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Background: A broad spectrum of pigmentation of the skin and hair is found among patients diagnosed with ocular
albinism (OA) and oculocutaneous albinism (OCA). Even though complexion is variable, three ocular features, i.e.,
hypopigmentation of the fundus, hypoplasia of the macula, and nystagmus, are classical pathological findings in these
patients. We screened 172 index patients with a clinical diagnosis of OA or OCA based on the classical findings, to evaluate
the frequency of sequence variants in tyrosinase (TYR), P-gene, P-protein (OCA2), and the G-protein-coupled receptor
143 gene, OA1 (GPR143). In addition, we investigated the association of sequence variants in the melanocortin receptor
1 gene (MC1R) and OCA2.
Methods: Pigmentation of the hair, skin, iris, and fundus were included in the evaluation of OCA and OA. Male OA
patients showing X-linked inheritance were screened for GPR143. Females showing OA without family history were
regarded as representing autosomal recessive OA (OA3). Direct sequencing was applied to PCR products showing aberrant
single-strand conformation polymorphism–banding patterns.
Results: Fifty-seven male index patients were screened for OA. We identified 16 potentially pathogenic sequence
variations in GPR143 (10 novel) in 22 males. In TYR, we identified 23 (7 novel), and in OCA2 28 (11 novel) possibly
pathogenic variants. Variants on both alleles were identified in TYR or OCA2 in 29/79 OCA patients and 14/71 OA patients.
Sequence changes in TYR were identified almost exclusively in OCA patients, while sequence changes in OCA2 occurred
in OCA and OA patients. MC1R sequencing was performed in 47 patients carrying mutations in OCA2 and revealed
MC1R mutations in 42 of them.
Conclusions: TYR gene mutations have a more severe effect on pigmentation than mutations in OCA2 and the GPR143
gene. Nevertheless, mutations in these genes affect the development of visual function either directly or by interaction
with other genes like MC1R, which can be deduced from a frequent association of MC1R variants with p.R305W or
p.R419Q in OCA2.

Albinism is a recessively inherited disease of disturbed
melanin synthesis and/or melanin distribution in the
epidermis, scalp, uvea, and retinal pigment epithelium.
Melanocytes are the site of melanin synthesis, where black-
brown eumelanin (found in eumelanosomes) and red-brown
pheomelanin (in pheomelanosomes) can be distinguished.
Eumelanin and pheomelanin production shares a common

Correspondence to: Dr. Markus N. Preising, Laboratory for
Molecular Ophthalmology, Justus-Liebig-University Giessen,
Department of Ophthalmology, Universitaetsklinikum Giessen and
Marburg GmbH, Giessen Campus, Friedrichstr, 18, 35392 Giessen,
Germany; Phone: 49-641-99-43837; FAX: 49-641-99-43999; email:
markus.preising@uniklinikum-giessen.de

Miss Gonser is now affiliated with the Dental Care Unit Ingolstadt,
Ingolstadt, Germany.

Dr. Forster is now in Private Practice, 93138 Lappersdorf, Germany.

pathway, with L-3,4-dihydroxyphenylalanine (L-DOPA)
being a common precursor.

In albinism, melanocytes fail to synthesize or distribute
melanins properly, which results in oculocutaneous albinism
(OCA) presenting with absent or reduced tanning, white,
blond, or red-blond scalp, blue irides, and hypopigmented
fundi due to a lack of pigments in the skin, hair, and eyes.
Autosomal recessive ocular albinism (OA) and X-linked OA
present respectively with hypopigmented retinal pigment
epithelium and iris pigment epithelial cells only [1]. Albinism
is an obvious condition in dark-pigmented populations.
However, light complexion, blond hair, and blue irides are
features frequent among nonalbinotic individuals in a
population like that of Northern Europe, thus compromising
their significance when it comes to a diagnosis of albinism.
The classical ocular signs of albinism (nystagmus, macular
hypoplasia, and hypopigmentation of the fundus) are more
reliable in identifying patients with albinism, as they are more
specific.

Molecular Vision 2011; 17:939-948 <http://www.molvis.org/molvis/v17/a104>
Received 17 December 2011 | Accepted 5 April 2011 | Published 15 April 2011

© 2011 Molecular Vision

939

http://www.molvis.org/molvis/v17/a104


Five genes are currently known to be involved in the
etiology of various nonsyndromic forms of albinism.
Tyrosinase (TYR; OMIM 606933) and tyrosinase-related
protein (TYRP1; OMIM 115501) catalyze the initial steps to
melanin production, while P-protein (OCA2; OMIM
611409) and the solute carrier 45 subunit A2 (SLC45A2;
OMIM 606202) are transporters localized in the melanosome
membrane. Variants in TYR [2], OCA2 [3], TYRP1 [4], and
SLC45A2 [5] underlie autosomal recessive OCA (OMIM
203200,606952,203100,203290,606574), and autosomal
recessive OA (OA3) is caused by hypomorphic variants in
OCA2 [6]. Several reports of an association of TYR variants
with OA3 [7-9] have appeared, but these findings were not
confirmed in a recent study on the p.R402Q variant in TYR
[10]. X-linked OA (OA1; OMIM 300500) is caused by
variants in GPR143; OMIM 300808 [11], a transmembrane
receptor in melanocytes of unknown function [11].

Eumelanosomes develop upon activation of the α-
melanocyte-stimulating hormone receptor (MC1R; OMIM
155555) by α-melanocyte-stimulating hormone in response to
ultraviolet light [12]. Mutant MC1R impairs eumelanosome
development and supports pheomelanosome development,
resulting in red hair and pale skin phenotypes [13,14].

The exact disease mechanism leading to nystagmus,
macular hypoplasia, and optic nerve misrouting in albinism is
still unknown. TYR, OCA2, and SLC45A2 are involved in
melanin production, but it is unknown how they contribute to
the development of the retina and the visual system. Recent
data indicate that L-DOPA may be a ligand for the protein
encoded by GPR143 [15]. L-DOPA is a precursor in melanin
synthesis that has been considered as an antimitogenic factor
in cell cycle regulation, playing a crucial role in the maturation
of the retina and the optic nerve [16,17].

Recent results by King et al. [18] indicate that MC1R
variants in combination with OCA2 variants may lead to
persistent red hair color (RHC) in OCA2 patients after birth.
Interestingly, MC1R variants alone are insufficient to cause
reduced visual functions in red-haired probands, as shown in
many studies on the involvement of MC1R variants in RHC
[19,20]. These observations may be taken to indicate that early
products of the melanin pathway up to DOPA quinone
underlie the abnormal neuronal development and reduced
visual function in albinism. In this regard, it is unclear if it is
a problem of production or distribution of neuroactive
components.

In this study, we screened 172 patients with classical
ocular signs of albinism (nystagmus, macular hypoplasia, and
hypopigmentation of the fundus) for sequence variants in
TYR, OCA2, GPR143, and MC1R. Here, we describe the
prevalence of sequence variants of the analyzed genes in
different albinism phenotypes and report a set of novel
sequence variants. We also show that OCA2 sequence variants
p.R305W and p.R419Q are more often combined with

sequence variants in MC1R than would be expected from the
current literature.

METHODS
This study was approved by the ethical review boards of the
Medical Center of the University of Regensburg and the
Medical Faculty of the Justus-Liebig-University Giessen,
Germany. Informed consent was obtained from all probands
or parents according to the Declaration of Helsinki.

DNA samples were collected between 1998 and 2008:
One hundred and seventy-two index patients with nystagmus,
hypopigmentation of the fundus, and macular hypoplasia were
screened. One hundred and forty-two were of Caucasian
origin from Germany or Austria. Ten patients were from
Turkey, four from Italy, and single patients were from the
Balkan States, Africa, Asia, and the USA. Seventy-nine index
patients were diagnosed with OCA and 83 index patients with
OA. Fifty-seven index patients with OA were male.
Additional clinical data were available for 114 out of 172
patients (57 OCA, 57 OA).

Seventy-eight patients were referred for genetic analysis
by external physicians and human geneticists. Ninety-four
patients were examined by the authors at the Department of
Paediatric Ophthalmology, Strabismology, and
Ophthalmogenetics at the Medical Centre of the University of
Regensburg (1998 to 7/2007) or the Department of
Ophthalmology at the Universitaetsklinikum Giessen and
Marburg GmbH, Giessen Campus (from 8/2007 onwards).
The clinical examination of the patients included visual
acuity, refraction, iris translucency, fundus appearance, and
glare sensitivity. In selected patients, testing of the albinism-
specific crossing of nerve fibers was performed by visually
evoked potentials (VEP) [21]. Nystagmus, ocular
hypopigmentation, macular hypoplasia, and pedigree
information were used as criteria for further clinical
examinations [22]. Differentiation between OA and OCA was
attempted by recording skin tanning and hair color.

The mean refractive error was computed based on the
spherical equivalent calculated from measurements of sphere
and cylinder values (sphere - 0.5 cylinder=spherical
equivalent). Subsequently, a mean value was computed for
each group of patients (OCA, OA1, OA3).

DNA was extracted from peripheral blood lymphocytes
and isolated according to Miller et al. [23]. The coding exons
of OCA2 (GenBank: NG_009846.1,NM_000275.2) and
GPR143 (GenBank: Z48804,NM_000273.2), including
adjacent noncoding and flanking sequences, were amplified
by PCR using oligonucleotides according to Lee et al. [24]
and Schiaffino et al. [25]. Oligonucleotides for TYR
(GenBank: M27160, NM_000372) were redesigned to
improve access to single-strand conformation polymorphism
(SSCP) analysis (Table 1). MC1R (GenBank: NG_012026)
was amplified and directly sequenced using oligonucleotides
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designed as described in Table 1. Except for MC1R,
oligonucleotides used for PCR were also used for sequencing.

SSCP analysis was performed using nondenaturing
PAGE (PAGE) [26] on Multigel-Long and Maxigel chambers
(Biometra Whatman, Göttingen, Germany) at 10 °C. Two
types of gels were applied: 8% polyacrylamide and 10%
polyacrylamide in 1x TBE buffer. Ten percent
polyacrylamide gels were overlaid with a 6% polyacrylamide
gel in 1x TBE. Both types of polyacrylamide gels were used
with and without a glycerin content of 5%. PCR products
showing aberrantly migrating bands in SSCP were submitted
to direct sequencing (Seqlab, Göttingen, Germany).

The sequence changes found were confirmed by
restriction enzyme digestion whenever an RFLP was created,
or by noncoding strand sequencing.

If available, both parents and additional family members
were tested for the identified variants in TYR and OCA2, either
by direct sequencing or restriction enzyme digestion. Mothers
and relatives at risk of males presenting with GPR143 variants
were tested for their carrier state. MC1R variants were tested
in available relatives of patients with identified OCA2

sequence variants to evaluate their association with MC1R
variants.

Missense variants were assessed on the PolyPhen server
(June 2009) and SIFT server (June 2009). Splice site and
intronic variants were assessed using the Human Splicing
Finder server (June 2009). The Predict Protein Server (June
2009) and the PHYRE server (July 2009) were used for
secondary structure prediction to evaluate the functional
impact of some OCA2 variants.

RESULTS
Patients and clinical data: Hypopigmentation of the fundus
was seen in all patients. The extent of fundus
hypopigmentation went along with iris translucency findings.
Findings for iris translucency were obtained in 114 patients.
Mild iris translucency with only a few widely distributed spots
was seen in 19/41 of the patients without the identification of
an underlying variant in the genes screened. No or only light
iris translucency was described in 50% of OCA patients, while
obvious or full iris translucency was seen in 25% of patients
diagnosed with the OA1 or OA3 sequence variant. A general

TABLE 1. SEQUENCES AND AMPLIFICATION CONDITION FOR PRIMERS DESIGNED BY THE AUTHORS.

Name Product Sequence (5′-3′) Annealing
temperature

Product
size

TYR Primers
Tyr-11f Exon 1, 5′ part CCAATTAGCCAGTTCCTGCAGA 60°, 4% DMSO 345 bp
Tyr-11r  CACAGTTGAATCCCATGAAGTTGC   
Tyr-12f Exon 1, center TATAATAGGACCTGCCAGTGCTCTG 61°, 4% DMSO 342 bp
Tyr-12r  AATGTCTCTCCAGATTTCAGATCCC   
Tyr-13f Exon 1, 3′ part TGTGTCAATGGATGCACTGCTT 60°, 4% DMSO 331 bp
Tyr-13r  AGAAGTGATTGTTAAGGTTCCTCCC   
Tyr-2f Exon 2 TTGTTTAACATGAGGGTGTTTTGTACAG 60°, 4% DMSO 313 bp
Tyr-2r  GGACTTTGGATAAGAGACTGTAAATATG   
Tyr-3f Exon 3 ATAATTATAAATCAATCACATAGGTTTTCA 55° 263 bp
Tyr-3r  CCAATGAGCACGTTATTTATAAAGA   
Tyr-4f Exon 4 AAAATTTTCAAATGTTTCTTTTATACACA 56°, 4% DMSO 280 bp
Tyr-4r  CAGCAATTCCTCTGAAAGAAAGTAA   
Tyr-5fa Exon 5 TGAAAGGATGAAGATGATGGTGATC 61°, 4% DMSO 350 bp
Tyr-5ra  TTGAGTTAGAGTGAGGTCAGGCTTTT   

OCA2 Primers
PG2f Exon 2 AGTGGTTTCTTTCTGGCTGCCC 60° 313 bp
PG2r  TGAAGTCCACATTTACAAGATGGCA   

PG251f Exon 25 TCTCATGAGCTTATCCAGATTTCAGA 60° 222 bp
PG251r  GTGGGGTCAGGGTAGTTTTATGACTA   

MC1R Primers
MC1Rf 5′ sense ACTTAAAGCCGCGTGCACCG 65°, 4% DMSO 1016 bp
MC1Rr 3′ antisense AGGCCTCCAACGACTCCTTCCT   

Sequencing primers
MC1Ria internal sense GGTGCTGCAGCAGCTGGACAAT   
MC1Rib internal antisense AGAAGACCACGAGGCACAGCAGGAC   

        All amplifications were run in a program of 94 °C denaturation for 5 min, 35 cycles of annealing (Tann see in table), elongation
        (72 °C), and denaturation (94 °C) for 1 min and completed for a final annealing at 1 min and elongation for 10 min closing with
        10 min at 10 °C. aOligonucleotides used to amplify exon 5 of TYR also amplify exon 5 of the TYR-pseudogene.
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correlation between positive variant identification and the
intensity of iris translucency could not be found.

Visual acuity was measured at logMAR>2.0 in the first
months of age and at logMAR 0.22 in childhood (mean 0.6,
Figure 1). Refraction was generally hypermetropic. OCA
patients with identified variants (29 patients) presented with
a mean refractive error of +1 D (range −7.5 D to 10 D), OA1
patients (14 patients) with a mean refractive error of +0.6 D
(range −18 D to +9.4 D), and patients with OA3 (18 patients)
with a mean refractive error of +1.9 D (range −1 to +2.5 D,
Figure 2).

Comprehensive data for skin, hair, and eye color were
available for 21 out of 106 patients with a positive variant
detection in at least one allele of TYR, OCA2, or GPR143.
Sequence variants in X-linked ocular albinism (OA1):
Screening for sequence variants in GPR143 was performed in
57 male patients with OA (Table 2). Ten of the patients had a
positive family history for X-linked inheritance. Twenty-two

male OA patients (39%) carried at least one of 15
nonsynonymous variants in GPR143, including eight novel
variants (Appendix 1). The prevalence of GPR143 variants
increased to full coverage when X-linked inheritance could be
ascertained. Six of the 15 identified GPR143 variants were
missense variants. A second variant (p.I276V) occurred on the
same allele in 2 out of 5 index patients with p.G312V. The
remaining nine variants in GPR143 caused premature stop
codons either by nonsense variants (2 patients) or
frameshifting variants (7 patients, Appendix 1 and Appendix
2).
Sequence variants in autosomal recessive oculocutaneous
albinism: Seventy-nine patients diagnosed with OCA were
screened for variants in TYR and OCA2. In these patients, we
identified 23 nonsynonymous variants in TYR (7 novel,
Appendix 1), and 28 variants in OCA2 (11 novel, Appendix
1). TYR variants on both alleles were identified in nine patients
(11%) with OCA (Table 2 and Appendix 2). Single
heterozygous conditions in TYR and OCA2 were identified in

Figure 1. Summary of best corrected visaul acuity (BCVA) data obtained in oculocutaneous albinism (OCA) and ocular albinism (OA) patients.
A: Open symbols denote patients with identified sequence changes on both alleles; closed symbols denote patients with identified sequence
changes on a single allele only. B: Patients without identified variants. Visual acuity is given as the negative logarithm of the minimum angle
of resolution (logMAR) and was obtained with Teller acuity cards (6 months-3 years), Cardiff Crowding cards (up to 3 year of age), Lea cards
(2–6 years), and number charts (6 years and older). Single patients are presented with follow-up data. Nonquantifiable data were transferred
into digital data according to Schulze-Bonsel and Bach (hand movement: logMAR 2.5, counting fingers: logMAR 2 [42]).

Figure 2. Summary of objective refractive error (including normalized spherical error) obtained by retinoscopy in oculocutaneous albinism
(OCA) and ocular albinism (OA) patients. A: Open symbols denote patients with identified sequence changes on both alleles; closed symbols
denote patients with identified sequence changes on a single allele only. B: Patients without identified variants. Single patients are presented
with follow-up data.
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23 patients (Appendix 1 and Appendix 2) with OCA (30%).
The majority of TYR and OCA2 sequence changes altering the
amino acid sequence in this study were missense variants
(83% in TYR and 79% in OCA2). Four variants in TYR and
OCA2 each predicted a preterm translation stop; 2 of 7 novel
missense variants in TYR were predicted to be nonpathogenic
(Appendix 1).

OCA2 variants on both alleles were identified in 20 OCA
index patients (25%, Appendix 2). The variant spectrum in
OCA2 was broader: Twenty-three of the 28 sequence
variations predicting changes in the primary structure of the
protein were missense variants. The remaining sequence
changes predicted a preterm translation stop by a nonsense
variant, a single nucleotide deletion inducing a frameshift, or
splice site variants. Two of 11 novel variants in OCA2 were
rated nonpathogenic (Appendix 1). Single heterozygous
sequence variations were identified in TYR in six patients
(8%), and in OCA2 in 17 patients (21%).
Sequence variants in autosomal recessive ocular albinism
(OA, OA3): Thirty-five male OA patients and 36 female OA
patients were screened for variants in OCA2 and TYR. Seven
of the male OA patients (12% of all OA males screened)
showed compound heterozygous variants in OCA2; none were
identified in TYR. Among female patients showing OA3 and
screened for TYR and OCA2 variants, we identified seven
(20%) sequence variants in TYR (2 variants) and OCA2 (5
variants).

p.R402Q was found in the homozygous state twice and
in nine compound heterozygous combinations with other
TYR gene variants (9.9% in this study, Appendix 2). In our
cohort, p.R402Q was equally frequent identified in patients
with the OCA phenotype (8 patients) versus OA (10 patients).
Evaluation of sequence variants in MC1R: MC1R variants
were identified in 13 of 18 index patients (72%) carrying
OCA2 variants p.R305W or p.R419Q in the single
heterozygous state, and in 12 of 17 index patients (71%)
carrying OCA2 variations p.R305W or p.R419Q as one of the
compound heterozygous alleles. The MC1R sequence
changes included strong RHC alleles (p.R151C, p.I155T,

p.R160W, p.D294H) and weak RHC alleles (p.V60L,
p.V92M, p.R163Q) of MC1R (Appendix 1). Testing the
available parents for single heterozygous OCA2 variants
revealed one unaffected mother (271.2) cosegregating
OCA2R305W and MC1RV60L.

DISCUSSION
We screened 172 patients with clinical signs of albinism for
sequence variations in genes most prevalent in human OCA
and OA (TYR, OCA2, and GPR143). Congenital nystagmus
was the common symptom in all patients, accompanied by
fundus hypopigmentation, macular dysplasia, and iris
translucency of varying degree.

Sequence variants of GPR143 in X-linked ocular
albinism: Variants were identified in only 22 of 57 male
patients screened for GPR143, but were represented in 100%
of patients with an obvious family history of X-linked
inheritance. This observation underlines the importance of a
formal genetic workup before molecular genetic analysis.
Eight of 35 male patients in which GPR143 variants were
excluded by screening were found to carry pathogenic
sequence changes in OCA2; these results are discussed below.

As we reported previously [26], nystagmus and macular
hypoplasia are the prominent symptoms of OA1 [27].
Therefore, recent reports of GPR143 underlying isolated X-
linked congenital nystagmus (NYS6; OMIM 300814)
[28-30] should be considered with caution. Other ocular
features, though present, may be less prominent, as shown by
Liu et al. [30] and our previous study [26], in patients showing
stronger pigmentation. The reports by Peng et al. [28] and
Zhou et al. [29] did not present sufficient clinical data to
evaluate their hypothesis of isolated nystagmus from
GPR143 variants. Therefore, male patients with congenital
nystagmus are candidates for X-linked OA and need a
thorough clinical examination for this condition.

Sequence variants in TYR: The prevalence of disease
causing TYR sequence variants on OCA was 11% in this study.
This is explained by the predominant diagnostic criteria used
for the oculocutaneous patient cohort in this study, leading to
a bias toward the OCA2 phenotype. Other studies showed

TABLE 2. OVERVIEW OF THE 172 INDEX CASES SCREENED AND THE NUMBER OF IDENTIFIED VARIANTS.

Patients identifiedc Index cases None

Autosomal

X-linked GPR143   TYR                                  OCA2  
   Single Two Single Two None Hemizygous
OCA 79 27 (35) 6 (8) 9 (11) 17 (21) 20 (25)   
OA female 36 19 (53) 4 (11) 2 (6) 6 (17) 5 (14)   
OA malea 57/10b 18 (32) 2 (4)  8 (14) 7 (12)  22 (39)/10b 

       amales with a diagnosis of OA, bmales with an obvious X-linked inheritance, cnumbers indicate individuals, numbers in
        parentheses indicate percentages.
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comparable prevalences [31]. The present study also supports
the notion that TYR is not frequently involved in OA3 because
only 3% of our cohort of OA3 patients presented with
pathogenic sequence variants in this gene. In the present study,
p.R402Q was predominantly identified in patients showing
the OCA phenotype. This observation contrasts with of those
of Hutton and Spritz [9], who identified compound
heterozygous combinations with p.R402Q predominantly in
OA3. Our findings are comparable with data by Grønskov et
al. [32], which showed that TYR variants are rare in OA3
patients.

In addition, Oetting et al. [10] identified p.R402Q in the
compound heterozygous state with other pathologic variants
in unaffected relatives of OA3 patients. We therefore analyzed
p.R402Q in unaffected relatives of our patients and identified
one unaffected parent carrying p.R402Q in the homozygous
state (286.3), thus arguing against a pathogenic effect.

Sequence variants in OCA2: Pathogenic sequence
variants in OCA2 were more frequent in our patient cohort
than TYR variants (25% versus 11% in OCA, 17% versus 3%
in OA3). These findings suggest that mutations in additional
genes remain to be identified in patients fulfilling the selection
criteria that were applied in this study.

Two splice site variants were identified in OCA2 that
have been known for a long time (Appendix 1). c.1113T>C
has been regarded as an isocoding polymorphism (p.G371) at
the amino acid level. An evaluation of this variant on the
Splice Sequence Finder Server has now demonstrated the gain
of a novel splice donor site, which has not been considered
before. We identified this variant in two patients, one in the
homozygous, and one in the compound heterozygous state,
supporting its pathogenicity. Patient 979.1 presented with
OCA and was of Turkish origin. The patient carried c.
1113T>C in the compound heterozygous state with p.R419Q
in OCA2 and p.R160W in MC1R. A Vietnamese OCA patient
(2117.2) showed the c.1113T>C variant in the homozygous
state. In addition, he carried a second homozygous variant in
OCA2 (p.G775S [c.2323G>A]). Evaluation by PolyPhen and
SIFT were contradictory; therefore, p.G775S could not be
rated pathogenic or nonpathogenic. This subject’s affected
mother (2117.1) and father (2117.3) both carried the same
combined allele ([c.1113C>T, p.G775S]) heterozygously.
The affected mother carried an additional common variant of
the Asian population (p.H615R [c.1844A>G]), supporting our
interpretation [33].

Six of the nonsynonymous sequence variations in
OCA2 were consistently rated as benign by PolyPhen and
rated as tolerated by SIFT. Interestingly, three of the variants
classified as benign were previously accepted as pathogenic
OCA2 variants, including p.V443I, a frequent variant in
Caucasians, and p.A481T, a frequent OCA variant in Japanese
[34] (Appendix 1). This finding highlights the limitations in
predicting the functional consequences of OCA2 variations,

which is likely due to the lack of data on their secondary and
tertiary structure. The functional and structural prediction of
the N-terminal 320 amino acids is insufficient, since only
vertebrate sequence data are available for OCA2 in the Entrez
Database.

Other frequently encountered sequence variations in
OCA2 included p.D257A, p.R305W, and p.R419Q (Appendix
1). p.D257A was identified in the homozygous state in three
unaffected relatives in our study, thus arguing against a
functional impact.

Evaluations made by PolyPhen and SIFT predicted
p.R305W as deleterious or not tolerated (see Appendix 1).
Alignments in the Vector NTI 11 suite (AlignX, Invitrogen,
Karlsruhe. Germany) using sequence data from various
vertebrate species obtained from the Entrez Database showed
glutamine to be the predominant amino acid at this position.
A single deviation from the rule (arginine) was present in the
S. scrofa sequence only. Tryptophan was never present at this
position in the sequence data screened. Structural prediction
by the PredictProtein Server indicated a decrease in the
globularity of the protein by p.R305W. This affects the
stability of the β-sheet structure where p.R305 is located.

p.R419Q is positioned within a loop region in the anterior
permease domain of the P-protein. The variant is predicted to
increase the globularity of the P-protein without any predicted
effect on the β-sheet or α-helix formation in this region
(PredictProtein Server). The amino acid position is highly
conserved among vertebrates.

Several studies have evaluated the influence of p.R305W
and p.R419Q on pigmentation [24,35-39]. These studies
excluded an influence of both variants on hair color but
supported an effect on skin color, since the patients
predominantly showed brown hair and light skin complexion.

The reported prevalence of p.R305W in the Northern
European population is given at 5%, while p.R419Q is
reported at 9% [37]. In this study, we identified p.R305W in
8.4% and p.R419Q in 4.7% of all alleles typed for OCA2
(Appendix 1). p.R305W was predominantly identified in
index cases of OCA (9 patients with p.R305W versus 4
patients with p.R419Q of 21 patients carrying two mutant
OCA2 alleles) and p.R419Q was predominantly identified in
OA3 index cases (4 patients with p.R419Q versus 2 patients
with p.R305W of 14 patients carrying two mutant OCA2
alleles). This indicates a yet-unidentified effect of p.R305W
and p.R419Q in patients presenting with nystagmus, macular
hypoplasia, fundus hypopigmentation, and iris translucency.
Pigmentation of the skin and hair used to classify OCA from
OA may therefore depend on the compounding variants and
possibly on other genes associated with pigmentation.

Influence of MC1R variants: King et al. [18] already
reported on p.V443I and other OCA2 variants associated with
MC1R variants modifying the OCA2 phenotype. We tested the
hypothesis of the association of MC1R variants with OCA2
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variants in this study. Combinations of p.V443I and MC1R
variants were identified in two patients (810.2 and 1128.1). In
addition, we observed a very frequent association of p.R305
W and p.R419Q alleles in OCA2 with sequence changes in
MC1R in this study. Presumably, p.R305W and p.R419Q
were not considered in previous reports because they were
regarded as polymorphisms. A specific disease-related
interaction with MC1R has not been excluded so far.

Kanetsky et al. [40] reported MC1R variants in 46.7% of
the alleles tested in nonalbino US Caucasians. These probands
frequently showed light pigmentation phenotypes in eyes,
hair, and skin in double heterozygous as well as single
heterozygous patients. A liberal estimation of the allele
frequency for any OCA2 sequence variations in albinism
patients at about 25% is supported by the literature [32].
Therefore, the coincidence of OCA2 variants and MC1R
variants should not exceed 12%–13%, since they are
independently inherited. This is far below the frequency of
72% of index patients carrying MC1R variants associated
with p.R305W and p.R419Q in a biallelic condition in this
study.

All variants in MC1R cosegregating with OCA2R305W or
OCA2R419Q despite MC1RV60L were predicted to reside on the
cytoplasmic side at the intersections to and from
transmembrane domains allowing interaction with the P-
protein. MC1RV60L is located on the outside surface of the
protein, which limits its potential to interact with the P-
protein.

Therefore, we consider p.R305W and p.R419Q to be
disease causing alleles, and assume an effect on interaction
with MC1R that leads to visual dysfunction. MC1R provides
the basis for reduced pigmentation, and P-protein that
interacts with MC1R may influence cellular functions
necessary for the secretion of growth factors during neural
development. Probably, the interaction between MC1R and
P-protein does not affect the production of melanin itself, but
rather the distribution or production of a precursor like L-
DOPA. In this scenario, a minor effect on pigmentation would
result in a broad spectrum of pigmentation phenotypes and a
low number of patients with reduced visual function and light
complexion. Further functional studies will help to clarify the
situation.
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Appendix 1. Evaluation of the effect of variants identified in this study.

To access the table, click or select the words “Appendix
1.” This will initiate the download of a pdf archive that
contains the table. a84 index alleles in analysis, b332 index
alleles in analysis, c344 index alleles in analysis, din cis with
p.G312V, e114 index alleles in analysis, fprediction was
performed by 1. PolyPhen, psd: possibly deleterious, pbd:
probably deleterious, b: benigne, 2. SIFT, nt: not tolerated,
tol: tolerated, 3: SSF, IVS: Intron (Intervening sequence), gray
shaded rows indicate variants within tyrosinase copper

binding domains, GenBank accession numbers: GPR143
(Z48804, NM_000273.2), OCA2 (NG_009846.1,
NM_000275.2), TYR (M27160, NM_000372.4), MC1R
(NG_012026); RISN – Variant was reported previously and
is listed in locus specific database at the Retina International
Scientific Newsletter gyes: segregates with the phenotype
inside the family, no: does not segregate, unknown: no further
affected relative available for testing, RHC: Raid Hair Color
Allele [19].

Appendix 2. Index case related summary of the genetic data obtained in this
study

To access the table, click or select the words “Appendix
2.” This will initiate the download of a pdf archive that
contains the table. aShared cells indicate alleles that could not
be tested for segregation, con: consanguineous, ex: ecluded,
nd: not done, na: not available, Variant identified in M mother,
F father, D daughter, S sister, B brother, CM male cousin, U
uncle, A aunt, GF grandfather, GM grandmother, bCountry
codes: A: Austria, D: Germany, E: Spain, HR: Croatia, I: Italy,
SRB: Serbia, TR: Turkey, VN: Vietnam, NL: The

Netherlands, cVariant was reported by King et al. [16] with a
comparable phenotype. dPatients were reported by Preising et
al. [26]. ePatients were reported by Preising et al. [41], Squared
brackets indicate variants residing on the same allele. MC1R
could not be tested in patient 627.1 due to lack of DNA. The
parental DNA was analyzed instead and revealed two variants
in each parent shown in the table. We could not show the
segregation of these variants, so we placed the variants in
parentheses to indicate possible co-segregation.

Molecular Vision 2011; 17:939-948 <http://www.molvis.org/molvis/v17/a104> © 2011 Molecular Vision

Articles are provided courtesy of Emory University and the Zhongshan Ophthalmic Center, Sun Yat-sen University, P.R. China.
The print version of this article was created on 19 April 2011. This reflects all typographical corrections and errata to the article
through that date. Details of any changes may be found in the online version of the article.

948

https://www.molvis.org/molvis/v17/a104/app-1.pdf
https://www.molvis.org/molvis/v17/a104/app-1.pdf
http://www.ncbi.nlm.nih.gov/nuccore/Z48804
http://www.ncbi.nlm.nih.gov/nuccore/NM_000273.2
http://www.ncbi.nlm.nih.gov/nuccore/NG_009846.1
http://www.ncbi.nlm.nih.gov/nuccore/NM_000275.2
http://www.ncbi.nlm.nih.gov/nuccore/M27160
http://www.ncbi.nlm.nih.gov/nuccore/NM_000372.4
http://www.ncbi.nlm.nih.gov/nuccore/NG_012026
http://www.retina-international.org/sci-news/mutation.htm
http://www.retina-international.org/sci-news/mutation.htm
https://www.molvis.org/molvis/v17/a104/app-2.pdf
https://www.molvis.org/molvis/v17/a104/app-2.pdf
http://www.molvis.org/molvis/v17/a104

