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States of America, 2 Socios En Salud Sucursal Perú, Lima, Peru, 3 Boston University School of Public

Health, Department of Biostatistics, Boston, Massachusetts, United States of America, 4 Brigham and

Women’s Hospital, Division of Global Health Equity, Boston, Massachusetts, United States of America

* Mercedes_Becerra@hms.harvard.edu

Abstract

Objective

To use routinely collected data, with the addition of geographic information and census

data, to identify local hot spots of rates of reported tuberculosis cases.

Design

Residential locations of tuberculosis cases identified from eight public health facilities in

Lima, Peru (2013–2018) were linked to census data to calculate neighborhood-level annual

case rates. Heat maps of tuberculosis case rates by neighborhood were created. Local indi-

cators of spatial autocorrelation, Moran’s I, were used to identify where in the study area

spatial clusters and outliers of tuberculosis case rates were occurring. Age- and sex-strati-

fied case rates were also assessed.

Results

We identified reports of 1,295 TB cases across 74 neighborhoods during the five-year

study period, for an average annual rate of 124.2 reported TB cases per 100,000 popula-

tion. In evaluating case rates by individual neighborhood, we identified a median rate of

reported cases of 123.6 and a range from 0 to 800 cases per 100,000 population. Individu-

als aged 15–44 years old and men had higher case rates than other age groups and

women. Locations of both hot and cold spots overlapped across age- and gender-specific

maps.

Conclusions

There is significant geographic heterogeneity in rates of reported TB cases and evident hot

and cold spots within the study area. Characterization of the spatial distribution of these
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rates and local hot spots may be one practical tool to inform the work of local coalitions to

target TB interventions in their zones.

Introduction

Tuberculosis (TB) remains one of the leading infectious killers in the world, with large popula-

tions facing high and stagnant case rates of this preventable disease [1]. An emerging network

of coalitions—the Zero TB Initiative—seeks to rapidly drive down TB case rates in geographi-

cally defined zones, by locally deploying simultaneous strategies to increase: case finding,

access to treatment for all forms of TB disease, and access to TB preventive treatment [2]. One

key step toward closing gaps in case detection will be to characterize the baseline or starting

point for not only the numbers of TB cases in a zone, but how they concentrate spatially so

that the impact of interventions can be appropriately measured.

The geographic distribution of TB is variable at global-, country-, district-, and commu-

nity-levels. Geographic heterogeneity of TB indicates an uneven distribution of disease burden

across spatial scales [1, 3]. Characterization of the spatial distribution of TB cases and high-risk

areas may serve as a practical tool for policy makers and can inform public health responses,

such as targeting and tailoring interventions [4]. To design effective interventions for local

zones, there is a need for finer spatial resolution of TB data—thus a shift from only analyzing

nationally aggregated data to using the relevant local data. Essential to this shift is the

improved use of existing data, such as program reports of TB cases, and the expansion of those

routine data to include geographic information [4]. Previous studies have demonstrated how

evaluation of spatial variations of TB disease can identify high-risk areas to be spatially targeted

with screening interventions [5].

A systematic review of methods used in spatial analyses of TB reported that these typically

have used aggregated case data, as opposed to individual-level case data (78% vs 22%), over

administrative spatial units, and that the scale of spatial aggregation varied greatly [6]. For

example, different analyses have used units at the continent-, country-, province-, district-,

state-, county-, neighborhood-, census tract-, postal code-, health area-, municipality-, govern-

ment area-, and ward-level [6]. Geographic variability in rates of TB was found regardless of

the scale used. In order to guide local tailoring and targeting of interventions, however, it is

essential to characterize TB case data on relevant smaller scales, as other topic areas have dem-

onstrated [7]. As part of the design phase of a local coalition’s TB case finding initiative [8], we

sought to use routinely collected data, adding geographic information and census data, to

identify local hot spots of reported TB case rates.

Materials and methods

Study setting

Peru is a middle-income country with a population of 32 million people and an estimated TB

incidence of 119 (91–150) per 100,000 population in 2019 [9]. Our study took place in the con-

tiguous catchment areas of eight primary-level public health facilities in Carabayllo district,

the northernmost district of metropolitan Lima, Peru. This is an urban zone (Fig 1), which was

home to approximately 209,000 inhabitants in 2017, comprising 64% of the district’s popula-

tion [10]. The catchment areas of the four other health facilities in Carabayllo were excluded

from this analysis because we could not readily access health center data about TB case reports

nor accurate census data for that catchment population.
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Data collection and measures

We collected data about patients treated for TB disease between 2013 and 2017 from eight pri-

mary-level public health centers in a contiguous geographic region of Carabayllo. To access

free TB treatment provided routinely by the Ministry of Health services, patients receive their

TB treatment doses at the health facility in whose catchment area their residence is located.

While Peru has a national electronic TB surveillance system, the electronic records of the

health centers’ TB treatment registers in the study area were inaccessible. Therefore, we

reviewed the paper TB treatment registers at the eight health centers and extracted age and sex

recorded for each TB patient into an electronic data abstraction form. If age or sex were miss-

ing, the patient’s paper medical chart was reviewed. We then used Google Maps to determine

an approximate geographic coordinate for each patient’s address listed in the treatment regis-

ter and recorded the coordinate, in the form of latitude and longitude, in an electronic data

form. We used this approach to assign geographic coordinates because many neighborhoods

in this district do not use a standard address system. In consultation with community leaders,

we defined boundaries that correspond to locally defined neighborhoods within the study area

and created maps and then shapefiles of these neighborhoods.

Additionally, we obtained the 2017 census data for the Carabayllo district from the National

Institutes of Statistics and Information in Peru [10]. The census data are aggregated by block-

level tracts; within each tract, population numbers are available in aggregate and also stratified

by age and sex. Because the block-level census tracts do not align completely with the local

neighborhood boundaries, and the blocks are substantially smaller than the neighborhoods,

we calculated the proportion (by area) of each block-level census tract that fell into each neigh-

borhood. We then multiplied that proportion by the population provided for that census tract

and summed across each census tract that overlapped with the neighborhood to obtain the

total population in each neighborhood. We applied the same proportions to other census data

Fig 1. Study area within the Carabayllo District, Lima, Peru. The “Light gray canvas” basemap from ESRI

(Environmental Systems Research Institute, Redlands, California, USA; https://www.esri.com/en-us/arcgis/products/

arcgis-desktop/) was used to create this figure.

https://doi.org/10.1371/journal.pone.0265826.g001
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—including population by sex and age group (less than 15 years, 15–44 years, and greater than

44 years)—to obtain population breakdowns by these characteristics across each

neighborhood.

Finally, we overlaid the geocoded addresses of each TB case onto the neighborhood-level

map. Any individual whose residence lay outside of the neighborhood-level map was excluded

from this analysis. We then estimated the historic rates of reported TB cases from 2013–2017

for each neighborhood by dividing the total number of individuals with TB in each neighbor-

hood by the 2017 estimated population calculated in each neighborhood. We then divided by

five to give an average annual rate per 100,000 population for the five-year period to account

for variability during this time frame. In addition to the rates of the total reported cases, we cal-

culated age- and sex-specific rates by dividing the TB cases with each characteristic in each

neighborhood by the 2017 estimated population for that age group or sex in each neighbor-

hood. To visualize rates of reported TB cases, we created heat maps, which are graphical repre-

sentations of the data where values are depicted by variations in hue.

Analysis

We calculated the median, interquartile range (IQR), and range of the annual rates of reported

TB cases over the 74 neighborhoods, in aggregate and by age and sex for each neighborhood.

We produced heat maps to visually display the geographic variability of rates over the study

area.

The global univariable Moran’s I was used to test for the presence of spatial clustering (spa-

tial autocorrelation) in rates in the entire study area; we calculated the Moran’s I and pseudo

p-value based on 999 permutations. The null hypothesis assumes complete spatial random-

ness. We calculated Local Indicators of Spatial Autocorrelation (LISA) [11] to identify and

locate clusters of neighborhoods with a relatively high or low rate. A first order queen contigu-

ity connectivity matrix was used to define neighbors. For each neighborhood, we calculated a

LISA statistic—a localized Moran’s I—to give indication of the extent of the presence or

absence of spatial dependency. For each neighborhood, we conducted hypothesis tests using

the Moran’s I, where the null hypothesis assumed that rates in each neighborhood were spa-

tially independent from rates in surrounding contiguous neighborhood units. All calculated

localized Moran’s Is controlled for a false discovery rate, which is a known method to account

for multiple and dependent tests in calculating LISA statistics.

Cluster maps were produced to visualize the neighborhoods with a significant local LISA

statistic at the p�0.05 level and to indicate the type of spatial associations observed. Each

neighborhood with a significant LISA statistic was then classified as either a spatial cluster or a

spatial outlier in relation to the surrounding neighborhoods. Spatial clusters include hot spots

and cold spots, which are defined as a neighborhood with a higher or lower, respectively, con-

centration of events compared to the expected number given a random distribution of events.

Spatial outliers are neighborhoods that have rates that are markedly different from that of their

spatial neighbors; a high spatial outlier is a neighborhood with a high rate surrounded by

neighborhoods of low rates, whereas a low spatial outlier is a neighborhood with a low rate sur-

rounded by neighborhoods of high rates. The cluster maps visually display the neighborhoods

according to these spatial clustering or spatial outlier classifications. Maps were created for the

overall neighborhood rates, as well as age- and sex-stratified rates.

MBB created all maps using ArcMap Desktop version 10.8 (Environmental Systems

Research Institute, Redlands, California, USA; https://www.esri.com/en-us/arcgis/products/

arcgis-desktop/).
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Ethics statement

Data collected in Peru were part of programmatic clinical documentation at health centers for

patients diagnosed with tuberculosis, thus local Institutional Review Board approval was not

required for the collection of this data, nor did patient provide written informed consent for

participation. Patient records were accessed between December 2017 and March 2018. Patients

whose records were accessed sought treatment for TB between January 2013 and December

2017. All patient data were fully anonymized before they were accessed and used for analysis.

This study was determined to constitute exempt human subjects research by the Mass General

Brigham Institutional Review Board because it involved only secondary use of programmatic

data in a manner that did not allow identification of individual participants.

Results

Between 2013 and 2017, a total of 1,323 individuals received treatment for TB disease at eight

health facilities in the study area, which comprises 74 contiguous neighborhoods. The total

study area was 27.8 square kilometers, with a median area in square kilometers for the individ-

ual neighborhoods of 0.21 (IQR: 0.13–0.35, range: 0.04–4.36). We excluded 28 (2.1%) of these

individuals because their residential addresses were located outside the study area. Of the

1,295 individuals included, 814 (62.9%) were male, 96 (7.4%) were less than 15 years old, 921

(71.1%) were 15–44 years old, and 278 (21.5%) were greater than 44 years old.

The total rate of reported TB cases in the study area was 124.2 per 100,000 population; nota-

bly, this aggregated statistic masks substantial geographic heterogeneity. When assessing rates

by neighborhood, the median annual rate was 123.6 per 100,000 population. This varied

greatly by neighborhood, ranging from 0.0 to 800.0 per 100,000 population (Table 1). We

observed similar geographic heterogeneity for age- and sex-specific rates.

Moderate spatial clustering of annual rates was observed in the study area, as indicated by a

Moran’s I of 0.144, p = 0.021. In the south-western region of the study area, clusters of low

rates (cold spots) were observed, whereas in the eastern-central region a cluster of high rates

(hot spots) were identified (Fig 2). A single low spatial outlier (neighborhoods with low rates

surrounded by those with high rates) was also identified in the eastern-central region, and no

high spatial outliers were observed.

We observed no spatial clustering of rates stratified by age group (age <15: Moran’s I =

-0.047, p = 0.337; age 15–44: Moran’s I = 0.079, p = 0.084; age>44: Moran’s I = 0.058,

p = 0.070). However, we did find moderate spatial clustering of sex-specific annual rates (men:

Moran’s I = 0.138, p = 0.031; women: Moran’s I = 0.110, p = 0.036). For the 15–44 and greater

than 44 age groups and both sexes, we observed a cold spot in the south-western region of the

study area; the cold spot is larger for males than females (Fig 3). We also observed a hot spot in

the eastern-central region of the study area for females.

Table 1. Variability in annual rates of reported TB cases (per 100,000 population) among 74 neighborhoods.

Median Interquartile Range Range

Total population 123.6 58.9–185.6 0–800.0

Age <15 years 23.4 0–42.7 0–148.7

Age 15–44 years 159.4 85.5–267.0 0–766.3

Age >44 years 80.5 34.9–162.6 0–2222.2

Men 157.3 74.7–238.1 0–800.0

Women 83.3 42.8–138.2 0–800.0

https://doi.org/10.1371/journal.pone.0265826.t001
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Discussion

We found significant heterogeneity in the rates of reported TB cases within this district of

northern Lima, Peru. Characterization of reported TB case rates over smaller spatial scales

allowed for identification of geographic areas with more and less concentrated TB risk; these

hot spots and cold spots were not apparent from the case notification rates measured at a dis-

trict scale. Overall, the total rate for the study area (comprising around two thirds of the

Fig 2. Geographical variation and spatial clustering of rates of reported TB cases (per 100,000 population).

https://doi.org/10.1371/journal.pone.0265826.g002

Fig 3. Geographical variation and spatial clustering of age- and sex-specific rates (per 100,000 population).

https://doi.org/10.1371/journal.pone.0265826.g003
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district) was 124 per 100,000 population, which is only slightly higher than the estimated

national TB incidence of 119 per 100,000 population in 2019 [9]. However, when we looked at

the neighborhood-level rates, we observed great variability across neighborhoods with rates

ranging from 0 to 800 per 100,000 population. This points to the absence of a uniform risk of

TB within this focal urban zone of 209,000 inhabitants. It also highlights that looking at rates

of reported TB cases over smaller geographic units can uncover high-risk and low-risk zones

that are not apparent even at the district level.

By using routinely collected data—TB registers and the census—and adding the geographic

coordinates to each reported case, we were able to calculate rates of reported TB cases and

then create simple maps to identify hot and cold spots within a geographic zone of interest.

Insights from the neighborhood-level heterogeneity of reported case rates can have great

implications for program planning. While some interventions are known to find TB cases,

such as household contact investigations which identify individuals exposed at home to TB

[1], those interventions will not find the majority of those sick with TB, since less than twenty

percent of TB transmission is thought to take place within households [12, 13]. Thus, geo-

graphic analyses on routinely collected data can be used to identify zones in a community

where TB cases or risk factors for transmission are concentrated, in order to help public health

workers discern where community-based screening efforts may be deployed [3, 4, 14]. Addi-

tionally, areas identified as cold spots may point to zones where there may be a lack of diagnos-

tic services.

In this study, we observed relatively higher rates of reported TB cases among residents in

the age group of 15–44 years old and among males. This finding is consistent with previous

observations in Peru, in which TB diagnoses were disproportionately higher among those 15–

44 years old (made up 66% of case notifications) and among males (61% of case notifications)

[15]. Conducting age- and sex-stratified analyses may identify important differences in other

settings. If different hot spots for these subgroups are discerned—as observed by a hot-spot for

women and not men—this would allow for tailored approaches to detect more cases in these

subgroups, especially since working-age adults and men may face distinct challenges for seek-

ing or accessing TB care [16].

Admittedly, there are many challenges in interpreting spatial clustering of high rates of

reported TB cases. Most notable is that we are unable to decipher whether the observed geo-

graphic heterogeneity in rates of reported TB cases is driven by true spatial variation of TB

prevalence, by care-seeking behaviors of the underlying population, or by access barriers to

diagnostic and treatment facilities [17, 18]. Spatial variation in reported TB rates may also be

influenced by the quality of the data collected and the type of spatial analysis method used [6].

For example, our study relied on data in the paper TB treatment registries at local facilities dur-

ing a period where passive case-finding was the norm; these registries would thus be expected

to miss a large number of TB cases and may skew the observed clusters towards areas with bet-

ter access to diagnostic services [1, 18]. Additionally, we cannot conclude that observed hot

spots reflect TB transmission; this is because we used residential location to identify in which

neighborhood the TB cases resided, but it is possible that TB transmission occurred in other

zones where patients work, commute, or gather socially. These limitations notwithstanding,

our approach can serve to identify local zones that should be considered for targeting case-

finding interventions.

There are several other limitations to note. We used the 2017 census data to calculate the

populations of each neighborhood. In order to compute more accurate rates, it would have

been ideal to calculate projected populations for each year that corresponded to the collected

TB case data (2013–2018). That approach to population estimation is standard practice for

most National Statistics Bureaus, namely to estimate populations for each of the years between
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censuses. However, we were unable to use this approach because the study district has geo-

graphically expanded in the past decade due to migration, leading to the census tracts being

completely redrawn from the time of the previous census in 2007. Thus, we are unable to dis-

tinguish whether shifts in rates of reported TB cases over time are due to changes in true TB

risk, TB case reporting, or the expanding population across the district.

Finally, it is important to reiterate that the case rates analyzed here may not represent the

true TB disease burden in this community or its geographic distribution. There are several fac-

tors that lead to a likely underestimation of that true underlying disease burden. First, simply

using the rates of cases identified through a treatment register is known to underestimate the

true burden of TB cases in a zone, given that during the study period, the health centers relied

on sputum smear microscopy, which has a low sensitivity [19], as well as on passive case find-

ing. Thus, the reported cases do not include those individuals who did not seek care or those

who did seek care but were misdiagnosed. A second reason that the rates we analyzed likely

underestimate the true burden of disease is that we only used case reports at the Ministry of

Health’s health centers in the district. These reports do not account for patients treated by a

second network of government hospitals that covers district residents with employer-based

insurance and which has recently expanded its TB services. Additionally, the counts of

reported cases that we used did not include individuals who live in the study district but

received TB treatment at referral hospitals outside the district.

Geospatial techniques can be applied to identify spatial variability of reported TB case rates,

which can in turn provide critical information for program planning. It is unknown whether

the observed heterogeneity in reported TB case rates is due to underlying differences in disease

burden or in barriers to accessing TB diagnostic services. But comparison of neighborhood-

level rates of reported TB cases is important to identify neighborhoods and zones that merit

closer evaluation as potential targets for intensified case-finding efforts. Local coalitions work-

ing to close gaps in TB case detection can use routinely collected data, adding geospatial infor-

mation and census data, as a first step to inform new collective actions.
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