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Introduction

Over the past two decades, it has become increasingly clear 
that tumor-associated immunosuppression contributes signifi-
cantly to tumor progression and resistance to immunotherapeu-
tic approaches.1 MDSCs represent one of many potential avenues 
through which tumors implement their suppressive agendas. 
While the specific phenotypes of MDSCs and their associated 
subpopulations have yet to be clearly defined, MDSC-dependent 
mechanisms of immune suppression have been well-described.2 

Accumulation of MDSCs occurs in most mouse models of can-
cer, including transplant and spontaneous tumors,3 and their 
presence in peripheral blood of cancer patients is well estab-
lished4 and correlates with stage of disease in cancer patients.5 
Traditionally, the literature has organized the framework for 
mechanisms by which MDSCs suppress the immune response 
around the dependence or independence on l-arginine metabo-
lism.6 Through these mechanisms, MDSCs possess the capac-
ity for suppression of both the innate and adaptive immune 
responses.7 However, MDSCs have been more recently impli-
cated in playing a broader role in tumor progression, as other 
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non immune-suppressive mechanisms continue to be uncovered.8 
Many classes of drugs and biologic inhibitors have demonstrated 
the capacity to inhibit MDSCs by promoting their differentia-
tion, maturation, accumulation or function. Here we review and 
provide updates on the status of MDSC-targeted therapeutics, 
including several novel strategies discovered in the last few years, 
and report on their potential use in the clinic.

MDSCs in Cancer

The rationale behind targeting immunosuppressive populations, 
such as MDSCs, as part of a comprehensive therapeutic strategy 
is derived from the wealth of data demonstrating the capacity 
of a functional immune system to suppress tumor growth and 
progression.9 The interaction of the human immune system and 
tumors has been referred to as immunoediting and can be bro-
ken down into three basic processes in which the immune system 
influences tumor growth to varying degrees: (1) elimination, a 
process in which the immune system recognizes and eliminates 
nascent tumor cells, (2) equilibrium, as the name suggests, where 
the immune system prevents further tumor growth and invasion, 
and (3) escape, a process in which tumor growth is no longer 
inhibited by the immune system, leading to tumor growth and 
progression.10

Elimination of tumor cells involves both the innate and adap-
tive immune systems,11 while equilibrium, where tumor growth 
is kept in check, is maintained by the adaptive immune system12 

and may endure for extended periods.13 Immune evasion may 
occur very early or late in the disease process, and arises primar-
ily for one of two reasons: the selective process of immunoedit-
ing results in a non-immunogenic cancer cell population, or the 
tumor induces immunosuppressive cell populations, effectively 
hijacking the natural process of immune suppression for the 
purpose of preventing immune effector cells from recognizing 
and clearing cancer cells.14 Myeloid-derived suppressor cells are 
a population, which is often commandeered during the course 
of tumorigenesis that induce immune suppression and contrib-
ute to immune escape. Made up of heterogeneous populations of 
immature myeloid cells including myeloid progenitor cells, and 
immature macrophages, immature granulocytes and immature 
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dendritic cells, MDSCs span a range of phenotypes, which share 
common functional attributes15 and will be discussed below.

l-arginine-dependent mechanisms of immunosuppression 
require the activity of two enzymes for which l-arginine serves 
as a substrate: arginase-1 (ARG1) and inducible nitric oxide syn-
thase-2 (iNOS2) (the two main immune-related isoforms).16-18 

ARG1 converts l-arginine into urea and l-ornithine, while 
iNOS-2 metabolizes it into nitric oxide (NO) and l-citrulline.16 
MDSCs are induced to express these two enzymes at very high 
levels as a result of exposure to specific cytokines, including the 
Th2 cytokines TGFβ and IL-10 for ARG1, and the Th1 cyto-
kines IFNγ, IL-1, IFNα, and TNFα for iNOS2.19-22 Increased 
activity of these enzymes has been repeatedly shown to inhibit 
T-cell function and proliferation, albeit through different mech-
anisms. High MDSC arginase activity depletes the microenvi-
ronment of arginine. The absence of this amino acid decreases 
T cell-CD3ζ expression, whose absence renders T cells unable 
to transmit signals required for activation.23,24 Furthermore, 
it may inhibit the cell cycle regulatory proteins cyclin D3 and 
cyclin-dependent kinase 4, which blocks T-cell proliferation.25 
By contrast, high levels of NO, produced by MDSC iNOS2, are 
thought to interfere with T-cell JAK/STAT signaling proteins 
required for numerous T-cell functions, inhibit MHC Class II 
expression, and induce T-cell apoptosis.26-29

ARG1 and iNOS2 expression were once thought to be mutu-
ally exclusive, but recent evidence indicates that both enzymes 
can act simultaneously within the same MDSCs.22 When l-argi-
nase depletes arginine, iNOS2 then generates superoxide and 
NO which combine rapidly to form peroxynitrites, a powerful 
oxidant.30 High levels of peroxynitrites produced by MDSCs 
during direct contact with T cells result in nitration of the T-cell 
receptor (TCR) and CD8 molecules on T cells. This modifica-
tion has been shown to directly alter the specific peptide bind-
ing of the T cells in mice, which renders them unresponsive to 
antigen-specific stimulation.26,31,32

The other mechanisms of MDSC-mediated immunosuppres-
sion are l-arginine independent. These include reactive oxygen 
species (ROS) production, TGFβ production, cysteine depletion, 
CD62L downregulation, and other non-T cell-specific effects.3 
ROS production likely occurs via the NADPH oxidase machin-
ery present in all phagocytic cells.33 The importance of ROS 
production to MDSC-mediated immunosuppression has been 
demonstrated by in vitro studies that show complete abrogation 
of suppressive effect when ROS production is inhibited.34-36 ROS, 
akin to peroxynitrites, are also thought to catalyze the nitration 
of TCR, thus preventing T cell-peptide MHC interactions.31 
TGFβ, among other soluble mediators, has been implicated in 
inducing increased ROS production in MDSCs.37 MDSCs them-
selves can produce TGFβ, but it appears to be somewhat subtype-
specific: a CD11b+GR1intermediate murine MDSC subset, but not 
a CD11b+GR1high MDSC subset, selectively produces TGFβ.38,39 

Similarly, not all tumors can produce TGFβ: tumor cells defi-
cient in TGFβ RII lead to higher intratumoral TGFβ second-
ary to the chemoattraction of specific MDSC subtypes capable 
of producing TGFβ.40

Like l-arginine, MDSCs deplete the environment of cysteine, 
an amino acid essential for T-cell activation.41 T cells depend 
upon extracellular sources because they lack both the enzyme to 
convert methionine to cysteine and the membrane transporter to 
import cystine for intracellular reduction to cysteine. Similarly, 
MDSCs are unable to generate cysteine from methionine, neces-
sitating import of cystine for intracellular conversion to cysteine. 
Normally, antigen-presenting cells (APCs), namely, dendritic 
cells (DCs) and macrophages, serve as the reservoir of cysteine 
for T cells. They synthesize cysteine from methionine, import 
extracellular cystine for conversion to cysteine, and, most impor-
tantly, export surplus cysteine during antigen presentation to 
T cells for T-cell sustenance. However, when MDSCs are present 
in high concentrations, they import most of the available cystine, 
depriving DCs and macrophages of cystine. As a result, APCs 
do not export cysteine, thus depriving T cells of this amino acid 
which they need to synthesize proteins for activation.7,41

T-cell activation is impaired further by MDSC-mediated 
downregulation of L-selectin (CD62L).42 CD62L is a plasma 
membrane molecule required for the homing of naïve T cells 
to lymph nodes. Without CD62L, both naïve CD4 and CD8 
T cells will not encounter tumor antigen in the lymph nodes 
where it is presented by APCs. T-cell activation is then reduced 
because they cannot properly migrate to lymph nodes.42

Other MDSC-mediated immunosuppression that impacts 
adaptive tumor immunity includes the polarization of T cells 
toward a tumor-promoting type 2 phenotype. MDSCs accom-
plish this feat by producing IL-10 and downregulating macro-
phage-production of the Type I cytokine IL-12.43 In a positive 
feedback cycle, these skewed macrophages can then induce fur-
ther IL-10 production by MDSCs.

MDSC-directed immunosuppression often extends to other 
cells as well. Perhaps the most thoroughly described mechanism 
is the induction of de novo FOXP3+ T-regulatory cells (Tregs).44 

The induction of Tregs by MDSCs occurs through a direct 
cell-cell interaction or via production of specific soluble factors, 
including IL-10 in the presence of TGFβ, or arginase (which is 
TGFβ independent).45,46 Animal studies have implicated cyto-
toxic lymphocyte antigen-4 (CTLA4) expression by MDSCs as a 
prerequisite for Treg induction.44 Once formed, Tregs downregu-
late the activation and expansion of antitumor-reactive T cells7 

among other cells.
While the mechanisms discussed thus far center around the 

inhibition of anti-tumor lymphoid responses, MDSCs also sup-
press important members of the innate immune system. For 
example, they have been shown to inhibit the activation, cyto-
toxicity, and expansion of anti-tumor natural killer (NK) cells 
by preventing NK cell-production of IFNγ through a cell-con-
tact dependent mechanism.47-49 This suppression is mediated 
by inhibition of the NK cell activation-receptor, NKG2D, and 
requires the presence of membrane-bound TGFβ.47 Furthermore, 
it has been shown that the interaction between innate immu-
nity and MDSCs are bidirectional. Type II NKT cells, a tumor-
promoting population similar to M2 macrophages, produce 
IL-13, which induces the accumulation of MDSC.50 By contrast, 
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Type I NKT cells, an anti-tumoral population, inhibits MDSC 
accumulation.51

The MDSC repertoire also involves non-immune suppressive 
mechanisms. These mechanisms directly promote various hall-
marks ultimately required for tumor development; prominent 
among these are angiogenesis and vasculogenesis. MDSCs are 
actively recruited to the tumor microenvironment, where they 
not only release factors that promote blood vessel formation, but 
they differentiate into CD31+ cells that incorporate into the newly 
forming endothelium.8 These infiltrating cells produce matrix-
metalloproteinase-9 (MMP-9),21 which functions as an angio-
genic switch by releasing matrix-bound VEGF and recruiting 
pericytes required for further blood vessel formation.52 Further 
evidence for the importance of MMP-9 stems from studies inves-
tigating the reason for the failure of VEGF-inhibitors to suppress 
tumor growth, which found that anti-VEGF refractoriness was 
completely dependent on the tumor’s capacity for CD11b+Gr1+ 
MDSC recruitment.53 Furthermore, when MDSCs and tumor 
cells are co-injected, tumors grow faster and have increased blood 
vessel density; conversely, when MDSC-recruitment to tumors is 
inhibited, tumor angiogenesis is reduced.8,40

MDSC-Targeted Therapeutics

Translating our improved understanding of the development of 
cancer to improved therapeutics, specifically immunotherapy, 
has proceeded more slowly than expected.54 In part, the failure 
is attributable to the lack of recognition that immunosuppres-
sion, with MDSCs as major contributors, has a critical role in 
promoting tumor progression. As a result, several therapeutic 

strategies that target the block in differentiation, accumulation at 
the tumor site, expansion, and function of these cells have been 
developed (see Table 1).

Differentiation. All trans-retinoic acid (ATRA) has been 
used successfully to induce differentiation of MDSCs in both 
mice and humans4,55 through activation of ERK1/2, leading to 
the upregulation of the ROS scavenger GSH to induce differenti-
ation.33 Similarly, scavenging ROS with catalase led to differenti-
ation of MDSCs obtained from tumor bearing mice,56 suggesting 
that targeting ROS to disrupt the differentiation halt in MDSCs 
holds promise; however, use of ATRA to target myeloid suppres-
sor populations in the clinic has not been reported widely.

Icariin and its derivative 3, 5, 7-Trihydroxy-4’-emthoxy-8-
(3-hydroxy-3-methylbutyl)-flavone (ICT) showed anti-MDSC 
activity in the 4T1-Neu tumor-bearing mice, where treatment 
with Icariin or ICT led to reduction in MDSC percentages, likely 
due to induced differentiation toward dendritic cell or macro-
phage phenotype.57 Differentiation was induced by inhibition 
of S100A8/9 expression, as well as inhibition of the STAT3 and 
AKT signaling pathways. The end result of ICT treatment was 
reduced production of NO and ROS by MDSCs, and increased 
IFNγ production by CD8+ T cells.

In a cell-based approach activated NKT cells were used to 
induce differentiation of MDSCs into APCs.58 The strategy of 
loading dendritic cells with α-galactosylceramide (αGalCer), an 
invariant NKT ligand, on their CD1d produced sustained NKT 
immune responses in patients.59 Taking this approach one step 
further, MDSCs loaded with αGalCer and induced to present 
tumor-specific antigenic peptides on MHC Class I molecules 
elicited a robust anti-tumor response, via activation of CD8+ 

Table 1. Myeloid-derived suppressor cells as target for therapy

Target Agent Summary of anti-MDSC activity

Differentiation

ATRA Activation of ERK1/2, leading to the upregulation of the ROS scavenger GSH

Catalase ROS scavenger

Icariin and ICT
Inhibition of S100A8/9 expression, inhibition of STAT3 and AKT signaling pathways, resulting in dif-

ferentiation to DC or MΦ

NKT cells Differentiation into APCs and activation of antitumor responses

MPSSS Differentiation into M1-like macrophages

Function

COX2 inhibitors Prevents ARG1 upregulation

PDE-5 inhibitors Reduces ARG1 and iNOS expression

ROS inhibitors Reduces immunosuppression by limiting ROS production

Nitroaspirin Inhibits ROS production, limits ARG1 and iNOS expression

NAC Reduces ROS production, increases the extracellular pool of cysteine

CpG ODNs Limit iNOS and ARG1 expression; favor differentiation to M1 macrophages

MMP9 inhibitors Reduce MDSC abundance through unknown mechanism

Ablation

L-NIL
Reduces the accumulation of MDSCs by limiting circulating VEGF levels; inhibits MDSC activation 

by downregulating STAT3 and by limiting ROS production

RNA aptamer Induces MDSC apoptosis

Curcumin Inhibits expansion; promotes apoptosis; induces differentiation

Gemcitabine Induces MDSC apoptosis and necrosis

5-FU Cytotoxic for MDSCs

Docetaxel Reduces pSTAT3 levels, resulting in lower amount of MDSCs
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CTLs and NK cells.58 This approach conferred prolonged sur-
vival and reduced metastasis frequency in tumor bearing mice. 
Converting MDSCs from an immunosuppressive population 
into a functional population of antigen-presenting cells is appeal-
ing from a therapeutic standpoint; however, a similar strategy in 
cancer patients would require identification and production of 
tumor-specific, antigenic peptides.

The polysaccharide MPSSS derived from Lentinus edodes 
possesses the capacity to induce MDSC differentiation, thereby 
reducing MDSC numbers.60 MPSSS treatment inhibited tumor 
growth owing to reduction in MDSC levels and immunosup-
pressive capacity, which resulted from induction of MDSC dif-
ferentiation to a M1-like macrophage population.

Immunosuppressive function. The four main therapeutic 
approaches for inhibiting the function of MDSCs include inhibi-
tion of ARG, inhibition of iNOS, inhibition of ROS production, 
and elevation of cysteine levels. Representative drugs that address 
these approaches include cyclooxygenase-2 (COX2) inhibitors, 
phosphodiesterase-5 (PDE-5) inhibitors, ROS inhibitors, and 
N-acetyl cysteine (NAC). Many tumors, such as lung breast colon, 
pancreatic, and prostate, express high levels of COX2.61 COX2 is 
required for prostaglandin E2 (PGE2) synthesis, which has been 
shown to upregulate ARG1 expression in MDSCs.62 Thus, COX2 
inhibitors reduce a major mechanism of MDSC-mediated immu-
nosuppression. In line with this hypothesis, the inhibition of PGE2 
synthesis in tumor-bearing mice and cancer patients have been 
shown to improve anti-tumor T cell-responses.63 Furthermore, use 
of celecoxib, a COX2 inhibitor, in a murine model of mesothelio-
ima resulted in reduced levels of tumor-infiltrating MDSCs, and 
potentiated a dendritic cell-based immunotherapy.64

Along the same lines, PDE-5 inhibitors have been shown to 
not only reduce the MDSC expression of ARG, but iNOS as well. 
In animal models, these inhibitors have proven to delay tumor 
progression.65 Specifically, treatment with the PDE-5 inhibitor 
sildenafil resulted in an increase in CD8+ T-cell tumor infiltra-
tion, as well as in improved activation of T cells. PDE-5 block-
ade inhibits immunosuppressive capacity of MDSCs by lowering 
the concentrations of the IL-4α receptor and effector molecules 
ARG1 and iNOS, although the exact mechanism remains to be 
elucidated. Serafini et al.65 demonstrated that sildenafil treat-
ment restored T-cell proliferation in PBMCs from patients with 
head and neck squamous cell carcinoma (HNSCC) and multi-
ple myeloma, suggesting that the therapeutic effect observed in 
mice can be translated into treatment of human cancer. Since 
PDE-5 inhibitors (sildenafil and tadalafil) are used widely for 
treatment of nonmalignant conditions such as erectile dysfunc-
tion, their pharmacokinetics and toxicity are already well stud-
ied. This implies that these compounds may be safely used to 
target MDSCs in cancer patients. However, it is important to 
note that even though treatment with PDE-5 inhibitors induces a 
CTL response, such treatment alone is unlikely to cause complete 
tumor elimination. Thus, combination with conventional thera-
peutics may prove to be more efficient.

A Phase II clinical trial (clinicaltrials.gov ID NCT01697800) 
that aims to deplete MDSCs with the PDE-5 inhibitor tadalafil 
is currently recruiting HNSCC patients. Tadalafil will be used 

in combination with conventional therapy for HNSCC, and the 
number and function of MDSCs and Tregs in patients’ periph-
eral blood will be assessed upon treatment with the PDE-5 inhib-
itor or placebo.

The importance of ROS to MDSC mediated immunosuppres-
sion has been repeatedly confirmed. Efforts to inhibit this arm 
of the MDSC repertoire have proven beneficial. Nitroaspirin, a 
non-steroidal anti-inflammatory drug coupled to a NO-releasing 
moiety, has been shown to effectively inhibit the production of 
ROS, limit the activity of ARG1, and limit iNOS in MDSCs.26,66 

Similarly, NAC has been suggested as a potentially useful anti-
tumor agent based on its ability to reduce ROS. It too has dem-
onstrated efficacy in animal tumor models. However, NAC 
differs from other agents that reduce oxidative stress in its ability 
to increase the extracellular pools of cysteine in the presence of 
high levels of MDSCs.67

Several studies have described the ability of CpG oligode-
oxynucleotides (ODN) to elicit a robust tumor-specific immune 
response when injected intra-tumorally.68,69 Recently, it was dis-
covered that CpG ODN therapy acts, at least in part, through 
effects on MDSCs.70 CpG ODN treatment inhibited production 
of iNOS and ARG1 activity, thereby leading to recovery of T-cell 
proliferation. Strikingly, exposure of MDSCs, even briefly in 
vitro, led to differentiation to type M1 macrophages exhibiting 
anti-tumoral activity resulting in tumor progression followed by 
significantly delayed growth.

While it is known that non-immune MDSC mechanisms of 
suppression exist, no current treatments have been able to effec-
tively address these methods. VEGF, a tumor-derived factor, 
is known to be involved in promoting MDSC expansion, not 
function.26 However, patients with solid tumors in clinical tri-
als have shown limited benefit with this approach. In patients 
with aggressive metastatic renal cancer, responses were short-
lived and without cure.71 Furthermore, in a clinical trial of 
patients with refractory solid tumors, treatment with a fusion 
protein that traps VEGF showed no effect on MDSC numbers 
or T-cell responses.72 MMP-9 inhibitors have shown promise 
in animal models, but the mechanism remains unclear. In any 
case, MMP-9 inhibitors have decreased the number of MDSCs 
in splenic and tumor tissues, resulting in a delay of NeuT tumor 
growth.73 At the present time, it is thought that anti-angiogene-
sis medications only transiently affect tumor growth, with most 
patients progressing over the course of months as tumors adapt 
and bypass VEGF-dependence via alternative proangiogenic sig-
naling pathways.21,74,75

Accumulation/Ablation. Expression of iNOS has been dem-
onstrated in solid tumors and correlates with poor prognosis.76,77 
Production of NO by tumors induces a range of tumor-promoting 
functions including cell motility and invasion77 and the genesis 
of the inflammatory tumor microenvironment.78 Pharmacologic 
inhibition of iNOS with the small molecule inhibitor L-NIL 
reduced accumulation of MDSC through reduction in serum 
VEGF and inhibited activation of MDSCs via downregulation 
of activated STAT3 and ROS production, resulting in enhanced 
immune-mediated control over growth of transplanted mela-
noma tumors.79
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In order to target MDSCs in a highly precise manner, Roth et 
al.80 engineered a RNA aptamer, specific for mouse and human 
IL4Rα, a cell surface receptor known to be upregulated in the 
MDSCs of tumor-bearing mice,81 as well as cancer patients.82 

Use of the aptamer induced MDSC apoptosis leading to lower 
intratumoral MDSC levels, greater T-cell infiltration, and slower 
tumor growth.80 The effects of the aptamer were due to inhibi-
tion of STAT6 signaling, suggesting that engagement of IL4Rα 
by the aptamer may abrogate survival signals generated by IL-13 
binding to IL4Rα on the MDSC cell surface.80 Though use of 
the aptamer alone did not induce tumor regression, the specific 
manner in which MDSC ablation was induced, coupled with the 
prevalence of IL4Rα on the surface of some MDSC populations 
in cancer patients makes this aptamer worthy of further exami-
nation as a potential therapeutic agent.

Curcumin, a naturally occurring antitumor agent, has a mul-
titude of effects on MDSC biology, which could prove useful in 
a therapeutic setting.83 Whether delivered via IP injection or as 
a dietary supplement, curcumin inhibits MDSC expansion and 
promotes apoptosis. Furthermore, secretion of IL-6 by MDSCs is 
inhibited by curcumin. Curcumin promotes adoption of a M1 phe-
notype, while inhibiting NFκB and STAT3 signaling in MDSCs.

Some conventional therapeutics, such as gemcitabine84 and 
5-FU,85 possess MDSC-specific cytoxicity. Gemcitabine induces 
MDSC death through apoptosis and necrosis, and has the capacity 
to potentiate immunotherapy as demonstrated when gemcitabine 
is combined with intratumoral injection of IFNβ-expressing 
adenovirus.84 5-FU treatment exhibited MDSC cytotoxicity and 
was sufficient to increase survival of tumor-bearing mice, likely 
as a result of improved CD8+ T-cell activation; however, 5-FU 
treatment was not curative.85 It was recently discovered that the 
efficacy of 5-FU therapy is limited by induction of Nlrp3 inflam-
masome, leading to MDSC-derived IL-1beta secretion and 
induction of angiogenesis, suggesting that combination of 5-FU 
with anti-IL1beta or Nlrp3 inflammasome inhibitors to increase 
therapeutic potential.86 Another combination of therapeutics, 
namely cyclophosphamide and gemcitabine, used to target Treg 
and MDSCs, respectively, demonstrated the potential to effect 
T cell-mediated tumor immunity by inhibiting immune suppres-
sor populations.87

Like gemcitabine and 5-FU, docetaxel is another commonly 
used chemotherapeutic with anti-MDSC activity. The capac-
ity of Docetaxel to inhibit the immunosuppressive capacity of 
MDSCs was demonstrated in mice bearing 4T1-Neu mam-
mary tumors.88 Owing to its inhibition of the STAT3 pathway, 
Docetaxel treatment inhibited MDSC levels in tumor-bearing 
mice and induced the remaining MDSCs to adopt an M1-like 
phenotype. Docetaxel-treated naïve and tumor-bearing mice 
exhibited increased numbers of activated (IFNγ+) and total 
T cells. In fact, T cells from Docetaxel-treated mice exhibited 
greater tumoricidal activity than controls. Docetaxel may also 
potentiate total body irradiation (TBI) as a means of eliminating 

MDSCs. As demonstrated in mice, TBI has the potential of 
depleting MDSCs; however, reconstitution occurs with MDSCs 
exhibiting increased immunosuppressive capacity suggesting 
that such an approach may yield undesirable results. Docetaxel 
administration was able to abrogate MDSC reconstitution and 
a therapeutic benefit was observed when TBI, adoptive T-cell 
transfer, dendritic cell vaccination and docetaxel were combined 
in a model of melanoma.89

Conclusion

The capacity of the human immune system to inhibit tumor for-
mation and progression provides the promise that its power may 
be utilized in therapeutic approaches. Immunoediting shapes 
tumor growth, often resulting in tumors that can suppress the 
capacity of the immune system to effect elimination or equilib-
rium and allowing tumor escape and progression into a clini-
cally defined cancer. One mechanism of immunosuppression 
commonly found in advanced stage tumors is the activation and 
accumulation of MDSCs upon stimulation with tumor-derived 
factors. MDSCs affect a number of immunosuppressive path-
ways to promote cancer growth and progression, and have been 
recently targeted for inhibition using a variety of strategies. Some 
groups have demonstrated that MDSCs can be induced to differ-
entiate, others have shown that accumulation can be effectively 
inhibited. Inhibition of suppressive mechanisms has also proven 
successful, while selective ablation was demonstrated to be a via-
ble goal as well. No matter what the strategy, limiting or elimi-
nating the capacity of MDSCs to suppress the ability of patients’ 
immune systems to fight tumor growth represents a worthy 
objective. With the onset of the first clinical trial aimed at phar-
macologically targeting MDSCs in cancer patients, the promise 
of targeting these immunosuppressive populations in the fight 
against cancer will be evaluated. If anti-MDSC therapy proves 
effective, clinicians may eventually choose to test their efficacy in 
combination therapy, especially in patients in advanced disease, 
when MDSCs are typically abundant, and potent inhibitors of 
anti-tumor immunity.
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