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What motivates children to radically transform themselves during early development?
We addressed this question in the domain of infant visual exploration. Over the first
year, infants’ exploration shifts from familiarity to novelty seeking. This shift is delayed
in preterm relative to term infants and is stable within individuals over the course of
the first year. Laboratory tasks have shed light on the nature of this familiarity-to-novelty
shift, but it is not clear what motivates the infant to change her exploratory style.
We probed this by letting a Dynamic Neural Field (DNF) model of visual exploration
develop itself via accumulating experience in a virtual world. We then situated it in a
canonical laboratory task. Much like infants, the model exhibited a familiarity-to-novelty
shift. When we manipulated the initial conditions of the model, the model’s performance
was developmentally delayed much like preterm infants. This delay was overcome by
enhancing the model’s experience during development. We also found that the model’s
performance was stable at the level of the individual. Our simulations indicate that novelty
seeking emerges with no explicit motivational source via the accumulation of visual
experience within a complex, dynamical exploratory system.
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One of the oldest questions in the history of human thought is
what motivates an individual to achieve a level just beyond reach.
Such motivation appears to be a central quality of human behav-
ior, and may be a driving force behind scientific advancement,
corporate innovation, and more generally, cultural evolution.
Striving beyond one’s reach is also an apt characterization of
human development where children undergo a series of aston-
ishing transformations. The newborn has a limited repertoire
including sleeping, eating, and crying. By the end of the first year,
the infant can walk and is beginning to talk. By age 5, the child is
learning to read, write, and sit in a classroom among peers. What
motivates a child to accomplish so much in so little time?

Seminal theories of cognitive development posit that infants’
active exploration of their environments enables them to develop
skilled action and cognitive systems (Piaget, 1952; Gibson, 1988).
Infants are seemingly driven to act by curiosity, ambiguity, and
novelty. These forces characterize intrinsic motivation and are
widely held in developmental psychology to propel development
forward (for a review, see Oudeyer and Kaplan, 2007). Yet the
nature of intrinsic motivation and the mechanisms by which it
creates change remain unclear.

Infancy might offer unique insights into the very nature of
intrinsic motivation and its role in development. But how do
we investigate intrinsic motivation in infants who have a lim-
ited behavioral repertoire? This requires clever methods to assess
how infants think. Such methods first emerged in the 1970s when
researchers developed a battery of novel habituation paradigms
that relied on infants’ looking behavior to measure cognition
(Cohen, 1972a,b; Fantz, 1974). In these paradigms, infants are
given experience looking at one item in isolation or in pairs. Then,

infants’ preference to look at a novel item relative to the familiar
item is measured. Infants’ preference to look at a familiar over
a novel item is taken as evidence that they recognize the famil-
iar item but have not yet formed a robust memory for it. Infants’
preference for novelty is taken as evidence that they have formed
a robust memory for the familiar item and are beginning to learn
about the novel item.

The use of looking paradigms led to the accumulation of a vast
literature on infant cognition. A key finding from this literature
is that infants’ familiarity and novelty preferences change across
multiple timescales, including during learning within a task and
over weeks, months, and years in development (for reviews, see
Hunter and Ames, 1988; Rose et al., 2004). With only brief expo-
sure to a stimulus, infants will exhibit a familiarity preference.
After prolonged exposure to the stimulus, infants will exhibit a
novelty preference (Rose et al., 1982; for exceptions and detailed
analysis, see Roder et al., 2000; Fisher-Thompson and Peterson,
2004). Critically, the rate at which infants move through this
familiarity-to-novelty shift increases with age. In fact, during the
first 1–2 months of life, infants move through this shift so slowly
that they sometimes show no novelty preference even after sev-
eral minutes of exposure (Wetherford and Cohen, 1973; Fantz,
1974). With age, however, infants spend more time looking at
novel items relative to familiar items (Fantz, 1974).

This characterization of familiarity and novelty preferences
is, of course, somewhat oversimplified. Infants’ preferences are
influenced by stimulus conditions, for instance (for reviews, see
Hunter and Ames, 1988; Rose et al., 2004). For some stimuli,
infants show no evidence of familiarity preferences early in
learning (Roder et al., 2000). For other stimuli, infants show a
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familiarity preference late in learning (Shinskey and Munakata,
2005). To complicate matters further, some studies have shown
that individual infants oscillate between familiarity and novelty as
they explore items (Fisher-Thompson and Peterson, 2004). And
even adults will show familiarity preferences under conditions in
which they freely explore visual scenes (Dodd et al., 2009). Thus,
the same exploratory system appears to organize itself differently
across contexts.

In the present report, we focus on the robust, quantitative
increase in infants’ exploration of novelty over development (for a
broader theoretical evaluation of the familiarity-to-novelty shift,
see Perone and Spencer, 2013a). This shift has been attributed
to an increase in visual processing speed over development. Rose
et al. (2002) nicely quantified this shift using a processing speed
task with 5-, 7-, and 12-month-old infants. Infants were pre-
sented with pairs of different stimuli across trials. On each trial,
one stimulus remained unchanged (familiar) and one changed
(novel). This design enabled Rose et al. to quantify the time
infants’ spent looking at the familiar item before shifting over
to explore novel items. Processing speed was measured as the
number of trials to a criterion defined as a looking preference
for the novel item on three consecutive trials. With age, infants
accumulated less time looking to the familiar item and more
quickly shifted toward looking to the novel item. This resulted
in a reduction in the number of trials to reach criterion over
development.

The use of looking paradigms has also led to two other key
observations. First, infants’ birth status influences the develop-
ment of the familiarity-to-novelty shift. For example, Rose et al.
(2002) found that term and preterm infants exhibited different
patterns of familiarity and novelty seeking over development. At
each age group, preterm infants required more trials to criterion
than term infants. Thus, preterm infants exhibited stronger famil-
iarity seeking biases than term infants and those persisted over
development. Second, individual differences in looking behavior
during infancy are stable over time. For example, Rose et al. (2001;
see also Colombo et al., 1987) found that looking measures of
exploration (e.g., frequency of gaze switching) and recognition
(e.g., preference for novelty) are stable within individuals over the
course of the first year. In addition, these looking measures dur-
ing infancy are predictive of cognition during toddlerhood (Rose
et al., 2009) and children’s executive functioning at age 11 (Rose
et al., 2012).

These laboratory-based observations have shed important
light on the nature of the transition from familiarity- to novelty-
seeking in the first year. Novelty-seeking has some distinct advan-
tages over familiarity-seeking, enabling infants to explore and
acquire knowledge about new items. Moreover, this exploratory
process builds a strong base of what is familiar to the infant. But it
is not clear from these data what motivates infants to switch their
exploratory style. Conceptual and formal theories of infant look-
ing and memory formation have attributed this shift to increases
in processing speed (for reviews, see Hunter and Ames, 1988; Rose
et al., 2004). By this view, infants’ switch in exploratory style is
simply a by-product of more efficient processing of visual infor-
mation in the neural systems involved in doing so (Colombo,

1995). Although compelling, such accounts rarely explain where
changes in processing speed come from.

Insights into this question might be obtained by moving
from constrained laboratory tasks to less constrained tasks where
infants can freely and autonomously explore the world around
them. A nice example of this comes from recent studies of the
transition from crawling to walking. What motivates an infant
to move from skilled crawling to unskilled walking? Why move
from an energy-efficient strategy to an energy-inefficient strat-
egy? Adolph et al. (2012; see also Adolph and Robinson, 2013)
observed infants’ who were learning to walk in more naturalis-
tic settings and made two surprising observations. First, infants
engage in massive practice from the onset of walking, walking
up to 8 football fields per day. Second, walking is initially as effi-
cient as crawling. Although newly walking infants often fall, they
also travel more distance. This observation changes the framing of
questions about motivation: if walking is as efficient as crawling,
why not walk? Walking creates no additional cost and has many
other advantages, enabling infants to carry objects from one loca-
tion to another and providing a continuous view of the world as
they move.

The lesson we take from this work on locomotor develop-
ment is that questions about transitions in development must be
framed within the context of the full range of infants’ experiences.
Thus, if we want to understand what motivates the infant to move
from familiarity- to novelty-seeking over development, we must
connect exploration in the laboratory to exploration in the real
world. One approach to connecting up these worlds is to evaluate
infants’ familiarity with items outside of the lab and assess how
they learn about those same classes of items inside the lab. For
example, Quinn et al. (2002) found that infants’ raised by female
caregivers were capable of remembering individual female faces
in the lab. Similarly, Kovack-Lesh et al. (2008) found that infants
raised with pets in the home were capable of remembering indi-
vidual cat exemplars in the lab. These findings show empirically
that the massive visual experience infants acquire outside of the
lab is, in fact, a key driver of development. But these are examples
of how infants’ experience with specific classes of items outside of
the lab influences how they form memories for those same classes
of items in the lab. Do massive quantities of visual experience in
the real world also impact the more general ability to seek novelty?

We examine this possibility in the present report using a
novel approach to understanding visual cognition in infancy—
computational modeling. Our starting point is an autonomous
Dynamic Neural Field (DNF) model of infant looking and learn-
ing developed by Perone and colleagues (Perone et al., 2011;
Perone and Spencer, 2013a,b). We have used this model in the past
to capture data from studies on the familiarity-to-novelty shift.
To do this, we changed parameters of the model over develop-
ment “by hand” to gain an understanding of how this transition
might emerge over development. The insight from this work was
that general parameter changes in the strength with which excita-
tory and inhibitory neurons interact in the model transformed an
initially familiarity-seeking model into a novelty-seeking model.
The key mechanism underlying this change was the emergence of
a new ability—the ability to form a working memory (WM) for
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objects. The ability of the model to quickly form working memo-
ries for objects enabled it to recognize those objects as known and
explore new objects.

Here, we ask if this model can develop itself and show
the autonomous emergence of novelty-seeking behavior. In
particular, can we initialize a model with a given set of param-
eters, situate this model in a virtual world, and let it create its
own developmental shift from familiarity- to novelty-seeking via
autonomous visual exploration. If so, we can then take a step back
and ask: what motivated the model to seek novelty?

In the sections that follow, we describe the DNF model and
the hypothesis that guided our “by hand” exploration of develop-
ment in previous work. We then pursue a demonstration proof
that the model can develop autonomously through a variant of
Hebbian learning. We do this first at a group level. We created a
term infant model, let it develop “outside” the lab, and repeatedly
brought the model “into the lab” to assess whether it exhibited
the familiarity-to-novelty shift in the processing speed task devel-
oped by Rose et al. (2002). Results show that the model effectively
captures many aspects of the developmental shift. We also asked
whether changes in the initial conditions of the model could
mimic the development of preterm infants. Results show that the
model captures the developmental delays this infant population
exhibits.

These simulations provide an initial demonstration that
novelty-seeking can emerge from the accumulation of massive
out-of-lab experience in our computational model. But intrinsic
motivation is not a group-level phenomenon. The motivation to
push boundaries in development happens at the level of the indi-
vidual infant. Thus, in a second study, we looked at the character-
istics of individual simulations and ask whether each simulation
creates its own unique path from familiarity- to novelty-seeking.
These simulation data provide new insights into the sources of
individual differences. We conclude by returning to the issue of
intrinsic motivation and raise the possibility that no explicit moti-
vational force is needed to explain developmental change within
an autonomously behaving complex neural system.

A DYNAMIC NEURAL FIELD MODEL OF INFANT VISUAL
EXPLORATION
Figure 1 shows the DNF model architecture. Model equations
and parameter values are given in the Appendix. For illustration,
the model is situated in a virtual world that consists of a typi-
cal laboratory setting in which relevant stimuli appear at left and
right locations, task-irrelevant stimuli appear at away locations,
and attention-getting stimuli often used to orient infants to the
location at which stimuli appear at a center location. The fixation
system consists of a collection of nodes that fixate left (L), right
(R), center (C), and away (A) locations in a winner-take-all fash-
ion. When a node is suprathreshold (>0), it is said to be in the
fixation state. The presence of objects in space bias the fixation
system to enter the fixation state (see green arrow from space to
fixation system).

The fixation system is reciprocally coupled to a neurocognitive
system shown in the bottom panels of Figure 1. One component
of the neurocognitive system is a perceptual field (PF) that con-
sists of a population of neurons with receptive fields tuned to a

FIGURE 1 | DNF model architecture. At the top is a virtual world at which
the model looks. The virtual world consists of two objects at left and right
locations distributed over a continuous feature dimension (e.g., color). The
presence of items at left and right locations bias the fixation system to look
at those locations (see green arrow from space to fixation system). The
fixation system interacts in a winner-take-all fashion such that fixating a
location suppresses fixation to all other locations (see red arrows between
nodes). Fixating a location acts like a perceptual gate into the cognitive
system, which consists of a perceptual field (PF) and working memory
(WM) field. PF and WM are reciprocally coupled to a shared layer of
inhibitory interneurons (Inhib; not show). Activity in PF supports fixation
(green bi-directional arrow between PF and fixation). Activity in WM
suppresses PF via a strongly tuned connection from WM to Inhib (red
arrow from WM to PF). Activity in PF and WM are influenced by activity in
Hebbian layers, HLPF and HLWM, respectively, which accumulates over
learning and facilitates encoding in PF and memory formation in WM.

continuous feature dimension (e.g., color). The model can repre-
sent stimuli along multiple dimensions (see Perone and Spencer,
2013b). For simplicity, we use one dimension here. When a given
node in the fixation system is in the fixation state, the stimu-
lus at the associated location is input into PF which encodes the
stimulus by forming an activation peak that estimates the fea-
ture value (e.g., blue). Neuronal activity within PF is governed by
local excitatory/lateral inhibitory interactions. These interactions
within PF are relatively weak; thus, once a stimulus is removed,
the activation peak relaxes back to the neuronal resting level.

Encoding within PF has two important functions in the
model. First, encoding supports continued fixation. Activation
in PF feeds back into the fixation system which sustains the
fixation state and supports further encoding of the stimulus.
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Second, encoding leads to the formation of working memories.
In particular, activation in PF passes excitatory input to a layer of
similarly tuned neurons in a WM field. Like PF, neuronal activ-
ity within WM is governed by local excitatory/lateral inhibitory
interactions. Unlike PF, however, neural interactions within WM
are stronger. Consequently, activation peaks can be maintained in
the absence of input via recurrent excitatory and inhibitory inter-
actions. This is the mechanism for maintaining information in
WM in the model.

There are two other patterns of connectivity in the DNF
model. First, PF and WM are reciprocally coupled to a shared
layer of inhibitory interneurons (Inhib; not shown). This con-
nectivity creates the lateral inhibitory interactions within PF and
WM. Critically, the connection from WM to Inhib is set such that
strong activity in WM suppresses activity in similarly tuned neu-
rons in PF (see red arrow from WM to PF). This weakens support
for fixation from PF, leading to the release from the fixation state
when a WM peak is present. Thus, the model encodes a stimulus
which drives sustained looking and forms a WM for the stimulus
which drives looking away. Second, PF and WM are reciprocally
coupled to Hebbian layers (HL; not shown) that implement a
form of Hebbian learning. In particular, suprathreshold activity
in PF and WM leads to the accumulation of activation at sim-
ilarly tuned sites in HLPF and HLWM, respectively. The absence
of suprathreshold activity in PF and WM leads to slow decay in
these HL. Activation traces in HLPF facilitate encoding of pre-
viously encoded stimuli in PF. This supports familiarity-seeking
and is the basis of recognizing what is known early in devel-
opment (Wetherford and Cohen, 1973; Fantz, 1974; Perone and
Spencer, 2013a). Activation traces in HLWM facilitate the forma-
tion of WM peaks. This can lead to the fast suppression of peaks in
PF, freeing the model to look away from familiar or known items
toward novel items. Thus, this supports novelty seeking.

Figure 2 illustrates the real-time process by which the DNF
model learns as it explores objects in a virtual world over time.
The top panels show a model that has accumulated little devel-
opmental experience exploring items distributed over a color
dimension (A–F). The bottom panels show the same model after
it has acquired more experience (G–L). Each panel has the same
format. At the top is a collection of objects that the model is
exploring over time. The cartoon infant head shows what object
is being fixated during each time slice. The next two figures show
activation in PF and WM (see black lines and left y-axis) and the
strength of experience accumulated in HLPF and HLWM (see red
lines and right y-axis).

In Figure 2A, the model first looks at the blue object. This
excites neurons in PF which, in turn, supports continued fixation
and leads to excitation of similarly tuned neurons in WM. The
fixation system is stochastic which enables it to spontaneously dis-
engage fixation and shift gaze direction. In 2B, the fixation system
has switched gaze and is now looking at, encoding, and forming
a WM for the yellow object. Notice that activity associated with
the blue object has subsided within PF and WM; the model is not
encoding the blue object or maintaining a WM of the object. In
2C, the model has again switched gaze and is fixating the blue
object and maintains fixation across 2C,D. This continued fixa-
tion enables the model to form a robust peak in WM and acquire a

long-term memory via the HL (see red “bump” of activity in HLPF

and HLWM in 2D). WM activity is also beginning to suppress
PF activity to below threshold levels which leads to less support
for fixation. Consequently, the model switches gaze. In 2E,F, the
model switches gaze and is fixating, encoding, and forming a WM
for the orange object. Once again, the WM of the blue object is
not maintained.

In Figures 2G–L, the same model has acquired more experi-
ence by exploring a virtual world consisting of objects distributed
over a color dimension. This experience has created the stronger,
densely distributed traces in HLPF and HLWM shown in 2G–L.
This model is now more familiar with the color dimension. This
familiarity has a dramatic impact on looking and learning. In 2G,
the model quickly encodes the blue object into WM, suppress-
ing PF activity to near threshold levels, and biasing the model to
switch gaze. In 2H, the model is fixating the yellow object and,
again, WM activity suppresses PF activity to near threshold levels.
When the model re-fixates the blue object, WM activity sup-
presses PF activity to below threshold levels (2I) and the model
quickly looks away—the model is seeking novelty.

Critically, this novelty seeking behavior is a result of the accu-
mulated long-term experience—the model quickly forms robust
working memories because the Hebbian traces have moved WM
closer to threshold. This can be seen in 2J–L. The model fixates
the orange object (J) and forms a robust memory after maintain-
ing fixation (K). This enables the model to explore a new location
at which the green object is present (L). Notice that WM activity
associated with the orange object is hovering around threshold in
2L even though the model is fixating the green object. This ability
to form an enduring, actively maintained WM enables the model
to seek novelty, actively contrasting what is known with what is
novel. This emerges from a confluence of factors including the
duration with which the model fixates an object, the strength of
HLWM that facilitates activity within WM, and the strong tun-
ing of local excitatory/lateral inhibitory interactions within WM.
This stable WM peak has a dramatic impact of the model’s behav-
ior. For example, when the model re-fixates items that it is actively
maintaining in a WM state, PF activity is quickly suppressed. This
leads to the quick release of fixation and frees the fixation system
to seek novel items.

SIMULATION EXPERIMENT 1
The goal of Simulation Experiment 1 was to probe whether the
model could develop novelty-seeking behavior from autonomous
visual exploration in a “real” world. If so, this might shed light on
where the motivation to seek novelty comes from. As described
previously, this goal emerged from our earlier work using the
DNF model to quantitatively simulate the familiarity-to-novelty
shift in early development (Perone and Spencer, 2013a). We did
this by changing parameters of the model “by hand” according to
the spatial precision hypothesis (SPH) proposed by Schutte and
Spencer (2009; see also Schutte et al., 2003; Simmering et al., 2007;
Perone et al., 2011; Perone and Spencer, 2013a,b).

According to the SPH, excitatory and inhibitory interac-
tions become stronger over development, leading to more
robust neural activation states and “sharper” peaks of activa-
tion. Implementing the SPH involves strengthening within-layer
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FIGURE 2 | Illustrates how the accumulation of experience in HLPF and

HLWM over a continuous dimension influences real-time exploration of

items distributed along that dimension. Shown at the top of each panel
are 5 objects distributed along the color dimension that the model is
exploring over time. The cartoon infant shows the direction of gaze. Panels
(A–F) show how the model explores items after little experience has
accumulated in HLPF and HLWM (see red line, right y-axis). Initially, the model
is fixating, encoding, and forming a working memory for the blue item (see
black line in A). The model spontaneously switches gaze and begins to
encode and form a working memory for the yellow item (B). The model then
looks back to the blue item (C). Dwelling on the blue item leads WM activity
to grow in strength and suppress activity in PF (D). This frees the model to

switch gaze and encode and form a working memory for a new item, which
happens to be the orange item (E,F). Notice the robust long-term memory for
the blue item accumulated in HLPF and HLWM. Panels (G–L) show how the
same model explores items after more experience has accumulated in HLPF

and HLWM (see red line, right y-axis). Initially, the model is fixating, encoding,
and forming and working memory for the blue item (A). The model switches
gaze to the yellow item (B) before switching back to the blue item (C). Now,
the strong experience in HLPF and HLWM enables the model to quickly form a
robust memory for the blue item after dwelling for just a short while. The
model is freed to explore new items and, again, quickly forms a working
memory for the orange item (J,K). The faster rate at which the model
encodes and forms memories enables it to explore more items (L).

excitatory connections in PF and WM and cross-layer inhibitory
interactions from Inhib to PF and WM. When neural interac-
tions are weak, the model slowly encodes and slowly forms peaks
in WM. This creates a familiarity-seeking model that dwells on
familiar items for relatively long durations before looking to novel
items. When neural interactions are stronger, the model quickly
encodes items and quickly forms peaks in WM. This creates a
novelty-seeking model that has short dwell times on familiar
items before looking to novel items (see Perone and Spencer,
2013a).

Implementing the SPH in the DNF model only requires
changes in the strength of excitation and inhibition. Might these
changes emerge from a simple Hebbian learning process? Recall

that HL coupled to PF and WM accumulate memory traces as
peaks are built in PF and WM. This increases the excitability of
previously active sites as well as nearby sites based on a similarity
gradient. As general experience across a dimension accumulates,
this might approximate the increase in excitatory strengths we
implemented by hand. What about the increase in inhibition? As
excitatory interactions strengthen, PF and WM will pass stronger
activation to the shared inhibitory layer. This might give rise to an
effective increase in inhibition as well.

We explore these possibilities here across two groups of sim-
ulations. In one set of simulations, the DNF model was tuned to
mimic the behavior of term infants. In the second set of simula-
tions, the model was tuned to be “less mature” using the SPH as
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a guide. This enabled us to examine how the initial conditions set
by the model parameters impact development relative to the role
of massive “out-of-lab” experience. To benchmark these simula-
tions, we assessed the familiarity- and novelty-seeking biases of
the model in the processing speed task developed by Rose et al.
(2002) by repeatedly bringing the model “into the lab” over the
course of its development.

Figure 3 shows a schematic of the processing speed task. At
the beginning of the task, infants are presented with a pair of
different stimuli. In Rose et al. (2002), faces were used as stim-
uli. The procedure has been used in other studies as well and
is robust to variation in stimuli (Robinson and Sloutsky, 2007).
After the first trial, one item was designated as the familiar item
and remained unchanged across trials (orange star). Infants were
required to accumulate 4 s of looking on each trial. Once infants
met the looking criterion, the trial ended and the next trial began.
On each trial, a novelty score was calculated by dividing looking to
the novel stimulus by total looking accumulated across the novel
and familiar stimulus. The measure of processing speed was the
number of trials required to exhibit a novelty score greater than
55% on three consecutive trials.

Rose et al. (2002) reported three additional measures of look-
ing. The first is looking to the familiar item which is the amount
of time infants accumulated looking to the familiar stimulus prior
to meeting criteria. This is a good index of infants’ familiar-
ity seeking bias and has long been assumed to reflect the time

FIGURE 3 | Processing speed task developed by Rose et al. (2002).

Infants were presented with a pair of different stimuli on each trial. Across
trials, one stimulus remained unchanged (familiar) and one changed (novel).
On each trial, infants were required to accumulate 4 s of looking. Infants
met a learning criterion once they looked at the novel stimulus more than
55% of the time on the 3 consecutive trials or 36 trials had passed. In the
empirical study, stimuli were faces. There were 19 stimuli, one designated
as the familiar and 18 designated as novel. If 18 trials had passed before
infants met the criteria, the 18 novel stimuli were represented.

required for infants to form memories (Cohen, 1972a,b; Hunter
and Ames, 1988; Colombo and Mitchell, 1990). The second is
shift rate which is the rate of gaze switching relative to time spent
looking. Shift rate has been proposed to reflect the efficiency with
which infants distribute their attention through time and space
(Rose et al., 2007). The last is look duration which the average
length of each look. Like shift rate, look duration has been pro-
posed to be a measure of disengaging and distributing attention
(Rose et al., 2007).

Figures 4A–D shows infants’ performance in the processing
speed task (Rose et al., 2002). The left portion of each panel shows
term infants at 5 months of age (blue bars), 7 months of age
(red bars), and 12 months of age (black bars). Over development,
term infants exhibited a decrease in trials to reach criterion (A),
accumulated less time looking to the familiar item (B), exhib-
ited higher shift rates (C), and exhibited shorter look durations
(D). Preterm infants produced a similar pattern of results but,
critically, at each age exhibited behavior that resembled relatively
younger term infants. For example, 7-month-old preterm infants
required about the same number of trials to reach criterion as
5-month-old term infants. This pattern of results indicates that
preterm infants are delayed on these measures.

In the past, we have used the DNF model and SPH to cap-
ture developmental changes in the suite of measures assessed by
Rose et al. (2002) using data from a preferential looking paradigm
(Perone and Spencer, 2013a). Here, we test whether the accumu-
lation of experience in the DNF model can do the work of the SPH
and quantitatively simulate the empirical data shown in Figure 4.

METHOD
The DNF model was situated in a simple virtual world consisting
of two items that varied along a single dimension. The dimension
consisted of 360 degrees of metrically organized continuous fea-
ture space (e.g., color). We randomly sampled items for the model
to explore from a set of 360. A non-fixated item was replaced every
1000 time steps. This enabled the model to sample many different
items over time, consistent with what infants might experience
interacting with parents as they show infants different toys from a
larger set of possible toys.

The simulations were parsed into 30 10,000 time step episodes
of visual exploration (300,000 time steps of experience in total).
Conceptually, these episodes occur over the time scale of months;
however, in the model, we condensed this experience consider-
ably to keep the simulation time reasonable (e.g., even with this
condensed “out-of-lab” experience, it took over 8 h of simulation
time to run a single simulation through the full set of out-of-
lab and in-the-lab experiences). In addition to the 30 episodes of
exploration, we inserted inter-episode intervals of 100 time steps.
During these intervals PF, WM, and Inhib were re-initialized (i.e.,
set to 0 activation). This eliminated any sustained WM peaks and
reset the fields for exploration of new items at the onset of the
next episode.

We wanted to test whether differences in the initial conditions
of the DNF model could account for population differences in
the familiarity-to-novelty shift over development. Thus, we cre-
ated two models with differences in the initial parameter values
using the SPH as our guide. Specifically, we first created a “term”
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FIGURE 4 | Panels (A–D) show empirical results from the processing

speed task reported by Rose et al. (2002) for term (left) and preterm

(right) infants at 5 (blue), 7 (red), and 12 (black) months of age. With
age, term and preterm infants exhibited fewer trials to criterion (A),
accumulated less time looking to the familiar (B), higher shift rates (C),
and shorter look durations (D). Preterm infants’ behavior at every age

resembled that of younger, term infants. Panels (E–H) show results from
the DNF model in the processing speed task for the term (left), preterm
(middle), and intervention (right) models. The DNF model exhibited a
similar pattern of results for the term and preterm infant models. The
intervention model showed performance that resembled the term model
by 12 months of age.

model. To do this, we allowed the DNF model to accumulate
experience in the HL by exploring a virtual world and assessed
its performance in the processing speed task over the course of its
development (see below). We then hand-tuned the DNF model
parameters until we established a parameter set that produced a
pattern of results that was quantitatively similar to the empirical
results for the term infants reported by Rose et al. (2002). After
that, we uniformly weakened the SPH parameters by 20%. We
will refer to this weaker parameter set as the “preterm” model.

The development of the term and preterm models were sim-
ulated 5 times each. During each simulation, we saved the state
of HLPF and HLWM after each episode of exploration. We then

averaged HLPF and HLWM across all 5 simulations. This created
nearly uniform levels of activation across all neuronal sites in the
HL by smoothing out the peaks and valleys of activation in the
layers that were unique to each individual simulation (e.g., com-
pare the HL for group level simulations in Figure 5 to individual
simulations in Figure 7). This uniformity mimics the strength-
ening of excitatory connections across an entire dimension we
implemented by hand when we implemented the SPH in previous
work. Our goal in averaging the HL was to maximize the stabil-
ity of the model’s behavior across simulations when situated in
the processing speed task (see below), much like averaging the
looking behavior across a group of infants.
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FIGURE 5 | The top shows the rate at which DNF model formed a

stable WM peak for the term (A), preterm (B), and intervention (C)

models at 5 (blue), 7 (red), and 12 (black) months of age. Over
development, all models formed a stable WM peak more quickly. The
rate of WM peak formation was delayed for the preterm model but

enhanced by 12 months of age for the intervention model. The bottom
shows the experience accumulated in HLPF and HLWM for the term
(D), preterm (E), and intervention (F) models. The strength of activation
in the Hebbian layers was comparable for the term and preterm infant
models. It was stronger for the intervention model.

Next, we initialized the term and preterm models with their
respective mean HLPF and HLWM accumulated at 5, 10, and 30
episodes and situated each model in the processing speed task
developed by Rose et al. (2002). For ease of comparison to the
empirical data, we refer to these initializations as the term and
preterm infant models at 5, 7, and 12 months of age. We ran
100 simulations of each model. This number of simulations pro-
vided a thorough assessment of the range of the model’s looking
behavior in the processing speed task in the context of the natu-
ral variation the model shows when placed in a laboratory-based
learning task (for a discussion, see Perone and Spencer, 2013a,b).
To precisely map the models’ performance in the lab with the
timing of events in the speed of processing task, we assumed
the mapping used in our previous studies where 200 time steps in
the model was equal to 1 s (Perone and Spencer, 2013b). Note that
in the simulation method described above, learning inside the lab
did not influence the model’s performance outside of the lab.

RESULTS AND DISCUSSION
The simulation results are presented in the following three
sections. In the first section, we describe the DNF model’s
performance in the processing speed task and the underlying
neurocognitive dynamics. In the second section, we probe
whether the development of the preterm infant model might
be modified through an intervention. This helped us assess the

influence of the initial model parameters relative to the accu-
mulation of out-of-the-lab experiences. In the third section, we
probe whether the accumulation of experience in the HL led to
sharper and more robust WM peaks consistent with the SPH we
implemented “by hand” in previous work.

Cognitive and behavioral dynamics
Figures 4E–H shows the DNF model’s performance in the pro-
cessing speed task. Like infants, over development the term infant
model exhibited a decline in trials to reach criterion (E) and accu-
mulated less time looking to the familiar item (F). The model
also showed a small, quantitative increase in shift rate (G) and
decrease in look duration (H) over development. Like infants,
the preterm infant model exhibited a similar, but delayed, pattern
relative to the term infant model.

What are the sources of these developmental changes in the
model’s performance? The top portion of Figure 5 shows one crit-
ical change—the mean trial on which the model first formed a
stable WM peak for the familiar item. A stable WM peak was
defined as sustaining suprathreshold activity across the inter-
stimulus interval (4 s; see Perone and Spencer, 2013a). Over
development, the term (A) and preterm (B) infant models form
WM peaks more quickly, with the preterm model lagging the
term model. This index of the model’s performance is important
because maintaining the familiar item in WM produces strong
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inhibition in PF at sites involved in encoding the item. This, in
turn, leads to less looking to the familiar item and more looking
to the novel item. That is, quick WM formation allows the model
to actively recognize what is known and seek novelty. In addition,
quick WM formation leads to more frequent gaze switching and
shorter look durations over development, allowing the model to
more effectively explore items in the task space.

What drives these changes in WM in the model? These
developmental differences emerge from the accumulation of
distributed memory traces in HLPF and HLWM over time.
Figures 5C,D shows the state of HLPF and HLWM for the 5-
(blue lines), 7- (red lines), and 12-month-old (black lines) mod-
els. Over development, activation across the dimension grew in
strength for the term (C) and preterm (D) models. In other
words, the model became increasingly familiar with the entire
dimension. This, in turn, led PF to encode items more quickly
and WM to maintain those items more robustly.

These simulations shed new light on the origins of intrinsic
motivation. Specifically, the simulations allow us to ask where
the motivation to seek novelty comes from. Novelty seeking has
some distinct advantages over familiarity seeking for infants. For
example, novelty seeking enables infants to compare known with
unknown items, efficiently explore complex environments, and,
more generally, opens the door to discovery. Critically, infants
do not know this ahead of time. Our simulations indicate that
the motivation to seek novelty emerges from the accumulation
of visual experience within a complex, dynamical exploratory
system. A key property of the DNF model is that real-time,
autonomous exploratory behavior creates a history that influ-
ences the behavior of the system at future points in time. The
accumulation of this history over time led to the emergence of
a new ability—quickly forming working memories of “known”
items. This cognitive ability enables an increasing bias to seek
novelty to gradually emerge without an explicit motivational
force. We discuss this topic further in the General Discussion.

These simulations also shed new light on the population
differences in the familiarity-to-novelty shift. In particular, the
Hebbian traces accumulated for the term and preterm model
were quite similar (compare Figures 5D,E) and were not suffi-
cient to overcome the weaker neural interactions in the preterm
infant model. This indicates that population differences in visual
exploration and WM formation are largely attributable to the
initial conditions of the system, while developmental changes
emerge from the accumulation of out-of-the-lab experiences.
Below, we probe whether altering the experience of the preterm
infant model during development influences its novelty seeking
behavior in the processing speed task.

Intervention
The simulations results described above show that novelty seeking
emerges as experience accumulates via a Hebbian learning pro-
cess. However, the initial conditions of the model played a major
role in development: the accumulation of experience did not
enable the preterm model to overcome the initially weaker neural
interactions. How strong is this constraint on development? Are
there ways that we might enhance the model’s experience and, in
turn, foster the development of novelty seeking biases?

There is a large literature showing that how other agents (e.g.,
parents) interact with infants while exploring objects influences
how they distribute their looks (Landry and Chapieskie, 1988;
Perrinello and Ruff, 1988). This is especially salient in interven-
tions with preterm infants. For example, Landry et al. (2006,
2008) have shown that preterm infants benefit in the social, cog-
nitive, and linguistic domains when parents are trained to act
responsively to their infants while exploring objects as part of an
intervention. This involves “following in” on the objects infants
explore and helping infants maintain attention (e.g., by manipu-
lating the object of infants’ focus) rather than shifting attention
to other objects (e.g., manipulating an object elsewhere).

Can we manipulate the nature of the preterm model’s expe-
rience and transform it into a term-looking model in a similar
way? For example, can we bias the model to continue looking
at an object and, in turn, enhance encoding, WM, and long-
term memory formation? Could this enhance traces in HLPF and
HLWM enough to overcome the weaker neural interactions of the
preterm model? This would help us assess the relative impact of
the model’s initial parameter setting versus the accumulation of
out-of-lab experiences.

To test this possibility, we re-simulated the development of the
preterm model. After the fifth episode, we implemented an inter-
vention. We wanted to probe how an intervention might unfold in
the real world where infants do some developing during the first
few months of life, undergo assessment, and are assigned to an
intervention thereafter. In our intervention, the model was biased
to sustain looking at whatever item it happened to be fixating. If
the model was fixating the left location, for example, the input
from the object in at that location in space was increased. This, in
turn, provided a slight boost of excitation to the fixation system,
helping to maintain fixation. In the DNF model, this is equivalent
to another agent manipulating an object in space (see Figure 1).

Figure 4 shows the simulation results. The intervention had
the most dramatic impact on the number of trials to criterion (E)
and looking to the familiar item (F). In particular, by 12 months
the intervention model met criterion at a rate comparable to the
term model at the same age. Similarly, by 12 months the interven-
tion accumulated less time looking to the familiar item much like
the term model at the same age. A substantive amount of inter-
vention experience was required for the intervention to exert its
effects on the model’s performance in the processing speed task.
Ultimately, however, the intervention created a preterm infant
model with a robust novelty-seeking bias comparable to term
infants.

What are the sources of these behavioral changes? Figure 5C
shows the trial on which the intervention model formed a stable
WM peak. At 5 (blue bars) and 7 (red bars) months, the interven-
tion model formed a WM peak at rates comparable to the preterm
infant model (B). By 12 months (black bars), however, the inter-
vention model formed a WM peak at rates that exceeded the term
model (A). This improved capacity of the intervention model to
quickly encode items and maintain items in WM arises from the
strength of activity accumulated in the HL. As can be seen 5D, the
strength of HLPF and HLWM by 12 months (black lines) is much
stronger than at the same time for the term (C) and preterm (D)
infant models. This stronger accumulation of activity in the HL
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enabled the intervention model to overcome the weaker neural
interactions of the preterm infant model.

Spatial precision hypothesis
In our previous work, we implemented the SPH by hand, show-
ing that stronger neural interactions lead the DNF model to form
working memories more quickly (Perone and Spencer, 2013a).
This effective increase in processing speed also led to stronger
biases for novelty, shorter looks, and higher rates of gaze shifting.
Here, we observed these very same patterns of change over devel-
opment. But does the accumulation of experience via Hebbian
learning yield the same changes in neural interactions produced
by SPH?

Implementing the SPH via hand-tuning neural interactions
leads to stronger, narrower WM peaks with deep lateral inhibition
(see Schutte and Spencer, 2009). We tested whether the accumu-
lation of experience in the HL reproduced this activation profile
by initializing the DNF model with the state of the HL after 5, 10,
15, 20, and 25 episodes of exploration. The model was presented
with a single stimulus for 2000 time steps. When the stimulus was
removed, we sampled the state of WM every time step for 1000
time steps. We then averaged the state of WM across all samples
to obtain a representative WM profile. Noise was turned off so
that we could obtain a clean estimate of how the HL impact WM
peaks (see Schutte and Spencer, 2009).

The results are shown in Figure 6. Over development, the
strength of the activation peak increased. After 5 (red), 10 (blue),
and 15 (green) episodes of exploration, the peak was too weak
to maintain a stable WM peak under the task conditions. After
20 episodes of exploration (cyan), the accumulated memory
traces in HLWM enabled WM to maintain a peak at suprathresh-
old (>0) levels. The model effectively acquired a new cognitive

FIGURE 6 | Test results of whether experience accumulated across a

dimension can lead to the SPH at the level of neural interaction. The
model was initialized with the experience accumulated in the Hebbian
layers after every 5 episodes of exploration, which is shown by the different
colored lines. The figure shows the state of WM during the inter-stimulus
interval following stimulus presentation (see text). With experience, the
WM field was able to form a stable peak. This peak had a strong excitatory
component and deep inhibitory component much like implementing the
SPH via hand-tuning the strength of excitatory and inhibitory connections.

ability. In addition, the excitatory component of the peak grew
in strength and became somewhat narrower over development.
The inhibitory component grew broader and deeper as well. It is
notable that these neurodevelopmental changes in excitation and
inhibition were all driven by the accumulation of excitatory mem-
ory traces. As the strength of HLWM increased, excitation in WM
became stronger which passed stronger activation into the layer of
inhibitory interneurons. This, in turn, projected stronger lateral
inhibition back to WM. Thus, the present simulations demon-
strate that the SPH can emerge over development via a variant
of Hebbian learning as the model accumulates “out-of-the lab”
experiences.

Simulation Experiment 1 revealed three key insights. First, the
accumulation of visual experience along a dimension leads to
quicker WM formation for stimuli on a familiar dimension. This
quick recognition, in turn, promotes novelty-seeking. Second,
the impact of visual experience on cognition is influenced by
the initial state of the neurocognitive system. The neurocogni-
tive deficits of the preterm infant model were expressed over
development, leading to slower WM formation along a famil-
iar dimension across the first year. Increasing the intensity of the
experience the preterm infant model acquired with a dimension,
however, enhanced WM formation by strengthening the famil-
iarity with that dimension. Lastly, the accumulation of visual
experience led to stronger neural interactions within the neu-
ral populations involved in encoding and WM formation. This
strengthening was created by the accumulation of Hebbian learn-
ing but resembled the SPH at the neurocognitive (faster WM
formation) and behavioral (less looking to familiar items) levels.
These results indicate that processing speed and, consequently,
the transition to novelty seeking over development emerges from
experience.

SIMULATION EXPERIMENT 2
Simulation Experiment 1 showed that the familiarity-to-novelty
shift emerges over development as experience accumulates via a
Hebbian learning process. It also showed that the motivation to
seek novelty comes for free from the dynamics of a historical cog-
nitive and behavioral system. But these simulations were at the
level of the group. Recall we simulated the development of 5 indi-
viduals and initialized the model in the processing speed task with
the average state of those individual HL. The motivation to push
boundaries in development, however, happens at the level of the
individual. Each individual must forge a unique path and strive
beyond what is currently possible.

In the infant cognition literature, individual differences in
visual exploration have long been attributed to differences across
infants in the neurodevelopmental mechanisms that underlie
basic perceptual and cognitive processes (Colombo and Mitchell,
1990; Rose et al., 2007). This position stems from two observa-
tions. First, numerous studies have shown that individual differ-
ences in looking are stable during the first year of life (Colombo
et al., 1987; Rose et al., 2001). Second, individual differences in
looking are predictive of cognitive developmental outcomes in
toddlerhood (2009) and adolescence (2012).

This view of individual differences is generally consistent with
the group-level differences from Simulation Experiment 1. There,
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differences across simulations reflected, in part, different initial
conditions in parameter values. Applied at the level of individ-
uals, we might create an entire ensemble of individual models,
with some models starting off with slightly stronger excitatory
and inhibitory interactions than others (see, e.g., Perone and
Spencer, 2013a). But individual differences might also reflect the
differential accumulation of experience over development. For
instance, Perone and Spencer (2013a,b) showed that experience
on the task time scale creates variation in looking that mimics
aspects of developmental changes, even when models start with
the same initial conditions. Might the accumulation of experience
over development lead to stable individual differences even when
models—or infants—start out in the same neurodevelopmental
state? We probe this possibility below.

METHOD
We simulated the development of 10 individuals term, preterm,
and intervention models using the same method described above
with one exception. In the simulations above, we averaged the HL
across simulations and situated the model in the processing speed
task after 5, 10, and 30 episodes. Here, we initialized the model
with HLPF and HLWM from each of the 10 individual simulations.
As above, each model was run in the processing speed task 100
times to assess the full range of performance for each individual.

RESULTS AND DISCUSSION
Figure 7 shows a sample of three individual term infant simula-
tions. The left portion shows the activation traces in HLPF and
HLWM for each simulation. Notice that each simulation varies in
the strength, distribution and location of peaks and valleys along
the feature dimension. Also notice that these peaks and valleys are
much more pronounced at the individual level than at the group
level (compare 7A to 5C). This highlights individual differences in
what the model happened to form robust memories for during its
development. The right side of the figure shows three measures
from the processing speed task: trial of stable WM peak forma-
tion, trials to criterion, and looking to the familiar. As can be
seen, each individual follows a distinct, yet similar, developmen-
tal trajectory. For example, the individual in 7A showed a shallow,
steady decrease in the trials to meet criterion over development.
The individual in 7B showed a steep decline. And the individual
in 7C showed little decline from 5 to 7 months but a sharp decline
from 7 to 12 months.

This holds true for the preterm infant model as well. Three
individual simulations of this model are shown in Figures 8A–C.
Consistent with the group level simulations, the structure of the
developmental trajectories for the individual term and preterm
infant models were influenced by the initial conditions. That
is, individual preterm infants exhibited a similar, yet delayed,
developmental trajectory relative to the individual term infant
models. The pattern is somewhat different for the intervention
model. Three individual simulations of this model are shown in
Figures 9A–C. For the intervention simulations, some individu-
als showed a dramatic decline in trials to criterion by 12 months
of age, much like the group level analyses (see 9C). Others, by
contrast, showed an increase in the number of trials to criterion
(see 9A).

Figures 7–9 show that each individual had a unique develop-
mental trajectory. But did the accumulation of experience in the
model create a stable pattern of familiarity and novelty seeking
biases over development? In other words, were familiarity-seeking
individuals early in development also familiarity-seeking individ-
ual later in development? Figure 10 shows the trials to criterion
for the 10 individual term, preterm, and intervention simulations.
Inspection of the plots reveals some stability over development in
each group, even though individual runs of the model in each
group had exactly the same initial conditions. For the term infant
model, S8 (salmon) and S5 (turquoise) are relatively slow pro-
cessors at 5 and 7 months. S1 (blue) and S7 (light blue) are fast
processors at 5 and 7 months. And S3 is neither fast nor slow at
5 and 7 months. The preterm infant model is considerably more
variable. The weaker neural interactions of the preterm model
make it more susceptible to stochastic influences. Nevertheless,
S3 (green) and S6 (orange) are faster than S9 (light green) and
S10 (purple) at all three ages. The intervention model was even
more variable than the preterm infant model, yet it also showed
signs of stability. For example, S10 (light purple) was faster than
S6 (orange) at all three ages.

The striking variability in the individual intervention sim-
ulations indicates that the intervention did not impact every
individual in the same way. For example, S4 (dark purple) and
S10 (light purple) were both quick novelty-seekers by 12 months.
By contrast, S1 (blue) quickly met the novelty-seeking criterion
at 5 months but exhibited in an increase the trials to criterion
at 12 months. Figure 8A shows the accumulation of activation
in the HL for this model. As can be seen, S1 acquired some tall,
broad memory traces (see near site 80) between 7 (red line) and
12 (black line) months in both HL. This pattern of activity can
lead to the model to dwell because the traces in PF are so strong.
Consequently, the model spent more time looking to the famil-
iar item and exhibited longer look durations at 12 months (black
bars) than at 7 months (red bars) even though it actually formed
a WM peak more quickly at 12 months than at 7 months. The
accumulation of activity in the HL for S5 and S10 are shown
in Figures 8B,C, respectively. These simulations acquired a more
evenly distributed pattern of activity, especially in HLPF . This, in
turn, led these simulations to exhibit a relatively consistent shift
from familiarity to novelty seeking over development that aligned
well with their developing capacity to form working memories.
These simulation results raise the exciting possibility that we
can map individual models to individual infants and capture the
impact of real-world interventions. We return to this issue below.

The results from individual simulations suggest that individ-
ual experiences can give rise to stable individual differences over
development. To quantify this across the full set of simulations, we
used hierarchical regression. Table 1 shows the regression anal-
ysis. The table presents the predictor variables entered on each
step and a number of summary statistics. On the left are the pro-
portion of variance accounted for by the predictors (R2), change
in proportion of variance accounted for across steps (change in
R2), change in the F statistic across steps, and the probability
associated with the F statistic. On the right are the unstandardized
beta weights (ß) and standardized beta weights (beta). The weight
is the unique contribution of each predictor. The sign indicates
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FIGURE 7 | Shows the Hebbian layers and performance in the processing speed task for three individual simulations of the term model. Each panel
shows an individual simulation at 5 months (blue), 7 months (red), and 12 months (black).

the direction of the relationship between the predictor and depen-
dent measure. The size of the weight indicates the slope. Steeper
slopes indicate that the dependent measure changes more for each
unit change in the predictor. The p value shows the statistical
significance of each predictor.

In the first step, we controlled for group by entering group
(term = 1, preterm = 2, and intervention = 3) as a predictor and
trials to criterion at 12 months of age as the dependent measure.
Group accounted for a significant proportion of variance in tri-
als to criterion at 12 months of age, R2 = 0.39. In the second

step, we entered trials to criterion at 5 and 7 months. Trials to
criterion early in development did account for a significant pro-
portion of variance at in trials to criterion later, R2 Change =
0.19. Evaluating the beta weights indicts that trials to criterion at
7 months of age was the strongest predictor. The positive slope of
the beta weight indicates that more trials to criterion at 7 months
of age was associated with more trials to criterion at 12 months of
age. In the past, we found that experience in the DNF model on
the task time scale leads to patterns of covariation between look-
ing and novelty preferences like real infants. These results provide
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FIGURE 8 | Shows the Hebbian layers and performance in the processing speed task for three individual simulations of the preterm model. Each
panel shows an individual simulation at 5 months (blue), 7 months (red), and 12 months (black).

compelling evidence that experience creates stability on the devel-
opmental time scale in familiarity and novelty seeking behavior at
the level of the individual.

GENERAL DISCUSSION
Children make astonishing transformations during just a short
period of time, raising the question of why they continu-
ally strive forward in development. Examining the sources of
intrinsic motivation early in development might offer a par-
ticularly compelling case that provides insights into the very

origins of motivational states. Here, we examined a key transi-
tion in exploratory biases in the first year of life as infants move
from familiarity-seeking to novelty-seeking. This familiarity-to-
novelty shift emerges gradually over the first year, differs across
infant populations, and is stable within individuals over time (see
Hunter and Ames, 1988; Rose et al., 2001, 2002, 2007). Novelty
seeking has some distinct advantages. For example, it allows
infants to compare and contrast known items in memory with
new items in the environment (Oakes et al., 2008). This might
help them form categories and inspect multiple items before

www.frontiersin.org September 2013 | Volume 4 | Article 648 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Perone and Spencer Autonomous exploratory development

FIGURE 9 | Shows the Hebbian layers and performance in the processing speed task for three individual simulations of the intervention model. Each
panel shows an individual simulation at 5 months (blue), 7 months (red), and 12 months (black).

deciding to approach them for further exploration. But what
motivates the infant to switch exploratory styles?

To address this question in the present report, we used a
DNF model of infant visual exploration that has accounted
for the familiarity-to-novelty shift in previous work (Perone
and Spencer, 2013a,b). Previous findings showed that when we
implemented the SPH “by hand” over development, the DNF
model could capture the qualitative and quantitative aspects of
this shift. This included examples of infants’ robust familiarity
preferences during the first two months of life (Wetherford and

Cohen, 1973; see also Fantz, 1974), as well as the more grad-
ual increase in novelty seeking over the course of the first year.
Here, we asked if the DNF model could transform itself from
a familiarity to novelty seeking model through nothing more
than “out-of-lab” experience. Our strategy was to let the DNF
model accumulate experience in HL via autonomously exploring
a virtual world consisting of objects distributed over a con-
tinuous feature dimension. We then asked whether the model
exhibited the familiarity-to-novelty shift in the processing speed
task.
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FIGURE 10 | Shows trials to criterion for 10 individual simulations at 5, 7, and 12 months for the term (left), preterm (middle), and intervention

(right), models.

Table 1 | Predicting trials to criterion at 12 months.

12 months trials to criterion

Step Predictors R2 R2 change F change p β Beta p

1 Model group 0.39 0.39 17.88 < 0.01 1.67 0.62 < 0.01

2 5 months criterion 0.57 0.19 5.64 0.01 −0.24 −0.26 0.46

7 months criterion 0.73 0.68 0.02

Our results show that the model can autonomously transform
itself from a familiarity to novelty seeking model over develop-
ment. As the model explored its virtual world, it accumulated
traces in the HL. Over time, this experience helped the model
quickly encode items and form stable WM peaks. This, in turn,
enabled the model to actively represent known items and explore
novel ones. Our results also showed that the initial conditions of
the model created differences in the familiarity-to-novelty shift
like those observed between term and preterm infants (Rose
et al., 2002; see also Rose et al., 2001). Specifically, when we set
the initial conditions of the preterm model to have weak neu-
ral interactions, the model shifted toward novelty more slowly
over development, much like preterm infants do. Interestingly,
we found that the experience the preterm infant model accumu-
lated in the HL was comparable to the term infant model. This
indicated that experience can create developmental change in the
familiarity-to-novelty shift but the initial conditions play a major
role in population differences.

Critically, these constraints are soft constraints: when we per-
formed an intervention where we biased the model’s pattern
of looking, the developmental trajectory shifted in individual
simulations. In particular, the intervention helped the mod-
els dwell on objects longer, creating stronger memory traces in
the HL. In some models, this had advantageous effects: these
models encoded items more quickly into WM and exhibited

novelty-seeking behaviors late in the first year that mimicked the
pattern of term infants. In other models, however, the Hebbian
traces in the perceptual field became too strong and the models
showed a developmental regression with a bias toward familiarity.

The large variability in the outcomes of the intervention mod-
els is consistent with recent intervention studies that have trained
caregivers to maintain their infants’ attentional focus on objects.
These interventions have facilitated positive developmental out-
comes for children in areas of language, coordinated joint atten-
tion, and increased frequency with which caregivers maintain
attentional focus (Landry et al., 2008). Nevertheless, the impact
of such intervention studies has been diluted by individual dif-
ferences in infants and caregivers. For example, preterm infants
who experienced severe neonatal complications do not benefit
from caregiver responsiveness to the same degree as infants who
experienced relatively less severe neonatal complications (Landry
et al., 2006). To optimize intervention, then, we need to tailor
intervention to individuals.

We suggest that the DNF model might be a useful tool in
these efforts. For instance, our simulation results suggest that we
could initialize models to capture the performance of very young
preterm infants in standard laboratory tasks. Critically, we could
initialize models to capture the performance of individuals, not
simply groups. We could then simulate different long-term inter-
ventions with these models and observe the predicted outcomes.
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This could help researchers design individualized intervention
regimens. Importantly, the models not only predict long-term
outcomes, but also short-term benchmarks in performance. For
instance, we could assess the models and infants at 3 months
intervals in standard laboratory tasks to determine whether
infants’ looking and learning abilities match what is predicted
by each infant’s model. This provides multiple benchmarks to
determine whether the intervention is on track.

Although the work presented here suggests that the DNF
model could be a useful intervention tool, achieving this vision
will require multiple layers of innovation. Most critically, the
intervention we implemented was overly simplistic and ignores
a fundamental factor in development—the role of other agents
in infants’ cognitive development. Infants develop in a rich social
context that involves other agents such as parents and siblings.
As described above, how other agents interact with infants while
exploring objects can have a profound impact on how infants
distribute their looks in time and in space as well as social inter-
actions between infants and their caregivers (Perrinello and Ruff,
1988; see also Landry and Chapieskie, 1988). We are currently
probing how a dyadic system that consists of parent and infant
models sharing the same environment might explain the role
of individual differences in parents and infants on the outcome
of interventions as well as the emergence of social interactions
in exploratory settings. This advancement will open the door
to probe optimal intervention conditions for each parent-infant
dyad. This may have far reaching practical implications.

Using the DNF model as an intervention tool in future
work will also require tackling several challenges we simpli-
fied in the present simulation experiments. Conceptually, our
model developed over the course of months. In practice, how-
ever, we simulated the model for much less time. This reflected
the goals of this paper—to examine whether it was possible
to have an autonomous model develop its own transition is
visual exploratory biases. But using the model in more practi-
cal applications such as designing interventions will require that
we more closely approximate the real-world experience of indi-
vidual infants. We also encountered several practical challenges
in the simulations that will be even more dramatic in more
realistic simulation efforts. For instance, sometimes our mod-
els showed overly robust WM peaks that would endure for long
periods of time. This would create a strong Hebbian trace that
could dominate the looking and learning dynamics. We prevented
this, in part, by carving the simulations up into episodes and re-
initializing the layers every 10,000 time steps. In a more realistic
model, we suspect this could be handled by adding more noise
sources. For instance, data with infants suggests that their atten-
tional abilities wax and wane over time (Oakes and Ross-Sheehy,
2004). We could implement this type of attentional inertia by
adding a noisy resting level to the WM and PF layers that would
gradually raise and lower slowly over time. The troughs in this
type of attention would de-stabilize even robust WM peaks. This
suggests that noise could serve an adaptive function in early devel-
opment, facilitating exploration and ensuring that the system
does not get stuck focusing too much on one thing.

This brings us back to the central issue we started with: what
motivates infants to move from an initial bias toward familiarity

to a robust bias toward novelty? In one sense, our simulations
suggest that there is no motivational source that propels the
system forward in development. The DNF model propels itself
forward because it is a complex, exploratory, dynamical sys-
tem that accumulates its own history over time. Each time the
DNF model formed a WM peak, this neural event left a trace
in HLWM. The accumulation of this history over time raised
the overall excitability of the WM field, leading to more robust
WM peaks and the active maintenance of familiar items. This
qualitatively new cognitive ability enabled the model to actively
recognize what is known and explore new items in the environ-
ment. Thus, our autonomously developing model shows how
changes in infants’ visual exploratory skill measured in labo-
ratory tasks can emerge from the accumulation of experience
outside of the lab. There is no special motivating force that
propels the model forward through development; rather, explo-
ration and skill development come “for free” given the complex,
self-organizing neural dynamics of the visual exploratory sys-
tem. This is nicely illustrated by the full range of simulations
we reported. Not all of our simulations developed a novelty
bias—at least one of the intervention simulations showed a
developmental regression, returning to familiarity-seeking behav-
ior.

We contend that exploration is a fundamental, emergent prop-
erty of complex dynamical systems—such systems can’t help but
explore (Thelen and Smith, 1994). In particular, given the high-
dimensional nature of coupled behavioral and neural systems,
such systems are inherently variable as they exchange energy with
the surrounds and pass activation back-and-forth among differ-
ent components of the system (Kelso, 1995). Such systems are
also self-organizing, routinely settling in temporarily stable orga-
nizational states. Exploration emerges from the inherent tension
between stability and variability. And in high-dimensional sys-
tems, this tension inevitably leads to new possible patterns of
organization. Critically, complex dynamical systems are also his-
torical, carrying this history forward through time. This sets the
stage for new organizational patterns to be continually revis-
ited and re-evaluated. Selection of adaptive states can then occur
(Edelman, 1987).

There is another sense, however, in which our simulations sug-
gest a motivational source is at work as infants transition from
familiarity- to novelty-seeking. Oudeyer and Kaplan (2007) pro-
posed two characterizations of intrinsic motivation. The first was
a force that propels development forward, the notion of intrin-
sic motivation that is common in developmental psychology. As
described above, this source was seemingly absent from the DNF
model as it transitioned from familiarity- to novelty-seeking. The
second characterization was in terms of the neurocognitive mech-
anisms that drive action. Conceptually, the idea is that subjective
experiences of interestingness, ambiguity, and surprise move one
to act. These subjective experiences might be driven by several
neurocognitive mechanisms. Interestingness, for instance, can be
driven by the degree to which an expected and experienced out-
come differs. This sense of intrinsic motivation is present in the
DNF model. Specifically, the pattern of connectivity among the
layers of excitatory and inhibitory neurons in the model imple-
ments a neurocognitive mechanism that can identify “known”
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from “unknown”—“expected” from “unexpected”—and then
drive exploratory behavior.

If intrinsic motivation is inherent in the architecture of the
model, a central question is where this architecture comes from.
In our simulations, the architecture is assumed to be present
early in development. Data are consistent with this conjecture.
For instance, newborns exhibit evidence of recognizing stimuli
experienced prenatally (DeCasper and Spence, 1986). But such
data merely shifts the question of origins earlier. In our view, the
neural architecture we proposed is likely a result of early prenatal
developmental processes that are heavily dependent on patterned
neural activity. For instance, recent work suggests that the type of
neural architecture used here—DNFs—can emerge from a self-
organizing process (Alecu et al., 2011; Detorakis and Rougier,
2012). Thus, the type of connectivity we assumed does not have
to be “hard wired” in any sense—it can emerge during the course
of early brain development. This also suggests that the neural
system we proposed might be ubiquitous across species, consis-
tent with evidence showing novelty-seeking behaviors in rabbits
(Smith and Litvaitis, 2000), birds (Blough, 1984), and squirrels
(Duncan and Jenkins, 1998).

In this context, it is important to note that novelty-seeking
might not be the only outcome of autonomous visual explo-
ration. In some studies, infants, and even adults, seek familiarity
for items they do in fact have a robust memory for (Dodd et al.,
2009). Seeking familiarity is clearly valuable in achieving practical
goals—we often search for our coffee mug, keys, and so on. We are
currently exploring how the DNF model might organize itself as
a familiarity-seeking model in some contexts and novelty-seeking
model in others.

In summary, a robust developmental trend in infants’ visual
exploration is that infants transition away from familiarity and
toward novelty. This trend has largely been described as a by-
product of faster processing speed; as processing speed increases,
new items become familiar more quickly to infants and they are
free to explore novelty. Our simulations indicate that novelty
seeking and processing speed mutually support the development
of each other. As infants explore more items along a dimen-
sion, they become increasingly familiar with that dimension. This,
in turn, enables them to quickly form memories for items on
that dimension and continue to explore novelty. We gained this
insight by using a DNF model of infant visual exploration to
ask what motivates an infant to switch their exploratory style
from familiarity- to novelty-seeking. The DNF model propelled
itself forward simply by autonomously accumulating a learning
history as it explored a virtual visual world with a reasonable
degree of stimulus variation. In this sense, no motivational force
was required for the model to shift its exploratory style. In
another sense, however, the pattern of neuronal connectivity in
the model clearly sets the stage for this shift to happen. Most crit-
ically, our simulations suggest that the accumulation of real-time
exploratory behavior is powerful enough to create developmental
change.
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APPENDIX
The notation used in the equations is presented in Table A1.

MODEL EQUATIONS
Each neuronal layer is specified by a differential equation numer-
ically integrated using the Euler method.

Perceptual field (PF)
PF consists of reciprocally coupled excitatory, PF(u), and
inhibitory, Inhib(v), layers for dimension x. The excitatory layer
of PF is given by the following equation:

τeu̇(x, t) = − u(x, t) + hu

+ aul

n∑
l̇=1

g(li) +
n∑

l̇ = 1

si(x, t)g(li)

+
∫

cuu(x − x′)g(u(x′, t))dx′

−
∫

cuv(x − x′)g(v(x′, t))dx′

− auv_global

∫
g(v(x′, t))dx′

+
∫

cum(x − x′)m(x′, t)dx′

+
∫

cr(x − x′)ξ(x′, t)dx′

where u̇(x, t) is the rate of change of activation in the excitatory
layer of PF across the continuous behavioral dimension, x, as a
function of time, t. τeis the time constant along which excitatory
activation evolves. Activation within PF is influenced by its cur-
rent state, u(x, t), and its negative neuronal resting level, hu. PF

Table A1 | Notation.

Letter Meaning

a Amplitude/strength parameter

x,y Dimension (x = color, y = shape)

li Looking nodes (i = index of the node)

u Activation variable for PF

v Activation variable for Inhib

w Activation variable for WM

m Activation variable for memory/Hebbian layer

s Stimulus input (Gaussian for fields)

c Connection weight function

g Gating function

t Time

τ Time scale parameter

h Resting level (static or dynamic)

n Number of nodes

r Random contribution

ξ Noise parameter

e Excitatory

i Inhibitory

receives a global boost from the fixation system, aul
∑n

l̇=1
g(li),

which is dictated by the gating function, g(li), and weighted by
the amplitude or “strength” parameter, aul. This means that when
a task-relevant location is fixated, PF receives a boost of activa-
tion. PF also receives stimulus input at the suprathreshold fixated
location,

∑n
l̇=1

si(x, t)g(li), where si(x,t) is a Gaussian input (see
below) distributed across the behavioral dimension, x. Note that
for these inputs n = 2 because only looking nodes associated
with the left and right locations are associated with task-relevant
stimuli in the task space (see “Fixation System” below).

The gating function is given by the following equation which
takes a sigmoidal shape over the activation variable, u:

g(u) =
[

1

1 + exp [−β(u(t) − u0)]

]
,

where β is the slope of the sigmoid function and u0 is the
threshold (0).

The stimulus input takes the form of a Gaussian distributed
over the behavioral dimension, x:

s(x, t) = a exp

[
− (x − μ)2

2σ2

]
χ(t)

with stimulus position centered at μ, strength a (set to 17), and
width σ (set to 3). The gating function, χ(t), is set to 1 when the
stimulus is present and 0 otherwise.

PF dynamics are also influenced by local excitatory within-
layer interactions,

∫
cuu(x − x′)g(u(x′, t))dx′ . These interac-

tions are specified by the convolution of a Gaussian profile,
cuu(x − x′), which determines the neighborhood across which
excitatory interactions propagate and a non-linear gating func-
tion, g(u(x′, t))dx′, dictating that only neurons with above thresh-
old activation (>0) participate in the interactions.

The Gaussian convolution was defined by:

c(x − x′) = a exp

[
− (x − x′)2

2σ2

]

where a sets the amplitude and σ sets the width (i.e., standard
deviation) of the connection matrix function.

PF dynamics are also influenced by two inhibitory com-
ponents. The first is a local inhibitory component,

∫
cuv(x −

x′)g(v(x′, t))dx′. Inhibitory interactions are projected across a
neural neighborhood specified by a Gaussian, cuv(x − x′), and
only above-threshold activity in the inhibitory layer contribute
to interactions. The second is a global inhibitory component,
auv_global

∫
g(v(x′, t))dx′, where the sum of suprathreshold activ-

ity within the inhibitory layer across the behavioral dimension, x,
at time, t, is weighted by auv_global.

The last contribution to PF dynamics is spatially correlated
noise, which is presented to PF by convolving a field of white noise
with a Gaussian kernel,

∫
cr(x − x′)ξ(x′, t)dx′, with strength, ar ,

set to.025 and width, σr , set to 1.
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Inhibitory field (Inhib)
The excitatory layers PF(u) and WM(w) are reciprocally coupled
to an inhibitory layer, Inhib(v). The equation for Inhib is:

τiv̇(x, t) = − v(x, t) + hv

+
∫

cvu(x − x′)g(u(x′, t))dx′

+
∫

cvw(x − x′)g(w(x′, t))dx′

+
∫

cr(x − x′)ξ(x′, t)dx′

where v̇(x, t) specifies the rate of change of activation for each
neuron along the behavioral dimension, x, as a function of time,
t. τi is the time constant along which inhibitory activation evolves.
Activation in Inhib is influenced by its current state, v(x, t), and
its resting level, hv. Inhib receives excitatory inputs from PF,∫

cvu(x − x′)g(u(x′, t))dx′, and WM,
∫

cvw(x − x′)g(w(x′, t))dx′.
These inputs are projected across a neural neighborhood specified
by a Gaussian projection, c(x − x′), to which only suprathreshold
neurons in PF and WM contribute as dictated by the gating func-
tion, g. An independent source of spatially correlated noise is also
added to the inhibitory layer,

∫
cr(x − x′)ξ(x′, t)dx′.

Working memory field (WM)
The WM(w) field is given by the following equation:

τeẇ(x, t) = − w(x, t) + hw

+ aws

n∑
l̇ = 1

si(x, t)g(li)

+
∫

cwu(x − x′)g(u(x′, t))dx′

+
∫

cww(x − x′)g(w(x′, t))dx′

+
∫

cwv(x − x′)g(v(x′, t))dx′

− awv_global

∫
g(v(x′, t))dx′

+
∫

cwm(x − x′)m(x′, t)dx′

+
∫

cr(x − x′)ξ(x′, t)dx′

The equation for WM is identical to the equation for PF with two
exceptions. First, the input from the fixation system differs: there
is no global boost in activation from the fixation system into WM,
and the stimulus input to WM, aws

∑n
l̇=1

si(x, t)g(li), is weighted
by a strength parameter, aws, which was set to.05. Second, WM
receives an excitatory input from PF,

∫
cwu(x − x′)g(u(x′, t))dx′.

Memory/Hebbian layers (HL)
Activation in PF and WM is influenced by traces in an associated
memory (m) or Hebbian layer (HL), which implement a form

of Hebbian learning (see text). The equations for each HL are
identical. The equation for the HL associated with PF is:

ṁu(x, t) =
{

(−mu(x, t) + g(u(x, t))/τm_build if u(x, t) > 0

(−mu(x, t))/τm_decay otherwise

where ṁu(x, t) is the rate of change of activation for each site,
x, in HL as a function of time, t. The constants τm_build and
τm_decay set the time scale along which activation traces accrue
and decay, respectively. Activation in HL only accrues when there
is suprathreshold activation in PF. Otherwise, activation in HL
decays.

Fixation system
The fixation system consists of four nodes that stochastically look
at left and right locations (at which stimuli can appear) and cen-
ter and away locations (at which no task-relevant stimuli appear).
The nodes interact in a mutually inhibitory, winner-takes-all
fashion. The equation for the fixation system is:

τel̇i(t) = − li + hi(t) + si(t)

+ aiig(li)

+ alug(li)

∫
g(u(x′, t))dx′

− al_global

∑
j �=l̇

g(lj)

where the activation variable, l, is set by the excitatory time scale,
τe. Activation of each looking node is influenced by its current
state, l, and its dynamic negative resting level, hi(t) (described
below). Activation of each looking node is also influenced by a
stimulus input given by:

si(t) = ai_tonic(t)(ai + ξ(t)) + ai_transient(t)

The stimulus associated with each node is different (see “Fixation
System Parameters” below) to reflect the different stimulus prop-
erties of the attention-getter at the central location, the stimuli
at the left and right locations, and non-task-relevant input at all
“away” locations. The left and right nodes are presented with
a noisy input at each time step when a stimulus is present,
ai_tonic(t)(ai + ξ(t)), and a transient input to signify the appear-
ance of a stimulus, ai_transient(t), present for the initial 75 time
steps of each stimulus presentation. The away node is continu-
ously presented with a noisy input to signify the “tonic” presence
of stimuli in the task space. The center node is presented only with
a transient input to reflect attention-getting stimuli briefly present
at the onset of a trial (in our simulations, 50 time steps), effec-
tively driving the fixation system to switch gaze from the away
location to the center location.

The gating function, g, dictates the presence of a self-excitatory
component to each looking node, aiig(li), and the passing of a
negative, inhibitory input to all other nodes, al_global

∑
j �=l̇ g(lj),

with weight al_global. The gating function also regulates the pres-
ence of input to the fixation system from the perceptual field
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Table A2 | Neurocognitive system parameters.

PF(u) WM(w) Inhib(v) Time scales (τ ) Memory layers (M)

Term Preterm Term Preterm Term Preterm

hu −10 – hw −5 – hv −10 – τ e 80 cum 2.5

auu 0.75 0.6 aww 2.0075 1.606 auv 0.459 0.3672 τi 10 σum 3

σuu σww 3 – σuv 10 – τbuild 20,000 cwm 1.5

awu 1.2 – avu 0.2 – τdecay 400,000 σwm 5

σwu 5 – σvu 5 – τh 80

avw 4.5 – awv 0.405 0.324

σv w 5 – σwv 30 –

avw 4.5 3.6

σvw 5 –

awv_global 0.01 –

auv_global 0 –

Table A3 | Fixation system parameters.

Location

Left Right Center Away

al_global 1.8 – – –

aii 2.00 – – –

aiu 0.25 – – –

aui 1.00 – – –

ai_transient 3.00 3.00 15 0

ai_tonic 5.60 – – –

ai 0.70 – – –

ah_rest −5.00 – – –

ah_down −3.60 – – –

across dimension x, alug(li)
∫

g(u(x′, t))dx′, with weight alu. Note
that these inputs are set to 0 for the looking nodes associated
with the center and away locations because there is no stimulus
presented at those locations.

The resting level of each looking node is dynamic and is
governed by the following equation:

τhḣi(t) = −hi(t) + ah_rest + ah_lowg(li)

where τh sets the time scale along which the resting level of each
node, hi, evolves. When the current level of activation of a look-
ing node is above threshold [determined by the gating function,
g(li)] the resting level decreases toward a low attractor, the sum
ofah_rest and ah_low(which are both negative values). When the
current level of activation of a looking node is below threshold,
the resting level returns to baseline, ah_rest.

MODEL PARAMETERS
Table A2 shows the parameters for the neurocognitive system
and Table A3 shows the parameters for the fixation system
used to simulate the looking behavior of term and preterm
infants. To create the preterm infant model, we began with
the term infant parameters and manipulated the parameters
used to implement the SPH (see Schutte and Spencer, 2009;
see also Perone et al., 2011; Perone and Spencer, 2013a,b).
This involved uniformly decreasing the strength of within-
layer excitatory connections in PF (auu) and WM (aww) and
across layer inhibitory connections from inhib to PF (auv)
and to WM (awv) by 20%. The SPH parameters are shown
in bold. All other parameters were fixed for the term and
preterm models. Note that for the intervention simulations (see
text), 0.0625 was added to ai when left or right node was
supratheshold.
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