broadening, a
manifestation of diverging jitter in the condensate formation time
upon approaching the critical excitation energy. This effect is
directly witnessed by distinctive off-diagonal anti-correlations in
§3(t,, t,) and originates from quantum fluctuations associated
with spontaneous emission. By properly defining an effective
(non-equilibrium) free energy, we suggest that jitter may be a
universal feature of transient phase transitions in systems obeying

relatively general conditions on the convexity of their free-energy
landscape.

Results

Microscopic cavity model. Despite the fundamentally multi-
mode character of our optical cavity, the phenomenology
described here is essentially that of a single-mode system. Cavity
excitations (photons and excited molecules) can be lost by two
processes: mirror transmission and molecular spontaneous
emission into free space, at rates x and I'|, respectively. The
essentials of the cavity dynamics are described by the density
operator p, for both photons and molecules, which obeys the
master equation!%2223
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with the Hamiltonian for the bare cavity H, = a'a, E and A the
dye emission and absorption rates, respectively, I'y the incoherent
(external) pumping rate and N, the total number of molecules
inside the cavity. In general, Ty is a time-dependent quantity, such
as in the case of pulsed pumping. Due to the high collision rate
between dye and solvent molecules, all the relevant cavity pro-
cesses, including light-matter interactions, are incoherent.

Mean-field rate equations are obtained by taking expectation
values and neglecting correlation terms in Eq. (1). The number of
cavity photons n = (a'a) and fraction of excited molecules
f=>4(0{0%) /Ny with () denoting the (quantum mechan-
ical) ensemble average, are then determined by
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Here, the critical excitation fraction is defined as

=it (@
+E
and, in the limit of high number of photons, corresponds to the
transition point between a net increase or decrease in the number
of cavity photons with time. At f=/, and in the absence of
pumping and losses (xk =T, =T}y =0), an equilibrium (steady
state) between molecular excitations and photons is established
by a principle of detailed balance!3. The photon number in this
equilibrium state would show a phase transition as the total
number of cavity excitations, Nex=#+ fNyo, which is the
control parameter, is increased. The photon number, or order
parameter, ranges from a disordered phase (n < 1) dominated by
spontaneous emission to an ordered phase (n>> 1) dominated by
stimulated emission. While there is, in principle, a U(1)
symmetry breaking upon crossing the condensation phase
transition, the full dynamics can be described simply through
photon number n12, By exciting a large number of dye molecules
over a short period of time, the cavity can be quenched through
this phase transition to a far-from-equilibrium state. The
subsequent relaxation dynamics correspond to a non-stationary,
transient counterpart of the equilibrium phase transition
described above. In this way, we define a transient phase
transition as the evolution in configuration space after a jump
across a phase transition in parameter space (a quench), where
“phase transition” has its usual time-independent, thermody-
namic meaning. This is distinct from the recently introduced
concept of dynamical phase transitions*$2>, The non-linear
coupling between photons and molecular excitations occurring
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Fig. 1 Schematic representation of the experimental setup. The dye-filled microcavity is composed of one planar (1) and one spherical (2) mirror. The
pulsed pump (green) is transmitted through the cavity at an angle of ~52°. The transverse ground-state mode (yellow) leaks through one of the mirrors and
is directed both into a spectrometer and a pair of single-photon detectors, B1 and B2, in a Hanbury Brown-Twiss arrangement. A second pair of detectors,

O1 and 02, is used to time the beginning of the experiment.

during this transient relaxation process gives rise to non-trivial
fluctuation and correlation properties. Finally, given its lossy
character, the light will transition back to the phase dominated by
spontaneous emission before all excitations are lost.

A few notes are in order regarding the multi-mode nature of
our cavity. Within the single-mode approximation, the rate term
I', accounts for emission both into free space and cavity modes
that do not reach the regime of stimulated emission (do not
condense), which will be discussed in more detail later. Also, and
despite not being relevant for the results discussed here, effects
associated with the multi-mode character as well as spatially
resolved molecular reservoirs have been appreciated in the
context of gain clamping?® and decondensation mechanisms!4.

Experimental setup. The experimental configuration is sketched
in Fig. 1. The optical cavity is composed of one planar and one
spherical mirror of 0.25 metres radius of curvature, which traps
the photons. The cavity is filled with a 2mM solution of
rhodamine-6G in ethylene glycol. All the essential dynamics
occur at the tenth longitudinal mode, corresponding to a cavity
length of approximately 2 ym. A 40 ps laser pulse at 532 nm,
typically ranging from 0.5 to 2nJ in energy, is used to rapidly
excite the molecules, quenching the cavity to a far-from-
equilibrium state. In response, a much longer pulse (21 ns) of
light leaks from the cavity mirrors, the exact temporal shape of
which depends both on the cavity parameters (loss rate, dye
concentration, emission and absorption rates) as well as the
number of molecular excitations that follow the pump pulse,
which is the control parameter used to select the different
dynamical phases. A portion of pump light is directed onto two
saturated avalanche single-photon detectors (APDs), O1 and O2,
where a coincident detection is used as a time stamp for the
beginning of the experiment, with a measured uncertainty of
about 10 ps. The cavity output light is directed onto two unsa-
turated APDs, Bl and B2, with an average of 0.1 detections per
pulse, on each detector. The experiment is conducted at a repe-
tition rate of 11 kHz. Such a low repetition rate ensures a com-
plete decay of all excitations and statistical independence between
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Fig. 2 Spectrum of the cavity output. The figure shows spectra above and
below the condensation threshold at the critical excitation energy Py,. The
spectral peak is located at the fundamental mode (ground state) of the
cavity, or cavity cutoff, at approximately 602 nm. The inset depicts the total
cavity output (dots) and comparison with the single-mode mean-field
model, with (full line) and without (dashed line) the contribution from the
spontaneous emission background. The arrow indicates the threshold point.

different realizations. We describe the experimental results in the
form of following three sets:

(1) zero-time statistics: full time-averaged cavity output;

(2) one-time statistics: time-resolved, but averaged over all
forms of fluctuations and correlations in the cavity output;

(3) two-time statistics: unequal time, cross-correlated signal
from detectors Bl and B2, providing access to fluctuations
in the cavity output.

Zero-time statistics. We begin by demonstrating the existence of
a (condensation) phase transition in the total amount of light
emitted by the cavity as the excitation energy, or pump energy, P
is increased beyond a critical value Py,, as shown in Fig. 2. This
increase in the cavity output corresponds to the onset of stimu-
lated emission, which rapidly de-excites the molecules. As such, a
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Fig. 3 Time-dependent cavity output intensity. The pump pulse sets the beginning of the time axis. We observe a delay in the growth of the photon
condensate close to the critical excitation fraction Py, accompanied by a large pulse broadening. Experimental results are shown in a and b, while
simulations of the mean-field rate equations are shown in ¢ and d. The inset depicts the experimentally inaccessible molecular excitation fraction f, during
the same timespan as the main axes, demonstrating the two-way coupling between photons and molecules. The cavity ground state is located at 602 nm
(cavity cutoff), the same conditions as in Fig. 2. Panels a, and ¢ depict a subset of the data on b and d.

larger number of molecules decay into cavity modes rather than
into free space, thus increasing the detected signal. The spectra
also show a tendency towards thermalization, witnessed by robust
condensation in the cavity ground state and indicating a regime
where photon reabsorption plays a significant role!>14. Conse-
quently, and despite the absence of a full thermal distribution,
parallels may be drawn with Bose-Einstein condensation of
photons!®21:27.28 While BEC is only strictly defined in thermal
equilibrium as the macroscopic occupation of the ground state,
we are assuming here a broader concept of condensation, as
discussed in such diverse fields as physics, ecology, network
theory or social sciences?8-31. This can be thought of as the
process where a particular, or small set of modes, in a multi-mode
system becomes macroscopically occupied while the remaining
ones saturate or become depleted.

By counting the rate of detection events in Bl and B2, we
measure the total cavity output as a function of input pulse energy
(input-output, or light-yield, curves), as shown in the inset of
Fig. 2. The threshold, or critical, excitation energy can then be
defined as the inflection in the light-yield curve. The signal from
the cavity is collected without any filtering and multi-mode fibres
are used to couple light into the detectors. Since non-condensed
modes are also coupled to the APDs, we model their contribution
by defining the detected signal I, as the sum of the single
condensing cavity mode and a background of spontaneous
emission, Iy, o< k1 + ol | f N, . Here, a is an empirical para-
meter set by fitting the light-yield curve to the mean-field rate
equations. Loosely speaking, « determines the fraction of
spontaneous emission into non-modelled cavity modes and is
expected to be a small contribution, which will be verified in
“One-time statistics” section.

One-time statistics. Here, we expand the time-averaged results
of the previous section to the time-dependent cavity output
pulse shape, as shown in Fig. 3. By collecting unlabelled
detections on both Bl and B2, we effectively average over any
form of correlations and fluctuations. Pulses that form below
the threshold excitation energy (P<Py) display a simple
exponential decay on a time scale of about 75 ~4ns, the
molecular excited-state lifetime. Above threshold, stimulated
emission becomes important, leading to a large increase in
photon number, followed by rapid depopulation of the con-
densate before a final decay at the slower time scale of the
molecular excited-state decay.

It is instructive at this point to reflect upon the interplay and
coupled dynamics of the molecular excitation fraction, f, and the
number of cavity photons, n. In equilibrium, the molecular
excitation fraction, f, cannot exceed its critical value, f.. Under
non-equilibrium conditions, however, if at any instant > f. (e.g.
after a quench), the photon population will grow exponentially
until f drops below f.. This exponential increase in the number of
photons, resulting from the onset of stimulated emission, is
accompanied by rapid de-excitation of molecules, as shown in
Fig. 3. Such a two-way coupling between photons and molecules
is at the origin of the phenomenology described in this paper. It is
worth noting that the rates of emission and absorption determine
the relative size between the molecular excitation reservoir, f Nyl
and the photon number n. We choose experimental parameters
that make the number of photons comparable with fN,,,, such
that the effects of this two-way coupling become more prominent.
On the opposite limit of fNy,q > n, which is approached for
lower values of Ay (the cavity cutoff wavelength), the larger
molecular reservoir becomes insensitive to photon number
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Fig. 4 Condensate formation time. The condensate formation time, defined
as the interval between the pump pulse and the peak photon number,
displays a transient analogue of critical slowing down. The formation time
and corresponding error bars are obtained by fitting Gaussian profiles in a
neighbouring region around the peak photon number. The full-red and
black-dashed lines are the mean-field simulations and the critical (power-
law) divergence of condensate formation time for the lossless case,
respectively. The shaded area depicts the increasing pulse width upon
approaching the critical excitation energy.

fluctuations, approaching the limit of a Markovian bath. This
limit is at the origin of the observation of grand-canonical
number statistics in photon BECs!”.

We fit T} and « to the results in Fig. 3 and find x=1019s"1,
corresponding to a cavity lifetime of 100 ps, and I'j = 0.998T,
with I'y = Iy the molecular fluorescence decay rate. Within the
single-mode approximation, this means that only 0.2% of the
total molecular emission goes into the condensing mode while
99.8% goes both into free space and excited modes that do not
reach the regime of stimulated emission. Together with the light-
yield curves in Fig. 2, the contribution of spontaneous emission
coupling into the detectors is found to be a=0.13; small as
expected. The emission and absorption rates are not taken as
fitting parameters but rather calculated from experimental
absorption and emission data for rhodamine-6G32. The total
number of molecules is calculated from the dye concentration
and cavity volume to be Ny, = 1.9 x 108,

As f approaches f. from above, the cavity dynamics become
slow, as dictated by Eq. (2). In particular, since 71 o< f — f_, one
might expect critical slowing down in the condensate formation

time, with a critical exponent of —1, assuming f ~ 033. However,
the presence of direct spontaneous emission into free space
prevents f from remaining close to f for long times and the entire
relaxation process is necessarily transient. Despite the mechanism
of true critical slowing down being frustrated, we still observe a
slowing in the time taken for the condensate to form as we
approach the critical excitation energy from above, as shown in
Fig. 4. By comparing to the critical divergence for the lossless
case, where formation time is proportional to (P — Pth)fl, we
observe a broadening of the threshold region due to the lossy
nature of the cavity. Besides this transient analogue of critical
slowing down, a distinct feature emerges upon approaching the
critical excitation energy, which contributes to the broadening of
the average output pulse. In the next section, we show that this
originates from a particular form of fluctuations that arise in such
transient phase transitions: jitter in the condensate formation
time.

Two-time statistics. Correlations and fluctuations of the cavity
output can now be investigated by retaining the labelling of

detection timestamps in Bl and B2. We then construct the two-
time, non-stationary, second-order correlation function g(2)
(t;, t;). Second-order correlations are typically described by the
single-time g(z)(‘r) function, with 7=t —t,, due to time-
translation symmetry in steady-state conditions. In transient
systems, however, the absence of this symmetry means that the
full two-time, #; and t,, dependence must be retained. We can
then define

g<2)(t t,) = <a7(t1)aT(t2)a(t2)a(tl)> ~ P(t),t,)
P al(1y)a(n)) (al (5)a(ty)) — P(4)P(ty)

()

where P(t;, t,) is the joint probability of photon detection at times
t; and ¢, in detectors Bl and B2, respectively. By marginalizing
over the second detector, P(t;) and P(t,) are obtained as the
single-detector probabilities. The approximation in Eq. (5) is
accurate as long as [af(t,), a(t,)] = 0 or (af(t)a(t)) > 1. The for-
mer is satisfied when |t; — t,| is larger than the coherence time
(much smaller than all relevant time scales involved in the cavity
dynamics), and the latter is true for large photon numbers, as
verified in Fig. 3.

The second-order correlation function is shown in Fig. 5. The
two main features to be retained here are the diagonal positive
correlation (g{?) > 1) and the off-diagonal anti-correlation (g(2) <
1) lobes. These features are mainly a manifestation of the same
kind of fluctuations—jitter, or shot-to-shot timing fluctuations, in
the condensate formation—which become amplified near the
critical excitation energy. In the remainder of this section, we
discuss this effect associated with transient phase transitions.

Let us proceed by separately analysing diagonal and anti-
diagonal correlations, as shown in Fig. 6. For equal times, g(?)
provides immediate information on number, or intensity,
fluctuations, namely g(z)(t, ) =1+ (An()2Wn(t))2. As such,
periods of larger fluctuations coincide with the inflection point of
the average pulse shape, consistent with a condensate forming at
slightly different instants in each realization of the experiment. In
a microscopic picture of the cavity dynamics, spontaneously
emitted photons are required to seed the condensate growth. The
randomness associated with the quantum nature of spontaneous
emission then leads to such shot-to-shot time fluctuations, or
jitter in the condensate formation. As we shall demonstrate in
the next section, these periods of larger fluctuations correspond
to a passage through the convex part of an effective free-energy
landscape.

The above interpretation is further supported by the off-
diagonal anti-correlation lobes, as seen in Figs. 5 and 6. Given the
finite duration of the condensate pulse, if a photon is detected
at an early time, it is less likely that another photon will be
detected at a later time. In other words, the whole light pulse is
either early or late. Off-diagonal regions with g(2) <1 are then an
immediate witness of fluctuations in formation time. Also, it is
further evidence of the two-way coupling between photons and
molecules, as discussed previously.

By retaining correlations up to second-order in Eq. (1) using a
cluster expansion (or higher-order cumulants)34-37, the two-time
correlation function can be obtained via the quantum regression
theorem33, as shown in Fig. 5. Details of this approach can be
found in “Methods” section. An alternative method to capture
correlations to all orders is to construct a quantum trajectories (or
Monte Carlo wavefunctions) approach3-42, Different classes of
events (molecular emission and absorption, cavity loss, etc.) are
defined and drawn at random given their respective rates. These
are dynamically calculated as the number of photons and
molecular excitations are updated at each step. Full details of
this model can be found in “Methods” section. In the limit of a
large number of realizations, this approach is equivalent to
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Fig. 5 Two-time, non-stationary, second-order correlation function for various excitation energies. Experimental data (a) can be compared with

quantum trajectories simulations (b) and a semi-analytic quantum regression approach based on a master equation expansion up to second order (c). In
both cases, good agreement with the experiment requires a spontaneous emission background, as discussed in “Zero-time statistics” section. The dashed
curves in the experimental data correspond to the diagonal and off-diagonal regions of g2 (t,, t,) depicted in greater detail in Fig. 6. The cavity cutoff is set
to Ao =595 nm. Despite the slightly lower cutoff wavelength than used in “One-time statistics” section, the qualitative features of the average cavity output

are the same as before.

evolving the density matrix according to Eq. (1). By retaining
correlations to all orders, the quantum trajectories show the best
match to data. However, the quantum regression approach could
be modified to include higher-order correlations. This may be an
interesting approach since the quantum regression, given its
semi-analytical character, allows a faster sampling of different
parameters.

The experiment does not allow direct access to individual
trajectories, only the effect of their relative fluctuations on g2,
However, the quantum trajectories method allows us to easily
appreciate the effect of formation jitter, depicted in Fig. 7. The
good agreement between experiment and theory in Figs. 5 and 6
is evidence that individual trajectories in the experiment have a
similar form to those depicted in Fig. 7. Here, the formation jitter
becomes clear, with larger shot-to-shot fluctuations occurring
close to the critical excitation energy, which contributes to the
pulse broadening described in “One-time statistics” section. The
trajectories are shown to diverge only in the very early stages of
the experiment, where the number of photons in the condensing
mode is low and spontaneous emission is the dominant cavity
process, the latter thus being at the origin of the stochastic nature
of condensation and its associated formation jitter. The exact
form of g(z)(tl, t,) depends on both the individual pulse shapes
and their uncertainty in formation time. As it turns out, the
earlier forming pulses (relatively far above threshold) are of
shorter duration than later forming pulses (close to the critical
point). This effect competes with the larger fluctuations in

formation time closer to threshold, such that a diverging
behaviour may not be extractable from the g(2) maps alone.
Note that the fluctuations described here are of a different
origin than those arising from the grand-canonical nature of a
photon BEC'7, which predicts g2)(0) = 2. In the latter, a steady
state is achieved by a detailed balance between cavity loss and
continuous pumping, with the fluctuations being related to the
coupling between the photons and the molecular grand-canonical
reservoir in conditions of thermal equilibrium. There is time-
translation symmetry and number fluctuations are damped
within a 2ns time scale!’. In contrast, the g?) structure we
identify here reflects the propagation of the initial fluctuations
associated with the spontaneous emission events that trigger the
growth of the condensate pulse. The system never reaches a
steady state and all the dynamics are fundamentally transient. In
principle, g)(, £), which depends on both the individual pulse
shapes and their formation jitter, can even be larger than 2.

Effective free energy. We now develop a general treatment of the
relaxation process described in “Results” section, thus high-
lighting its universal features and applicability outside the parti-
cular case of photon condensates. Relaxation of an order
parameter y(t) towards its equilibrium value y, can be generically

modelled by the time-dependent Landau equation®43-4>
dy oF
_—= - — t
V) ©
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Fig. 6 Diagonal and off-diagonal correlations. Cuts through the regions depicted by the dashed lines in Fig. 5. a Diagonal correlations, g¢2(t, t), shown on
top, and the average condensate pulse, shown on the bottom. The full and dashed lines depict the experimental data and the quantum trajectories results,
respectively. b Off-diagonal correlations, g2 (to — 7, to + 7), with to the peak time of the average condensate pulse. Top depicts the experimental results,
with the quantum trajectories simulation on the bottom. Here, the theory slightly deviate from the experimental results, which may be attributed to the

error that propagates from determining the peak time to.
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Fig. 7 Quantum trajectories simulation. Fifty individual trajectories are
shown in light colours, while darker colours depict their (ensemble)
average. The number of photons includes those from the single condensing
mode as well as the spontaneous emission background discussed in “Zero-
time statistics”. The parameters match those of Figs. 5 and 6. The inset
depicts a zoomed view of the early stages of condensation.

with F= F(y) the near-equilibrium free energy and # a generic
Langevin stochastic force. This defines a universal class of dis-
sipative relaxation processes®, typically valid near thermal equi-
librium, where F=F(y) can be expanded in Taylor serious
around y,. We shall undertake here a different approach that will
extend the validity of the model above into far-from-equilibrium
conditions.

In the absence of cavity losses and pumping (k=T =T, =0),
the full non-equilibrium dynamics described by Egs. (2) and (3)
can be formally mapped onto the time-dependent Landau
equation by integrating the dissipative term of Eq. (6), which

defines the effective free energy®46:47

" dn' E E(N, —1 N, 2
F(n)=*/d—ndn'=f Nexnf{M7A<lf e")}n—
0 dt Nmol Nmo] Nmol 2

(E4+A)n’
N 3’

+

mol

(7)

where the number of photons becomes the order parameter
(y— n) and total number of excitations, Ney =1 + fNpo, the
control parameter, as defined earlier. By retaining the full
dynamical information contained in the mean-field rate Egs. (2)
and (3), we effectively map the dynamics of photon condensates
onto the geometrical properties of the effective free-energy
landscape defined by Eq. (7). Notably, equilibrium free energies
are only valid in the vicinity of the equilibrium point, yet the
effective free-energy landscape in Eq. (7) goes beyond this
limitation and correctly describes the relaxation of the photon
condensate when prepared in any non-equilibrium configuration
in the closed-system approximation. We thus bring the
relaxation of both near-equilibrium and far-from-equilibrium
systems into a similar mathematical framework, in the spirit first
anticipated by Jaynes*. Figure 8 depicts the effective free energy
for different (initial) excitation fractions, which allows for a
direct analogy with the experiment, where the pump energy
determines the initial excitation fraction, with the cavity being
initialized with n = 0. Moreover, all the parameters used here
match those of “Results” section. Interestingly, despite being
extended into the non-equilibrium regimes, the effective free-
energy landscape defined by Eq. (7) and depicted in Fig. 8 shares
the same geometrical features as those defined for near-
equilibrium conditions*, providing evidence for universal
properties regarding the relaxation of both near- and far-from-
equilibrium systems.
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Fig. 8 Effective free-energy landscapes. Free energy for the microcavity
photon number (order parameter), calculated for different values of the initial
molecular excitation fraction f. Besides being the quantity directly varied in
the experiment, f determines the control parameter as Ney = n + fNiol-

In the photon condensate context, the stochastic force
n accounts for spontaneous emission, such that ((£)n(0)) =
f2E28(t)*%°0. This allows us to include fluctuations and beyond-
mean field effects in an universal model of relaxation. An
alternative, and formally equivalent, approach would be the
construction of a Fokker-Planck equation® for the probability
density function (PDF) P,(t), with a drift term given by the
derivative of the effective free energy, as in Eq. (6), and a diffusion
term describing the fluctuations from spontaneous emission. This
PDF encodes qualitative information about the fluctuation
properties of the order parameter as it transiently evolves from
the far-from-equilibrium state that follows a quench. We
construct such a PDF by considering a large set of random walks
(50,000) evolving according to Eq. (6) over the free-energy
landscape defined in Eq. (7)—Fig. 9.

Quite generally, fluctuations act to broaden the photon number
PDF while a positive (concave) curvature in the free energy tends
to localise it. At a second-order phase transition, the curvature at
the minimum of the free energy (defining an equilibrium order
parameter) vanishes and the PDF shows diverging fluctuations that
persist for long times, giving rise to critical slowing down. In
transient, non-equilibrium systems dramatic features also occur,
with regions of negative (convex) curvature acting to amplify
fluctuations. A PDF evolving through these regions while relaxing
towards the free-energy minimum experiences a short-lived but
large increase of fluctuations, as shown in Fig. 9. The jitter
described in “Results” section is the immediate consequence of this.
The maximum of number fluctuations, marked by the peak in g(2)
(t, £), and shown in Fig. 6, occurs when the average order
parameter reaches the free-energy inflection point. From Eq. (6),
this corresponds to the (temporal) inflection point of the order
parameter, in complete agreement with the results depicted in the
previous section. The width of the photon number PDF then
shrinks back as the order parameter evolves to the concave part of
F. While the free-energy landscape is more convex for larger values
of the control parameter, which increases number fluctuations,
these are longer-lived close to threshold (larger jitter). This effect
witnesses the complex interplay between number and time
fluctuations associated with the stochastic transient relaxation
process determined by Eq. (6). Even in the approximation of a
closed system, the free-energy model correctly predicts the major
features observed in the experiment, namely the slowing down of
the condensate formation accompanied by increasing timing jitter
and its relation with photon number fluctuations.

In the presence of loss by cavity transmission, the free energy
and photon number PDF are coupled in a non-trivial way. For
sufficiently large «, as in the case of the experiment described in
“Results” section, the rate of change of the free-energy landscape
depends on the photon number #n, which is itself described by a
given PDF. The landscape is now neither constant, nor a simple
function of time, but rather coupled to the photon number
history, such that for trajectories where the condensate forms
early, it also decays early, leading to the anti-correlation lobes seen
in g2)(t,, t,). This is essentially the same result as depicted by the
quantum trajectories simulation in Fig. 7 but reinterpreted under
the geometrical properties of the effective free-energy landscape.

The free-energy description assumes the total number of cavity
excitations Ny, the control parameter, to be fixed, such that all
molecular excitations are converted into cavity photons, corre-
sponding to the limit of negligible losses. As a final remark, Eq. (6)
allows for a formal reconstruction of the free-energy landscape,
F(y), from the observed average dynamics of the order parameter,
y(t), although in practice the results are not very informative.

Discussion

In this work, we have described the transient non-equilibrium
dynamics of light in a dye-filled optical cavity quenched through
a condensation phase transition. By rapidly exciting a large
number of dye molecules, the system is brought to a far-from-
equilibrium state. By averaging over all forms of fluctuations, we
observed a delayed formation of the condensed phase, interpreted
as a transient equivalent of critical slowing down. When quen-
ched above the condensation threshold excitation energy, the
quantum fluctuations associated with spontaneous emission seed
the growth of the order parameter as the system relaxes into
equilibrium. The relaxation dynamics is slower close to the cri-
tical point, a feature easily interpreted under the geometrical
properties of the effective free-energy landscape, which becomes
flat. The same mechanism is responsible for the usual critical
slowing down in the relaxation rate of the ordered phase that
follows a second-order phase transition. Also, despite the absence
of latent heat and the fact that we are dealing with second-order
and not first-order phase transitions, analogies can be drawn with
the precipitation in supercooled, or supersaturated, liquids. Even
quenched above the critical point, a seed of spontaneously
emitted photons is needed to nucleate condensation, playing the
role of the seeding crystals in supercooled, or supersaturated,
liquids. Also, once seeded, crystallization across the entire liquid
is faster for liquids quenched further across their critical para-
meters, with temperature playing the same role as the excitation
fraction that follows the quench, in the optical cavity context.

By measuring the statistical properties of this transient con-
densation, we describe a novel form of diverging fluctuations
around the critical point, jitter in the formation of the ordered
phase. These are witnessed by strong diagonal correlations and
off-diagonal anti-correlations in the non-stationary, second-order
correlation function, g(z)(tl, t,). More precisely, we demonstrated
that while the diagonal of g is a powerful probe of the geo-
metrical properties of the free-energy landscape, its off-diagonal
elements reflect the relevant dissipation processes, with the anti-
correlation lobes a joint effect of jitter and cavity loss. Fluctua-
tions, arising from spontaneous emission, are highly amplified as
the order parameter goes through the convex part of the free-
energy landscape towards its equilibrium point.

The description in terms of the geometric properties of the
effective free-energy landscape, being independent of the micro-
scopical details of our particular system, allows us to generalize
our observations. In particular, both the transient critical slowing
down and the jitter in the formation of the order parameter are
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Fig. 9 Free-energy description of non-equilibrium photon condensation. a The photon number probability distribution function (PDF) (coloured lines),
describing fluctuations of the order parameter for two different initial excitation fractions. The circles indicate the expected value of n at a given time
instant. While the latter is essentially Gaussian noise, the free-energy convexity far from the equilibrium point induces non-Gaussian, heavy-tailed statistics
in photon number. This skewed statistics partially explains the limitations of the quantum regression model described in “Results” section. b The PDF of the
condensate formation time, taken as the instant at which the photon number of each realization grows beyond 80% of that which minimizes the free
energy (equilibrium point). We observe both the slowing down of the condensate formation, as well as the increasing jitter closer to threshold.

expected to be universal features of the dynamics that follows a
quench through a second-order phase transition. In micro- and
nano-lasers, in particular, the full two-time, non-stationary ana-
lysis of the relaxation process has been greatly overlooked and
previous results®!>* may now benefit from being re-examined.
Despite some recent efforts in describing time fluctuations and
other non-equilibrium features of micro- and nano-lasers>>=>7,
and to the best of our knowledge, we present here for the first
time a generic and comprehensive description of the relation
between temporal and number fluctuations in the non-stationary
dynamics of systems undergoing second-order phase transitions.
Finally, the system studied in this work, as well as the related
examples stated above can be described by single-value order
parameters. One may wonder on the generalization of these
effects in spatially extended systems, where the order parameter is
a function of both space and time. In the context of the
Kibble-Zurek mechanism!®!l, for instance, most studies are
simply concerned with the defect number scaling after the system
relaxes to some steady state, with the intrinsic relaxation
dynamics often ignored. As such, although we cannot anticipate
specific effects, one wonders about the correspondence between
transient fluctuation dynamics of the zero-dimensional system
described in our paper and that of spatially extended systems.

Methods

Second-order rate equations and the quantum regression theorem. From the
non-equilibrium model introduced in Eq. (1), one can derive rate equations for the
ensemble-averaged photon number, (1) = (a'(£)a(t)), and the number of excited

molecules, (m) = >, (o7 (t)or (1)), as

% = —x(n) + E{(m) + (nm) }A{(n)N o, — (nm)}, (8)
% = —E{(m) + (nm)} + A{{(n)N,,q — (nm)} — T | (m) + T} (N — (m)).

©)
The calculation of (nm) depends on the estimation of (n2m), (nm?), (n3), ...,
which requires solving a large number of ordinary differential equations. These can
be reduced with an hierarchical set of approximations. For instance, in the semi-
classical limit, the expectation values for n and m are factorized, (mn) = (m)(n),
reducing Eq. (9) to

dn
4= Tt Ef(n 1) = An(1-f), (10)
%:7FJ+An(17f)7E(n+1)f+1}(1*f)- (1)

These are equivalent to Egs. (2) and (3). Here, we define f= (m)yNp, as the
molecular excitation fraction and set, for the ease of notation, n = (n). Despite

ignoring correlations all together, this corresponds to a first-level approximation to
the non-equilibrium cavity dynamics.

In order to account for correlations and fluctuations, one needs to go beyond
the semi-classical approximation. In particular, the expectation values can be
expanded in a hierarchical manner34-37 given by

oy = () = () 0), (12)
T = (2) = D 3 (2) — (D)), (13)

Ohye = (wy2) = D 00,(2) = D 00, 00(@) = D 00,05 — (W) (X)) a)-
(14)

These represent the second, third, and fourth order cumulants, with the
summation referring to all possible combination of variables. A minimal
description of correlations is constructed by truncating the hierarchy at second
order. In this way, and by defining 02 = (x2) — (x)?, with x = {n, m}, we explicitly
write

d
= et E((nt Dmtl,) — An(Npy —m) =03, (19)
dm ) )
E = 7Flm - E{(" + 1)111 + Unm} + FT(Nmol - Wl) +A{n(Nmnl - Wl) ~Oums
(16)
do, _ (n+202) + E{(n+ \)m+20>m + o2, (2n + 1)}
dt = K(n (Tn n m nm O-nm n (17>
— A{n(Nppg = m) + 202 (N — m) = 07, (2n = 1)},
do’ 2 2 2
d_tm =—T(m+20,) - E{—(n+ 1)m+20;,(n +1) + 0,,(2m — 1)}
+ A{n(Nyy — m) — 20%n+ 0%, (—2m + 2N, — 1)} (18)
+ I‘I(I\fmol —m- zo-fn)-,
do?

ﬁ =—(k+T, +T})0, +E{(n+1)(-m+0,) — oom+a.,(m—n—2)}

+A{7n(Nmol - m) + O'fnf’l + afx(Nmol - m) + O-im(m —n+1- Nmol)}'
(19)

The second-order photon correlation function at zero-time delay, g@)(#), follow
immediately as

_ @' (al(na(Ha(r)) _ () = (n(t)) _ L+ ax(t) — n(t)_
@' (a(t))’ (n(1))

The two-time second-order correlation function can be obtained by invoking
the quantum regression theorem3®, which allows us to calculate any quantity of the
form (X(t+ 7)Y(¢)) using two single-time evolutions. Let the initial state of the
system be y(0), and the evolution be given by the map, x(t) = V(¢,t')x(¢'). The two-

g2 (20)
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time expectation value can then be written as

(X(t+ 1)Y(1)) = TeXV(t + 7, ) {Yx(£)}] = Te[XV(t + 7, ) {YV(t,0)(0)}].

(21)
The two-time function is thus calculated by evolving x(0) from 0 to t, followed by
the conditional state Yx(t) from ¢ to t + 7. For our cavity model, we begin by first
evolving the density operator, p, from =0 to t = t;, using the second-order rate Egs.
(15) and (19), obtaining g(z)(tl) Second, the first-order rate Egs. (2) and (3) are used
to evolve the conditional state, p = a(t,)pa'(t,)/(a' (t,)a(t,)) from t="t, to t=t,.
Following Eq. (21), one then arrives at the two-time photon correlation function

@ (t)al(L)a(t)a(t))
(@(r)a(n) (@' (t,)a(n,))

Ot t,) = (22)

Quantum trajectories approach. The second-order approach described above
corresponds to a first-level approximation to the description of correlations and
fluctuations in the cavity dynamics. Moving to higher-order expansions increases
the number of ordinary differential equations needed to resolve the dynamics,
which soon becomes cumbersome and impractical. An alternative approach to
solve the master Eq. (1) is to use the quantum trajectories (or Monte Carlo
wavefunction) method3*-42, Here, the Lindblad dynamics of the density operator p
is replaced by a wavefunction whose evolution is given by a non-Hermitian
effective Hamiltonian, interspersed with stochastic quantum jumps. Subsequently,
evolution of p is approximated by an ensemble average of wavefunctions, or tra-
jectories, say |1[/i>. For a large number of trajectories, z, the average of any
observable is then given by

(X(0) = el (0] ~ - S0y o)
i=1
The effective non-Hermitian Hamiltonian for the non-equilibrium cavity model
in Eq. (1) is given by

(23)

Heg = Hy - Z I

where Ji are the jump operators defining the stochastic dynamics. In the non-
equilibrium cavity model, coherences cannot be created by H,. Hence, if a quantum
trajectory starts in a particular number state, say |y;(0)) = |ny, m,), the action of
‘H.g alone does not change the state in this number basis. The complete dynamics of
the trajectory is simply governed by the stochastic jumps J, occuring at rates Ry:

(24)

VKa:|n,m) — |n—1,m);R, = xn, (25)
\/ﬂo+;|n,m> — [n,m+1);R, = T;(N — m), (26)
\/FTG’ s |n,m) — [n,m—1);R, =T|n, (27)
VEale™ : |n,m) — |n+1,m —1);R, = E(n + 1)m (28)
VAac® i |n,m) — |n—1,m+1);R, = An(N — m). (29)

A particular quantum trajectory is constructed by drawing a series of stochastic
events, with their individual probabilities proportional to the rates Ry. The time
between consecutive events is drawn from an exponential distribution, whose mean
is the inverse of total rate of events. From a large ensemble of trajectories, we can
calculate the non-stationary second-order correlation function, g(z)(tl, t,), as

_ (nlt)n(s,))
(n(t)))n(ty))’
where (-) denotes ensemble average, over the entire set of trajectories. The same

approximations as discussed in “Two-time statistics” section are assumed here
as well.

g<2)(t1,t2) (30)

Data availability
The data related to this paper may be requested from the authors or via https://
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