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We aimed to investigate whether metabolomic analysis can discriminate acute respiratory failure due to COPD exacerbation from
respiratory failure due to heart failure and pneumonia. Since COPD exacerbation is often overdiagnosed, we focused on those COPD
exacerbations that were severe enough to require noninvasivemechanical ventilation.We enrolled stable COPD subjects and patients
with acute respiratory failure requiring noninvasivemechanical ventilation due to COPD, heart failure, and pneumonia.We excluded
subjects with history of both COPD and heart failure and patients with obstructive sleep apnea and obstructive lung disease other
than COPD.We performedmetabolomics analysis using NMR.We constructed partial least squares discriminant analysis (PLS-DA)
models to distinguish metabolic pro9les. Serum (p � 0.001, R2� 0.397, Q2� 0.058) and urine metabolic pro9les (p< 0.001,
R2� 0.419, Q2� 0.142) were signi9cantly di>erent between the four diagnosis groups by PLS-DA. After excluding stable COPD
patients, the metabolomes of the various respiratory failure groups did not cluster separately in serum (p � 0.2, R2� 0.631,
Q2� 0.246) or urine (p � 0.065, R2� 0.602, Q2�−0.134). However, several metabolites in the serum were reduced in patients with
COPD exacerbation and pneumonia. We did not 9nd a metabolic pro9le unique to COPD exacerbation, but we were able to clearly
and reliably distinguish stable COPD patients from patients with respiratory failure in both serum and urine.

1. Introduction

COPD is the third leading cause of mortality in the USA
and a>ects about 6% of the total population with a prev-
alence of more than 11.6% in people aged≥ 65 years [1].
COPD is associated with high morbidity, high resource
utilization and cost due to clinic visits, chronic therapy, and
frequent hospitalizations [1, 2]. Severe acute exacerbations
of COPD (AECOPD) require admission to the hospital and
are responsible for up to 70% of the direct health-care costs
associated with COPD [3, 4]. Five-year mortality of pa-
tients admitted to the hospital with AECOPD is between
50% and 70% which is comparable with the mortality of the
four most common malignancies, lung cancer excepted [5].
Hospitalizations for AECOPD are associated with re-
duction in functional status and health-related quality of
life [6, 7].

Early recognition and treatment of AECOPD is asso-
ciated with shorter recovery time, reduces the hospitaliza-
tion risk, and is associated with better health-related quality
of life [8, 9]. Currently, there are no available biomarkers,
and AECOPD still remains a clinical diagnosis, which may
result in overdiagnosis and overtreatment [10].

Many human diseases including COPD are associated
with an abnormal metabolic state. Serum and urine meta-
bolomic pro9ling can discriminate patients with COPD and
healthy subjects [11, 12]. A recent report showed that serum
tryptophan levels decrease in patients with AECOPD [13].
Although patients with AECOPD were shown to have a
unique metabolomic signature [13], it is unknown whether
metabolomic analysis can discriminate AECOPD from other
coexisting diseases and conditions like heart failure and
pneumonia that often occur together with AECOPD and
have similar symptomatology.
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We aimed to compare the metabolic pro9le of patients
with stable COPD, AECOPD, heart failure, and pneumonia
and provide proof-of-concept evidence that serum and/or
urine metabolomes contain biomarkers of AECOPD. Since
AECOPD is based solely on clinical 9nding and it is often
overdiagnosed, we focused on those AECOPD that were
severe enough to require noninvasive positive pressure
mechanical ventilation (NIPPV). Moreover, those patients
have already demonstrated signs of respiratory muscle fa-
tigue and likely altered metabolic state.

Hypothesis: Acute respiratory failure due to AECOPD
that require NIPPV is characterized by a unique
metabolic pro9le in serum and urine.

To investigate our hypothesis, we performed metab-
olomics analysis in the serum and urine in subjects with
stable COPD from the clinic and hospitalized patients with
respiratory failure that required NIPPV due to AECOPD,
congestive heart failure (CHF), or pneumonia (PNA). We
excluded patients that were admitted with more than one of
the above diagnosis (AECOPD, CHF, and PNA), AECOPD
patients with a heart failure history, CHF subjects with
a COPD history, and subjects with history of both COPD
and heart failure. We examined whether the metabolic pro9le
in serum and urine can discriminate the various groups. In
addition, we investigated whether the metabolome in the
serum and urine can discriminate various outcomes in-
cluding duration of NIPPV, length of stay, and mortality.
Metabolomics analysis was performed with nuclear mag-
netic resonance (NMR) spectroscopy and partial least
squares discriminant analysis (PLS-DA).

2. Methods

,e study protocol was reviewed and approved (study
number: 1310M44725) by the University of Minnesota In-
stitutional Review Board, in accordance with the Code of
Federal Regulations, 45 CFR 46.101(b).

2.1. Subject Selection. Based on the study by Wang et al. [11],
the sensitivity and speci9city of serum metabolomic analysis
to discriminate COPD from healthy controls were 90% and
86.95%, respectively. Accordingly, we estimated a sample size
of 10–15 would be suJcient to detect a di>erence in
metabolomic analysis with a power of 80% between subjects
with COPD respiratory failure and subjects with other types
of respiratory failure. However, we need to emphasize that
there is no accepted approach to estimate the sample size in
metabolomic analysis, in part due to the unknownmagnitude
of the expected e>ect. In our study, we aimed to discriminate
the metabolomic pro9les in subjects with COPD respiratory
failure from those of subjects with other types of respiratory
failure while Wang et al. investigated the metabolomic pro9le
of COPD and healthy subjects [11]. It was unclear a priori if
similar metabolic e>ects would be observed.

We enrolled stable COPD subjects visiting the Uni-
versity of Minnesota Medical Center pulmonary clinic for
a regular appointment, and patients with acute respiratory

failure admitted to University of Minnesota Medical Center,
Fairview Ridges Hospital, and Fairview Southdale Hospital
requiring NIPPV with one of the following diagnoses:
AECOPD, heart failure, or pneumonia. ,e characteristics
of the hospitals have been described previously [14]. BrieKy,
the capacity of University of Minnesota Medical Center
ICUs and step-down unit are 52 beds and 28 beds, re-
spectively. Fairview Ridges Hospital ICU has a capacity of 12
beds, and Fairview Southdale Hospital ICU has a capacity of
22 beds.

Using electronic medical record, one of the investigators
screened for eligible subjects in a convenient fashion
Monday to Friday between 7 and 10 am.

2.2. Inclusion Criteria. We included subjects with the
following conditions:

(i) Stable COPD: COPD patients, de9ned as subjects
with COPD diagnosis per their pulmonologists,
smoking history, and FEV1/FVC< lower limit of
normal, with FEV1% predicted< 60% on stable re-
spiratory condition per their pulmonologists that
visited the pulmonary clinic.

(ii) Respiratory failure requiring NIPPV: Patients with
acute respiratory failure in the ICU or the “step down
unit” that initiated NIPPV in the last 24 hours and
had not discontinued NIPPV longer than 4 hours
from the time of blood and urine sampling. Patients
were categorized in the following subgroups:

(1) AECOPD: COPD exacerbation was de9ned as
change in baseline dyspnea, cough, or sputum
quantity or purulence, older than 40 years and
a smoking history of 20 pack-years or more with
known COPD, or COPD con9rmed with PFTs.

(2) CHF: Acute decompensate (systolic or diastolic)
heart failure was de9ned as change in baseline
dyspnea with evidence of Kuid overload, elevated
natriuretic peptides, or known history of chronic
systolic or diastolic heart failure.

(3) PNA: Pneumonia was de9ned as new in9ltrate
on admission chest X-ray (CXR) and symptoms
or signs consistent with pneumonia: malaise,
sputum production, fever (T> 38.0°C), and
crackles in auscultation of the lung.

2.3. Exclusion Criteria. We excluded subjects with history
of both COPD and heart failure. Patients admitted with
acute respiratory failure due to more than one reason (e.g.,
COPD and CHF, COPD and PNA, and CHF and PNA)
were excluded. Patients previously diagnosed with bronchial
asthma, bronchiectasis, bronchiolitis related to systemic
pathology, cystic 9brosis, obstructive sleep apnea, or upper
airway obstruction were excluded.

After identi9cations of the eligible subjects, the in-
vestigators contacted the providers to ask permission to
enroll the patients in the study. After informed written
consent was obtained from the patients or legal surrogates,
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blood and urine were collected from the patients. Blood
samples were centrifuged at 3000g for 15min to extract
serum. Serum was extracted, placed in a clean tube, and
stored at −80°C for storage until NMR analysis. Urine
samples were tested for osmolality and frozen and stored at
−80°C. We retrieved age, sex, BMI, and last spirometric data
from the patient’s chart. We recorded patients’ outcomes:
duration of NIPPV, intubation, ICU length of stay, ICU
mortality, hospital length of stay, hospital mortality, and
discharge destination (home, long-term care facility, etc.).
We collected all data prior to metabolomics analysis.

2.4. Metabolomics Analysis. Urine and serum samples were
prepared for spectral analysis via nuclear magnetic reso-
nance (NMR) at the Minnesota NMR Center. A portion of
the metabolites present in each sample was identi9ed and
quanti9ed as follows.

,awed serum was 9ltered with a 3 kDa ultracentrifuge
9lter (Millipore, Billerica, MA) to remove proteins that
interfere with metabolite quanti9cation. Equal parts (250 μL
each) of the 9ltrate were mixed with phosphate bu>er, and
internal standard (1mM trimethylsilylpropionic acid in
D2O) was added. ,e pH of the 9nal solution was recorded,
and the mixture was transferred to separate 5mm NMR
tubes (Wilmad-LabGlass, USA) [15].

,awed urine (1mL) was mixed with 0.5mL of 0.2M
sodium phosphate bu>er to control pH. ,e mixture was
placed on ice for 10 minutes and then centrifuged at 7000 g
for 10 minutes. 500μL of the supernatant was extracted and
combined with 50μL of the internal standard 3-(trimethylsilyl)
propionic acid (TSP, Sigma-Aldrich, USA) to a concentration
of 1mM. ,e pH of the 9nal solution was recorded, and the
mixture was transferred to separate 5mm NMR tubes
(Wilmad-LabGlass, USA).

Proton NMR spectra were obtained from both urine and
serum samples with a Bruker Avance spectrometer with
autosampler and 5mm triple resonance 1H/13C/15N TXI
CryoProbe with Z-gradient, running TopSpin v. 2.16 (Bruker
BioSpin, Fremont, CA, USA) at 700.13MHz. For the urine,
a 1D NOESY (Nuclear Overhauser E>ect Spectroscopy)
pulse sequence was used to remove the water resonance.
For the serum, a CPMG (Carr–Purcell–Meiboom–Gill)
presaturation pulse sequence was used to control spectral
line-broadening due to the presence of residual proteins.

2.5. Statistical Analysis. We compared subject characteris-
tics using t-test, Mann–Whitney, ANOVA, or Kruskal-
Wallis with post-hoc Bonferroni and Dunn’s test when
appropriate for continuous variables and Fischer’s exact test
for categorical variables.

For the metabolomics analysis, urine metabolite con-
centrations were divided by the osmolality (millimoles of
solute per liter of urine) of the appropriate sample to correct
for dilution [16]. All urine and serum metabolite concen-
trations were log-transformed and auto-scaled. Partial least
squares discriminant analysis (PLS-DA) models were con-
structed to discriminate samples by cause of respiratory
failure, duration of NIPPV, ICU length of stay, ICUmortality,

hospital length of stay, and discharge destination.We used the
R software package (http://www.r-project.org/) for all sta-
tistical analysis. PLS-DA model quality was evaluated with
standard parameters (R2,Q2, and permutation p value), which
are reported for each PLS-DA model. Generally, R2 indicates
goodness-of-9t,Q2 indicates the model’s predictive value, and
permutation p value indicates whether the model is statis-
tically signi9cant or not (i.e., whether or not the observed
separation was arrived at by chance).

3. Results

In the analysis, we included less than 10% of subjects
screened since many patients met the exclusion criteria
(they had respiratory failure frommore than one underlying
condition). ,ere was no di>erence in any demographic
variables between the various groups including age and
female sex, BMI, FEV1% predicted, duration of NIPPV,
intubation rates, length of ICU stay, ICUmortality, length of
hospital stay, hospital mortality, or hospital discharge at
home rates (Table 1).

PLS-DA showed that serum metabolic pro9les were
signi9cantly di>erent among the various diagnosis groups
(p � 0.001, R2� 0.397, Q2� 0.058) (Figure 1). Similarly, we
observed signi9cant di>erence in the urine metabolic pro-
9les of the various diagnostic groups (p< 0.001 R2� 0. 419,
Q2� 0.142) (Figure 2). Concentrations of the top 10VIP
(variable of importance in projection) metabolites are
compared in both serum (Table 2) and urine (Table 3).

We also performed a metabolomic analysis limited to
subjects with stable COPD and patients with AECOPD.
Stable COPD subjects’ pro9les were not signi9cantly dif-
ferent from patients with AECOPD in serum (p � 0.997,
R2� 0.948, Q2� 0.654) or urine (p � 0.929, R2� 0.948, Q2�

0.404; Figures 3 and 4, resp.). At 9rst glance, the score plots
appear to distinguish AECOPD patients from stable COPD
patients quite well and with good predictability (R2> 0.9,
Q2> 0.4). However, the permutation p values for the models
are highly insigni9cant (p> 0.9).,is indicates that themodel
is over9t, which is likely due to small sample size. Further
investigation with larger patient groups is warranted.

We then investigated whether the di>erences shown in
the PLS-DA models in Figures 1 and 2 were related to the
presence of respiratory failure only and not any speci9c
diagnosis (e.g., AECOPD, CHF, or PNA). ,us we analyzed
the metabolic pro9les from all patients in respiratory failure,
excluding the stable COPD group. ,ese PLS-DA models
showed similar metabolic pro9les among the groups in both
serum (p � 0.2, R2� 0.631, Q2� 0.246) and urine (p � 0.065,
R2� 0.602, Q2�−0.134) (Supplemental Figures 1 and 2 in
Supplementary Material available online at http://doi.
org/10.1155/2017/9480346). Model parameters show at best
a moderate 9t with moderate (serum) to poor (urine)
predictability. Neither model is statistically signi9cant,
though the urine model is close. ,ese models may improve
with larger patient groups.

We also analyzed serum and urine metabolic pro9les for
di>erences in smoking status, ICU length of stay, hospital
length of stay, and duration of NIPPV (>4 days) and for
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di>erences in mortality and discharge destination. None
of these models were statistically signi9cant and thus could
not di>erentiate serum or urine samples based upon these
clinical indicators.

4. Discussion

In serum and urine metabolic pro9ling, COPD subjects with
no exacerbation clustered separately from patients with
respiratory failure requiring NIPPV due to AECOPD, CHF,
or PNA (Figures 1 and 2). After exclusion of patients with

stable COPD, the respiratory failure groups did not reliably
cluster separately (Supplemental Figures 1 and 2). Our in-
terpretation is that the observed di>erences in metabolic
pro9les in Figures 1 and 2 are due to whether the patient was
in respiratory failure (CHF, AECOPD, and PNA) or not
(stable COPD).

While our PLS-DA models comparing serum and urine
samples from AECOPD patients with stable COPD patients
(Figures 3 and 4) only showed good 9t and predictability, the
permutation p values of these models were not signi9cant.
Our 9ndings are not consistent with those of a previous
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Figure 1: PLS-DA score plots (a) and loading plots (b) of serum samples drawn from patients with stable COPD (blue), AECOPD (red),
CHF (black), or PNA (green). Each circle represents a serum sample. Some separation between the groups can be seen. ,e loading plot
shows how the pro9led metabolites contribute to the separation seen in the scores. ,e model is statistically signi9cant (p � 0.001), but the
9t is moderate at best (R2� 0.397) with poor predictive value (Q2� 0.058). Taken with the rest of the results, our interpretation is that the
separation is likely due to the presence of respiratory failure.

Table 1: Subjects characteristics.

Stable COPD (n� 15) AECOPD (n� 12) CHF (n� 8) PNA (n� 9)
Age, y± SD 68± 10.1 73.1± 10.6 78.5± 9.1 65.7± 17.3
Female, % (n) 60% (9) 66.6% (8) 62.5% (5) 33.3% (3)
BMI, kg/m2± SD 29.25± 5.7 28.8± 5.3 29.1± 8.6 29.8± 9.5
FEV1% predicted 44.7± 13.3 47.4± 10.6∗ NA NA
Duration of NIPPV, d± SD NA 4.9± 3.4 1.8± 0.8 7.2± 4.7
Intubation, % (n) NA 8.3% (1) 25% (2) 11.1% (1)
ICU LOS, d± SD NA 5± 3.9 6± 8.6 6.2± 5
ICU mortality, % (n) NA 8.3% (1) 25% (2) 33.3% (3)
Hospital LOS, d± SD NA 6.1± 4.1 8± 8.8 9.8± 4.3
Hospital mortality, % (n) NA 8.3% (1) 25% (2) 33.3% (3)
Discharge home, % (n) NA 66.6% (8) 50% (4) 33.3% (3)
∗Available FEV1% predicted only for 6 subjects. AECOPD� acute exacerbation of COPD, BMI� body mass index, CHF� heart failure, LOS� length of stay,
NIPPV�noninvasive positive pressure ventilation, PNA� pneumonia.
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study that showed a distinct metabolic pro9le between
patients with AECOPD and patients with stable COPD [13],
likely due to our small sample size.

Despite the lack of a de9nitive global metabolic signa-
ture of AECOPD, we did 9nd some potential markers that
are worth further investigation. Serum glycine was decreased
in AECOPD patients compared to the levels observed in
subjects with stable COPD (Table 2). Glycine is a precursor
to proteins and compromises 35% of collagen [17]. Serum
glycine levels are inversely related with the degree of ra-
diographic emphysema and cachexia in COPD patients [12].
Patients with AECOPD likely su>ered from more advanced

emphysema compared to the stable COPD subjects, but
glycine levels were low in all type of respiratory failures
(did not reach statistical signi9cance for CHF) indicating
another mechanism for the low glycine levels. Although
the BMI was similar for all study groups, it is possible that
the subjects with respiratory failure were more cachectic
(reduced muscle mass) [12]. Glycine is also negatively
correlated with inKammatory markers like C-reactive pro-
tein in chronic kidney disease [18] but in COPD patients, it
is positively correlated [12]. Glycine is a molecule with anti-
inKammatory properties, and exogenous administration
reduces cytokine production [19].
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Figure 2: PLS-DA score plots (a) and loading plots (b) of urine samples drawn from patients with stable COPD (blue), AECOPD (red), CHF
(black), or PNA (green). Each circle represents a urine sample. Some separation between the groups can be seen.,e loading plot shows how
the pro9led metabolites contribute to the separation seen in the scores. ,e model is statistically signi9cant (p< 0.001), but the 9t is
moderate at best (R2� 0.419) with moderate predictive value (Q2� 0.142). Taken with the rest of the results, our interpretation is that the
separation is likely due to the presence of respiratory failure.

Table 2: Concentration (millimolar) of the top 10VIP metabolites in serum of subjects with stable COPD, AECOPD, CHF, and PNA.

Stable COPD (n� 15) AECOPD (n� 12) CHF (n� 8) PNA (n� 9)
Glycine 3.9×10−1± 2.8×10−1∗‡ 1.6×10−2± 2.3×10−2 3.3×10−2± 2.8×10−2 5×10−3± 1.8×10−3

Glutamine 7.2×10−2± 1.9×10−2‡ 5.4×10−2± 1.7×10−2 6.1×10−2± 2.9×10−2 3.2×10−2± 1.6×10−2

Alanine 4.4×10−2± 1.8×10−2‡ 2.8×10−2± 1.3×10−2 3.6×10−2± 2.3×10−2 1.6×10−2± 7.3×10−3

Proline 3.3×10−2± 1.3×10−2∗‡ 1.7×10−2± 6.2×10−3 3.2×10−2± 1.4×10−2‡ 1.3×10−2± 6.3×10−3

Glutamate 2.1×10−2± 7.6×10−3∗‡ 8.6×10−3± 5.4×10−3 1.3×10−2± 8.7×10−3 6.8×10−3± 4.1×10−3

Mannitol 1.5×10−2± 10−2†‡ 4.9×10−3± 2.9×10−3 3.1×10−3± 1.7×10−3 2.8×10−3± 1.4×10−3

Citrate 1.2×10−2± 7×10−3∗‡ 4.2×10−3± 1.7×10−3 7.4×10−3± 2.9×10−3 4.4×10−3± 2.1×10−3

Histidine 9.2×10−3± 2.8×10−3∗‡ 4.7×10−3± 2.5×10−3 5.9×10−3± 4.3×10−3 4.1×10−3± 3.4×10−3

Formate 6.2×10−3± 3.5×10−3∗†‡ 1.6×10−3± 6.5×10−4 2×10−3± 6.8×10−4 2.8×10−3± 1.6×10−3

Creatine phosphate 3.6×10−3± 1.9×10−3∗‡ 1.5×10−3± 2.9×10−4† 3.2×10−3± 1.310−3‡ 1.6×10−3± 5.2×10−4
∗p< 0.05 versus AECOPD, †p< 0.05 versus CHF, ‡p< 0.05 versus PNA. AECOPD� acute exacerbation of COPD, CHF� congestive heart failure,
PNA� pneumonia.
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Formate was also reduced in plasma of patients with
respiratory failure. ,is is likely due to the fact that anab-
olism is impaired during acute illness. Formate is an in-
termediate product in normal metabolism [20].

Histidine, like glycine, is negatively correlated with
radiographic emphysema [12]. Histidine is another amino
acid with anti-inKammatory properties [21]. It is negatively
associated with inKammation and oxidative stress [22],
which is consistent with reduced levels in patients with
AECOPD and PNA in our study. We observed the same
pattern (reduced levels in AECOPD and PNA but not in
the CHF group) in other metabolites: citrate, glutamate,

proline, and creatine phosphate. Citrate and glutamate
were reduced in AECOPD and PNA likely to generate
energy [23, 24]. Serum proline was also reduced as a result
of low glutamate levels [25]. Similarly, creatine phosphate,
which serves as a rapid reserve energy storage, was de-
creased in AECOPD and PNA.

Respiratory failure secondary to AECOPD and PNA is
a condition with higher inKammatory and metabolic state
than respiratory failure due to CHF [26, 27], which is
reKected on the speci9c metabolite analysis. ,e low levels
of certain metabolites in AECOPD and PNA groups in-
dicate that. However, we could not identify a single serum
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Figure 3: PLS-DA score plots (a) and loading plots (b) of serum samples drawn from patients with stable COPD (red) or AECOPD (black).
Each circle represents a serum sample. ,e two groups are well separated in the score plots. ,e loading plot shows how the pro9led
metabolites contribute to the separation seen in the scores. ,e model is not statistically signi9cant (p � 0.997), but the 9t is quite good
(R2� 0.948), as is the predictive value (Q2� 0.654). ,is indicates that the model is over9t and su>ers from a low sample size.

Table 3: Concentration (millimoles of metabolite per millimoles of total solute) of the top 10VIP metabolites in urine of subjects with stable
COPD, AECOPD, CHF, and PNA.

Stable COPD (n� 15) AECOPD (n� 12) CHF (n� 8) PNA (n� 9)
Creatinine 1.4×10−2± 8.6×10−3 1×10−2± 4×10−3 7.3×10−3± 5.6×10−3 9.1×10−3± 3.5×10−3

Citrate 2.9×10−3± 1.9×10−3∗†‡ 1.7×10−3± 3×10−3 4.8×10−4± 8.8×10−4 6.1×10−4± 5.2×10−4

Mannitol 2.6×10−3± 2.3×10−3† 1.2×10−3± 1.1×10−3 4.2×10−4± 3.1×10−4 8.5×10−4± 7.6×10−4

Cis-aconitate 5.6×10−4± 2.5×10−4† 4×10−4± 2.6×10−4 2.6×10−4± 3.3×10−4 2.8×10−4± 1.1×10−4

Furoylglycine 3.7×10−4± 5.3×10−4∗ 7×10−5± 8.7×10−5 6.6×10−5± 8.4×10−5 4.7×10−5± 3.5×10−5

3-Hydroxymandelate 3×10−4± 2.710−4∗ 8.5×10−5± 7.2×10−5 1.3×10−4± 1.7×10−4 1.1×10−4± 1.1×10−4

Oxoglutarate 3×10−4± 1.910−4† 2×10−4± 1.2×10−4 1.4×10−4± 1.5×10−4 1.3×10−4± 5.6×10−5

Methyl-2-oxovalerate 1.1×10−4± 8.2×10−5† 5.9×10−5± 3.2×10−5 4.1×10−5± 4.210−5 6.5×10−5± 5.5×10−5

Nicotinamide N-oxide 2.5×10−5± 4×10−5∗‡ 2.9×10−6± 6.2×10−6 7×10−6± 1.1×10−5 6.2×10−6± 1.3×10−5

Niacinamide 1.7×10−5± 1.1×10−5‡† 2.2×10−6± 3.5×10−6 5.2×10−6± 6.9×10−6 1.8×10−6± 3.1×10−6

We selected the top-10 metabolites with the highest VIP score. ∗p< 0.05 versus AECOPD, †p< 0.05 versus CHF, ‡p< 0.05 versus PNA. AECOPD� acute
exacerbation of COPD, CHF� congestive heart failure, PNA� pneumonia.
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metabolite that could di>erentiate AECOPD from other
causes of respiratory failure.

With the exception of citrate, the changes of the afore-
mentioned metabolites did not occur in the urine. Urine
citrate decreased in respiratory failure which reKects the
high-demand metabolic state.

Furoylglycine levels were lower in the urine of patients
with respiratory failure but they did not reach statistical
signi9cancy in the CHF and PNA groups. ,is 9nding is
likely of no clinical importance as furoylglycine is an
intermediated product of fatty acids and increases in certain
inborn mitochondrial diseases [28] and after co>ee con-
sumption [29]. We observed the same pattern in the 3-
hydroxymandelate levels. 3-Hydroxymandelate is a naturally
occurring catecholamine metabolite which should be higher
in the urine of patients with respiratory failure [30]. It is
unclear why the 3-hydroxymandelate levels decreased in the
urine of patients with respiratory failure.

Niacinamide and nicotinamide N-oxide were concen-
trated in very small amounts in urine and decreased in
AECOPD and PNA. ,is likely reKects the reduced food
intake that precedes AECOPD and PNA due to reduced
appetite, and it is not present in CHF. As with serum,
metabolomic analysis in urine did not reveal any speci9c
AECOPD biomarker.

Even after strati9cation by duration of NIPPV, ICU and
hospital LOS, and ICUmortality, metabolic pro9ling in both
serum and urine showed no di>erence between patients
requiring longer NIPPV versus patients requiring shorter
NIPPV, between patients that stayed in the ICU or hospital

for longer periods versus patients with shorter LOS, and in
patients transferred out of the ICU alive versus patients that
did not survive. ,ese 9ndings con9rm that the clustering of
the various respiratory failure groups did not result from the
di>erent degree of severity between the groups.

Although the metabolic state in respiratory failure is
most likely the same regardless of the cause of the respiratory
failure, the small sample size has likely contributed to the
fact that we did not detect an AECOPD biomarker. Our
sample size estimates were performed from a previous
metabolomics-based COPD study available at the time,
which compared COPD patients to healthy controls instead
of patients with respiratory failure. Another limitation of our
study is that we had spirometric data only for the stable
COPD subjects and for a minority of AECOPD subjects. We
did not include stable CHF patients and CHF or PNA
patients that did not have respiratory failure. We also en-
rolled subjects in a convenient fashion, and there was low
enrollment due to strict exclusion criteria. ,e subjects in
our sample did su>er only from one of those 3 diseases
(COPD, CHF, or PNA) while they usually coexist in re-
spiratory failure patients. However, we wanted to ensure that
the metabolic changes in AECOPD were purely due to
COPD. Moreover, we collected the data prospectively, and
a di>erent investigator performed the spectrometry blindly.
Our study strength is also that we focused only on patients
with respiratory failure requiring NIPPV decreasing the
chance to have included overdiagnosed AECOPD patients.

In conclusion, serum and urine metabolites clustered
separately in subjects with stable COPD and patients with

−10 −5 0 5 10

−
10

−
5

0
5

10
Urine analysis by diagnosis, COPD patients only

PC1

PC
2

Q2 =  0.404
R2 = 0.948

AECOPD
Stable COPD

(a)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
0.

1
0.

0
0.

1
0.

2
0.

3

Urine analysis by diagnosis, COPD patients only

Loading weights (1)
Lo

ad
in

g 
w

ei
gh

ts 
(2

)

1.6.Anhydro.beta.D.glucose

1.Methylnicotinamide

2.Aminoadipate

2.Furoylglycine

2.Oxoglutarate3.Chlorotyrosine

3.Hydroxybutyrate

3.Hydroxyisobutyrate

3.Hydroxyisovalerate

3.Hydroxymandelate
3.Methyl.2.oxovalerate

3.Phenyllactate
6.Hydroxynicotinate

Acetate

Acetoacetate
Acetone

Alanine
Allantoin

Alloisoleucine

Benzoate

Betaine

Chlorogenate

Cholate

Choline

cis.Aconitate

Citrate

Citrulline
Creatine

Creatinine

Dimethylamine

Ethanol

Formate

Fucose

Fumarate

Glucose

Glycerol

GlycineGlycocholate

Hippurate
Histidine

Hydroxyacetone

Hypoxanthine

Isobutyrate

Isovalerate

Lactate

Lysine

Malonate

Mannitol

Mannose

Methylguanidine

Niacinamide
Nicotinamide.N.oxide

O.Acetylcarnitine

O.Phosphocholine

Phenylacetylglycine

Phenylalanine

Propylene.glycol

Pyroglutamate

Pyruvate

Quinolinate

Salicylurate

sn.Glycero.3.phosphocholine

Succinate

Tartrate

Taurine

Threonine

Trigonelline Trimethylamine.N.oxide

Tryptophan
Tyramine

Tyrosine

Urea

Valine

Xanthine

gamma_Glutamylphenylalanine

pi_Methylhistidine

tau_Methylhistidine

AECOPD

Stable COPD

(b)

Figure 4: PLS-DA score plots (a) and loading plots (b) of urine samples drawn from patients with stable COPD (red) or AECOPD (black).
Each circle represents a urine sample. ,e two groups are well separated in the score plots. ,e loading plot shows how the pro9led
metabolites contribute to the separation seen in the scores. ,e model is not statistically signi9cant (p � 0.929), but the 9t is quite good
(R2� 0.948), as is the predictive value (Q2� 0.404). ,is indicates that the model is over9t and su>ers from a low sample size.
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respiratory failure requiring NIPPV due to AECOPD, CHF,
or PNA. However, we could not 9nd a biomarker unique to
AECOPD diagnosis. Despite this, levels of certain metab-
olites changed in conditions with high metabolic state like
AECOPD and PNA. Further studies with larger sample sizes
should investigate metabolic biomarkers which can be used
in early diagnosis of AECOPD.
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