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When entering a synapse, presynaptic pulse trains are filtered according to the recent pulse history at the synapse and also with
respect to their own pulse time course. Various behavioral models have tried to reproduce these complex filtering properties. In
particular, the quantal model of neurotransmitter release has been shown to be highly selective for particular presynaptic pulse
patterns. However, since the original, pulse-iterative quantal model does not lend itself to mathematical analysis, investigations
have only been carried out via simulations. In contrast, we derive a comprehensive explicit expression for the quantal model. We
show the correlation between the parameters of this explicit expression and the preferred spike train pattern of the synapse. In
particular, our analysis of the transmission of modulated pulse trains across a dynamic synapse links the original parameters of the
quantal model to the transmission efficacy of two major spiking regimes, that is, bursting and constant-rate ones.
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1. Introduction

The main computational function of artificial neural net-
works has traditionally been modeled as an adjustment of
the coupling weight between neurons. In biological nets, this
coupling weight is provided by the synapse, where an incom-
ing (presynaptic) pulse causes a release of neurotransmitters,
which in turn generate a postsynaptic current (PSC) that
charges the postsynaptic (i.e., receiving) neuron membrane
[1]. The synaptic weight W (size of the PSC) can be modeled
as a function of three different variables [2]:

W = f
(
n, p, q

)
. (1)

Mechanisms acting on the number of release sites n seem
to be targeted at long-term learning, while plasticity of the
neurotransmitter release probability p and release quantity q
both act on timescales of 0.1–1 seconds and are therefore well
suited for extracting temporal fine structure of presynaptic
pulse trains [3, 4]. Even for long-term learning, this short-
term synaptic filtering may influence the type of learning
[5]. Thus, dynamic synapses carry out various crucial signal
transformations; for a review, see [3]. These transformations
are used for processing sensory information, for example, in
the auditory cortex [6].

Dynamic synapses also interact in a complex manner
with another important component of neural information
transmission, modulated pulse trains [7, 8], that is, spike
trains characterized by regular shifts between high and low
pulse rates [9]. In biology, these bursting spike trains have
been implicated in the rapid transmission of information,
encoding of stimuli, and population synchrony [7]. This
interaction has been shown in simulations of models describ-
ing the plasticity of the synaptic release probability p [4]
and also in models of the plasticity of the release quantity q
[8, 10]. With regard to this interaction, it is often postulated
as a general neural principle that a new stimulus is favorably
transmitted over a steady-state one. This would mean that
modulated spike trains, in which the stimulus continuously
changes, would be favored over regular-rate stimuli. We
will critically examine this assumption, extending the q-
plasticity-based calculations of Natschlaeger and Maass [10].

The plasticity of q has been modeled in an influential
manuscript by Markram et al. [11]. They introduced a
formulation of quantal neurotransmitter release based on a
descriptive model of biological mechanisms and measure-
ments (in the following referred to as quantal model). Over
the intervening years, the quantal model has been exten-
sively studied with respect to its information transmission
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properties [3, 8, 10, 12]. It has also been combined with
other synaptic plasticity mechanisms to investigate possible
interrelations with long-term learning [3, 5] or probabilistic
release models [8]. Various state-of-the-art neuroscience
efforts still employ the original model, for example, in
studies of pain reception [5], the differing modes of memory
retrieval [13], or in the ongoing effort to fully characterize
the model itself and its various processing characteristics
[5, 13, 14]. Most of this work has been carried out via
simulations, probably caused by the iterative, pulse-based
nature of the model, making a closed solution, that is, some
kind of transfer function, intractable. However, especially the
causal dependency of the model’s behavior on its parameters
cannot be fully explained with simulations such as the ones
in [10]. Rather, some kind of analytical expression is needed.
This is especially interesting since biological synapses show
very complex interdependences between their state variables
and behavior [15, 16]; so an analytical expression of the
biophysical model in [11] could be employed to identify the
governing variables and mechanisms.

To derive this expression, we show that for regular pulse
rates, the model by Markram et al. can be expressed explicitly
as an exponential decay function. We use this function in
Section 2 to deduce the response of a dynamic synapse to
frequency modulated pulse trains. The veracity of the explicit
expression is shown by comparison to simulations of the
original quantal model in Section 3. Furthermore, we extend
the optimality analysis of [10] to a wider parameter spectrum
and give an explanation for the favored transmission of
modulated spike trains in dynamic synapses.

2. Synaptic Transmission of Modulated
Pulse Trains

2.1. Model of Activity-Dependent Synapses. The model devel-
oped by Markram et al. [11] is governed by two parameters,
utilization of synaptic efficacy un and available synaptic
efficacy Rn. These are normalized as fractions of overall
efficacy at pulse n of the pulse train. The model is based
on a formulation of the refractoriness of neurotransmitter
release, where available synaptic efficacy is dependent on
the fraction used up in previous pulses. This increased
usage is counteracted by a facilitation mechanism, which
increases the utilization of synaptic efficacy (i.e., the available
neurotransmitter amount) with rising pulse rate. Thus,
utilization u is increased (facilitated) with each pulse and
recovers with a time constant τfacil, while synaptic efficacy R
recovers with τrec, dependent on the current utilization. The
iterative equations governing the evolution of un and Rn are
as follows [11] (For Rn, we use the index correction stated by
Natschlaeger and Maass [10].):

un+1 = une−Δtn/τfacil + U ·
(

1− une−Δtn/τfacil

)
(2)

Rn+1 = Rn(1− un)e−Δtn/τrec + 1− e−Δtn/τrec , (3)

where Δtn denotes the time elapsed between pulses (n − 1)
and n of the pulse train. The starting terms for (2) and (3)
are computed from the utilization U of a relaxed synapse as
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Figure 1: Behavior of the quantal synaptic short-term adaption,
protocol similar to [11], Figure 4, but with regular pulse rates
instead of Poisson, frequency step after 1.5 seconds and 3 seconds,
pulse rates 15s−1 → 30s−1 → 80s−1, the continuous curve denotes
the resulting PSC. The parameters are identical to [11], Figure 4,
that is, τfacil = 530 milliseconds, τrec = 130 milliseconds, A= 1540 pA,
U= 0.03. To derive a continuous PSC from the pulse-PSC of (4),
pulses with a duration of 1.4 milliseconds are weighted with the
responses from (4), similar to the sum of PSCs as used in [10].
However, in contrast to [10], a moving average with a window of
100 milliseconds is computed to obtain a time curve rather than a
scalar figure of merit. The pulse duration is not explicitly mentioned
in [11], but biological evidence [1] and the similarity with [11]
support this value.

u1 = U or R1 = 1 − U , respectively [11]. The PSC caused
by a presynaptic pulse is defined as the product of un and Rn,
weighted with the absolute synaptic efficacy A (ratio between
release quantity and resultant PSC):

PSCn = A · Rn · un. (4)

The effect of this adaption can best be described as
transmission of transients, that is, changes in the presynaptic
pulse rate are transmitted with their full dynamic range to the
postsynaptic neuron, but the response to steady-state input
pulse rates diminishes. This seems to be a universal feature of
biological neural nets, where novel stimuli receive increased
responses compared to static ones [1, 3].

For a steady-state signal, the above response can be
thought of as a signal compression, so that the high dynamic
range of, for example, sensory input is adapted to the limited
range of the pulse response of a neuron [3]. The steady-state
values that u and R settle to for a given pulse rate (Figure 1)
can be computed by equating un and un+1 in (2) for a fixed
pulse rate λ [11]:

uc(λ) = U

1− (1−U) · e−1/(λ·τfacil)
. (5)

Using this uc and a similar equalization approach, the
convergent Rc is derived as

Rc(λ) = 1− e−1/(λ·τrec)

1− (1− uc(λ)) · e−1/(λ·τrec)
. (6)

As expected from the model, steady-state utilization u
increases with higher pulse rate, whereas available synaptic
efficacy R decreases. Due to the different time constants,
these changes do not cancel out completely but lead to a
maximum single PSC at around 20 Hz with slight decay for
pulse rates below or above this value [11].
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Figure 2: Relative PSC 5 Pulses after a step change in pulse rate.
The synapse was in a converged state for a pulse rate of 1 Hz, 15 Hz,
and 30 Hz, respectively. Then, the pulse rate was changed to the one
denoted on the abscissa for 5 consecutive pulses. The mean PSC of
the time window corresponding to the 5 pulses was calculated. This
value was normalized to the mean PSC of a synapse being converged
to the pulse rate after the step.

However, this steady-state analysis does not do justice to
the complex transmission characteristics across a dynamic
synapse. Consequently, in the following we analyze the
response of a synapse to a single transient pulse rate
transition.

Figure 2 shows the response of the quantal synapse to a
step change in pulse rate. The synapse starts out with one
of three initial converged values for pulse rates 1 Hz, 15 Hz,
and 30 Hz, respectively. We then transition to a new pulse
rate as denoted on the abscissa for 5 consecutive pulses.
The mean PSC of these 5 pulses after the step in pulse rate
was normalised. The reference value for normalization is the
converged PSC that would result from the steady-state PSC
response for the pulse rate after the step, that is, the response
if the new pulse train was not stopped after 5 pulses.

For decreasing pulse rate, the PSC response will contin-
uously decrease, making the transient response bigger than
the converged value. At first glance, one would expect the
opposite for increasing pulse rate: if the PSC continuously
increased, the transient PSC should be smaller than the
converged value, and the quotient between both values
should diminish for higher pulse rate differences because of
τfacil being bigger than τrec as well as the shorter time window.
In contrast to that, Figure 2 shows transient PSCs higher than
equilibrium for bigger step-ups in pulse rate; especially, for
an initial 30 Hz rate, this is the case for all frequencies after
the step change. This effect is caused by two processes: first,
the time constant for utilization u considerably decreases
with higher pulse rate, making it roughly equal to the time
constant for efficacy R (see (A.7) in the appendix); second,
the value for a single PSC decreases above a pulse rate of
approximately 20 Hz [11], so that the resulting mean PSC
sharply increases with the frequency step-up due to the
higher number of releases per time but then is regulated
down by the decreasing amplitude of a single PSC. This effect
is also visible from the PSC time course in Figure 1.
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Figure 3: From top to bottom: bursty spike train, generated from
a sine-modulated Poisson process and regularized approximation
with rectangular modulation between high pulse rate λ1 and low
pulse rate λ2 with a modulation frequency of fm.

As shown in this section, the response of dynamic
synapses cannot be fully characterized by the transmission
characteristics for regular pulse rates. The response for most
cases of transients is amplified compared to the steady-state
response. This is as expected from biology, where changes in
pulse rate are a source of information, while static stimuli
should be attenuated in favor of these transients [1, 3].

2.2. Analytical Approach to Synaptic Transmission. In a
generalization of the analysis carried out in Figure 2, in this
section we derive the response of the quantal model to fully
transient stimuli. Thus, we do not start from a converged
value of u and R as in Figure 2, but we use repeating transient
stimuli that result in regular variations in pulse rate (i.e., a
modulated pulse signal; see Figure 3).

A modulated pulse rate can be thought of as a sequence
of bursts and as such represents a generic model for various
types of neural pulse signaling, where the information is
encoded in the temporal fine structure of the pulse signal
[8, 9] or where bursts represent mechanisms in memory
retrieval [13].

In the upper part of Figure 3, we generate a sine-
modulated stochastic pulse train using a Poisson process [1]
with time-variable pulse rate:

f (Δt) = λ(t) · e−λ(t)·Δt, Δt ≥ 0, (7)

where f (Δt) is the probability density function of the time
between two successive spikes. In contrast to [1], we do
not employ a fixed pulse rate λ, but one periodically sine-
modulated between high pulse rate λ1 and low pulse rate
λ2. We use this formulation for the simulations carried out
in Section 2.3. However, for the mathematical analysis, we
further simplify the stochastic bursting spike train in the
upper part of Figure 3 to one that switches with a period
of 1/ fm between two fixed pulse rates (see lower part of
Figure 3). We additionally introduce a duty cycle b as the
fraction of high rate stimulation per period. This enables a
close approximation of different spiking modes (bursting,
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Figure 4: Time course of u(t) and its dependencies on modulation
frequency fm and convergence limits uc for high and low pulse rates
λ1 and λ2, respectively. b = 0.5 in this example.

stuttering, etc.). For the approximation of the sine-wave,
b = 0.5 is chosen.

Figure 4 qualitatively shows the time course of u(t) for
this switched modulated stimulus. Its value oscillates inside
a fixed amplitude interval [ux,λ2 ,ux,λ1 ] that depends on the
modulation frequency fm, the duty cycle b, the convergence
limits uc for low and high pulse rate, as well as the time
constants τu,λ1 and τu,λ2 defined by (A.7) in the appendix.

For the derivation of the PSC’s modulation dependency,
we start with the explicit expression of (2) as derived in the
appendix:

u(t) = (u0 − uc)e−t/τu,λ + uc. (8)

Dependent on the sign of the term (u0−uc), this equation
describes one increasing or decreasing part of the time
course, respectively. For a complete formulation, the initial
values for each cycle must be calculated. These are generally
not the limits of convergence, but intermediate values, as can
be seen from Figure 4. Their calculation will be shown as an
example for ux,λ2 in the following. Our approach is based
on the observation that the value of u(t) at points 1 and 3
in Figure 4 is the same in a steady-state. Following the time
course of u(t) beginning at point 1 (assuming t = 0 there)
gives

u(t) = (ux,λ2 − uc,λ1

)
e−t/τu,λ1 + uc,λ1

−→ u

(
b

fm

)
= (ux,λ2 − uc,λ1

)
e−b/( fmτu,λ1 ) + uc,λ1 ,

(9)

with the second equation determining the value of u(t) at
the end of the high rate interval. An analogous relation for
the low-rate interval, that is, the time course from point 2 to
3, results in:

u

(
1
fm

)
= ux,λ2 =

[
u

(
b

fm

)
− uc,λ2

]
e−(b−1)/( fmτu,λ2 ) + uc,λ2 .

(10)

Evaluating (9) and (10) leads to the following expression
for ux,λ2

ux,λ2

=
uc,λ1 e−(1−b)/( fmτu,λ2 )

(
1−e−b/( fmτu,λ1 )

)
+uc,λ2

(
1−e−(1−b)/( fmτu,λ2 )

)
1−e−b/( fm·τu,λ1 ) · e−(1−b)/( fm·τu,λ2 ) .

(11)

Results for ux,λ1 , Rx,λ1 and Rx,λ2 can be derived with similar
approaches.

Now, the mean synaptic release quantity uR = PSC/A
can be calculated. This is done by integrating the product
u(t) · R(t), normalizing the result with the integration
interval. For the high rate interval, that is, the time course
between points 1 and 2, the following holds:

uR12 =
fm
b
·
∫ b/ fm

0

[(
ux,λ2 − uc,λ1

)
e−t/τu,λ1 + uc,λ1

]

·
[(
Rx,λ2 − Rc,λ1

)
e−t/τR,λ1 + Rc,λ1

]
dt.

(12)

Evaluating this integral results in

uR12 =
fm
b

[(
ux,λ2 − uc,λ1

)(
Rx,λ2 − Rc,λ1

) τu,λ1τR,λ1

τu,λ1 + τR,λ1

×
(

1− e−b(τu,λ1 +τR,λ1 )/( f m·τu,λ1 ·τR,λ1 )
)

+
(
ux,λ2 − uc,λ1

)
τu,λ 1Rc,λ1

(
1− e−b/( fmτu,λ1 )

)

+
(
Rx,λ2 − Rc,λ1

)
τR,λ1uc,λ1

(
1− e−b/( f mτR,λ1 )

)

+
b · uc,λ1Rc,λ1

fm

]
.

(13)

Integrating over the low-rate interval, that is, the time
course between points 2 and 3, in the same way yields the
corresponding value uR23.

As mentioned together with Figure 1, these mean values
must be weighted by the number of pulses that occurred in
the corresponding time interval. This can be done by using
the ratio between the total time any pulse was active and the
time interval:

PSCxy = A · TpulseNpulse,x

Tnorm
· uRxy

= A · Tpulse(λxTnorm)

Tnorm
· uRxy.

(14)

For the high rate interval, Tnorm = b/ fm, whereas for the low-
rate interval, Tnorm = (1 − b)/ fm. Using the corresponding
constant pulse rate, Npulse can be calculated for each interval
as Npulse,x = λx · Tnorm. For calculations, we will set Tpulse =
1.4 milliseconds, which is in agreement with the parameters
used in [11].
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Figure 5: Left: spike trains as applied to the original quantal
model, from bottom to top: high (100 Hz) and low (2 Hz) frequency
modulated spike train ( fm = 4.2 Hz, b = 0.12), regular spike rate
(20 Hz), spike train as extracted from Figure 5(a) in [10] (U = 0.15,
τrec = 144 milliseconds, τfacil = 62 milliseconds), and five jittered
versions of this spike train (σ = 5 milliseconds). Right: histogram
of the sum over the product uR, with the data points for modulated
and regular spike train indicated.

When calculating an overall mean PSC, the duty cycle
(i.e., the fraction each PSCxy was active) has to be taken into
account. This results in a weighted average formula:

PSC = b · PSC12 + (1− b) · PSC23

= ATpulse ·
(
bλ1uR12 + (1− b)λ2uR23

)
.

(15)

2.3. Results. The explicit expressions derived in Section 2.2
describe the behavior of PSC transmission dependent on
the modulation frequency. To evaluate these equations, we
compare our model to numerical simulations of the original

iterative equations (2) and (3). In particular, Natschlaeger
et al. [10] treat the quantal model to a rigorous numerical
analysis; so we apply our model to their framework. Since the
optimal spike trains of [10] differ from our modulated pulse
rate assumption, we have to validate that the sum over the
product uR, that is, the PSC efficacy criterion, has the same
quantitative and qualitative behavior for the modulated rate
as for the optimized spike train. An initial validation can be
done by extracting a sample spike train for a single parameter
set from [10], applying a jitter to account for extraction
errors, and comparing it to a modulated spike train which is
parameterized to exhibit a similar burstiness. This is shown
in Figure 5.

The parameters were chosen to resemble the experiment
of Figure 5 in [10], with 20 pulses distributed in a one-second
interval. All spike trains were processed with the original
quantal model. As can be seen, the original optimized
spike train shows a strong burstiness, so as expected, the
regular spike train has a much lower synaptic efficacy. Also,
the modulated spike rate is well within bandwidth of the
statistical variations of the optimized spike train and also
shows significantly larger synaptic efficacy than the regular
rate. From this limited example (and others below), the
initial assumption for our derivation seems valid, that is,
a modulated pulse rate exhibits the same behavior with
respect to the Markram model as a more precisely optimized
one.

In the following, we will thus apply the derivation
of Section 2.2, in particular the new non-iterative time
constants, to extend the analysis of [10] and especially test the
predictive and explanatory power of our analytical expres-
sions. Two major activity regimes can be discerned from
Figure 5 of [10]: one where the grouping of pulses into short
activity bursts results in a large synaptic efficacy, and one
where in contrast a regular distribution of all 20 pulses across
the time interval is advantageous. If we relate this back to our
model, the pulse regime is determined by the modulation
frequency. Thus, with the explicit expression for the mean
PSC (15), we can state an alternative optimality approach
to [10]. Maximizing the mean PSC over the modulation
frequency corresponds to finding the optimum pulse regime
for a synapse. The optimum modulation frequency fm,opt in
that sense can be derived using the necessary condition:

0 = ∂PSC
∂ fm

= ATpulse ·
(
bλ1

∂uR12

∂ fm
+ (1− b)λ2

∂uR23

∂ fm

)
.

(16)

In general, this equation cannot be brought in an explicit
form. Approximate explicit expressions could be derived, for
example, assuming fmτu,λ � 1, but the respective approxi-
mations are not valid over the entire synapse parameter space
and optimization range. Thus, we will solve the optimization
equation numerically. Modulated (i.e., bursty) spike trains
are only generated in the fm-range (0, 1/2λ1); other values
result in a regular spike train. Thus, if the partial derivative
∂PSC/∂ fm does not change sign inside this interval, that is,
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Figure 6: Mean synaptic efficacy per spike uR with respect to
modulation frequency fm for two parameter sets. Dashed line:
optimum modulation frequency for the plotted range. λ1 = 100 Hz,
λ2 = 5 Hz in both cases.

no local maximum exists therein, a regular spike train will
result in a maximum mean PSC.

To resemble the optimization regime of [10], we adjust
the duty cycle b(λ1, λ2) such that the mean frequency
f = 20 Hz. The results of [10] show that a modulated regime
is optimal for low values of U and τfacil, whereas for higher
values, a regular spike train is favorable. Figure 6 confirms
this result with our analysis for an illustrative example: for
the low-value case (left), a maximum at approximately 4 Hz
is present, whereas for the high-value case, the synaptic
efficacy monotonically increases with modulation frequency,
which ultimately leads to a regular spike train as an optimum.

Of course, as we have shown in the previous section and
the appendix, the preference of the quantal model depends
not only on U , τfacil, and τrec but also on the spike train

characteristics, that is, duty cycle b, high rate λ1, and low-
rate λ2. To show these dependencies, we extend the analysis
of Figure 6 to a full sweep across b, λ1 and λ2, employing the
synapse parameter set of Figure 6, left.

Figure 7 shows the optimal modulation frequency fm,opt,
derived similar to Figure 6, in grey-scale. Data points are
only depicted if a distinct optimal fm is found, that is, if the
maximum as shown in Figure 6, left, is at least 1% above the
value of uR for the high modulation frequency (right side of
both graphs in Figure 6). Thus, nonsignificant maxima and
cases where a regular spike train is preferred (Figure 6, right)
are omitted. A good correspondence between the simulation
of the original quantal model and the mean uR as derived
from the analysis in the previous section can be observed,
showing the validity of our derivations.

There is almost no dependence of the optimal modula-
tion frequency and the burst preference on the low spike rate
λ2. This may be due to the fact that there is only a certain level
of relaxation that can be obtained by the synapse during the
low-rate intervals. This means that, while the relaxation is
important to obtain a high uR, as will be explained together
with Figure 9, the exact low rate during this relaxation is not
important, only the fact that there is such a relaxation phase.
However, there is a clear dependence between the duty cycle
b and fm, where fm rises linearly with b at a certain λ1, λ2 (see
columns in the plots of Figure 7). In other words, this can be
thought of as

b

fm
= const. = b · T = Thigh, (17)

with T being the duration of a period and Thigh being the
duration of the high rate interval therein, that is, the length
of a burst. Thus, if Thigh is constant, the number of pulses
during a burst for a given high rate λ1 is also constant. An
explanation for this could be that there exists an optimal
burst profile which maximizes uR for a given parameter set
U , τfacil, τrec, and a given λ1. Accordingly, if b is subjected
to a sweep, fm must rise with it to keep this optimal profile.
At the same time, bursts are shifted closer, so that the mean
number of pulses in a fixed time interval rises linearly with b.
Equation (16) thus searches not so much for an optimal fm
but rather for an optimal burst profile.

Another interesting characteristic of the above plot is
the decrease of the maximum b at which a significant fm,opt

can be found with increase in λ1. This inverse relationship
between maximum b for a bursty spike train and λ1 may hint
at an optimal profile or number of pulses in a burst almost
independent of λ1. According to (17), the number of spikes
in a burst can be computed as b/ fm · λ1, resulting in a (mean)
number of pulses per burst of 4.3 for λ1 = 150 Hz and 3.6 for
λ1 = 50 Hz. These similar values could be explained by the
fact that the optimum uR is governed by the evolution of u
and R during the burst. These in turn depend on the absolute
time constants derived in the appendix, which scale with λ;
thus, the scaling of the time constants and λ cancel each
other at least partially, resulting in very similar optimal burst
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Figure 7: Optimal modulation frequency fm,opt (grey scale coded) with respect to the parameters of the modulated spike train. (a) simulation,
and (b) our analytical calculation. Only those cases are shown where a modulated spike train is favored. Parameters as in Figure 6, left.
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Figure 8: Relative difference of a modulated spike train from a regular spike train, grey scale coded, with respect to the parameters of the
quantal model. (a) simulation, and (b) our analytical calculation. Only positive (i.e., modulation-favored) part is shown.

profiles despite the change in λ1. So the absolute value of uR
may vary with λ1, b and fm, but the qualitative behavior, that
is, the burst profile for which uR is maximum, seems to be
constant for a given synapse type. Interestingly, there exists
no optimal modulation frequency above 8Hz, that is, in this
range a regular spike train is always better than a modulated
one. This is probably due to the fact that at this fm, there is a
natural transition between bursty and regular spike train in

any case. That means, the burst phases are too short to allow
a real grouping of spikes, while the low-rate phases are too
short to obtain a significant recovery of u and R, so that the
same number of pulses achieves a higher uR if it is spaced
regularly across the given time span.

As already stated, one of the main questions behind
such analyses is, for which synapse types (i.e., parameters
U , τfacil and τrec) a modulated spike train is favored over
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Figure 9: (a) Steady-state values of u and R over spike rate for a bursty parameter set, with additional indication of R dependency on τrec (b)
same as (a) for a regular parameter set (c) convergence time constants for the parameter set(s) of (a) (d) convergence time constants for the
parameter set of (b).

a regular spike train in terms of transmission. This question
was tackled in [10] only exemplarily for single-value sweeps.
Here, we perform a sweep over the full three-dimensional
parameter space of the quantal model, as shown in Figure 8.
Thereby we use the relative difference of a modulated spike
train and a regular spike train as a measure for the favored
spike mode. Parameters were again λ1 = 100 Hz, λ2 = 5 Hz,
and f = 20 Hz, together with a modulation frequency fm =
8 Hz, comparing to results of Figure 5 in [10].

We also used this parameter sweep to compare our
analytical calculation with the original iterative formula.
This is a hard test case, because already small deviations
in the calculations, for example, caused by the continuous-
time idealization and the approximations made with the
derivation of τR,λ, can lead to marked changes in the

relative difference value calculated for comparison. Taking
this sensitivity into account, our derivation is in good
agreement with the simulation. Especially the discrimination
between favored modulated or regular spike train is well
replicated.

The principal dependencies of the favored spike mode
on the synapse parameters as suggested by Figure 5 of [10]
are also present in the whole parameter space exploration:
A modulated spike train is only favored if U or τfacil are
low. Also, for U = 0.32 and τfacil = 62 milliseconds,
a transition from regular-favored to modulation-favored
transmission with increasing τrec is present in the plot,
which is in agreement with [10]. This again shows that even
with the assumption of a fixed modulated, and potentially
nonoptimal, spike train, essentially the same predictions
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Figure 10: Correlation between criteria based on the convergence time constants of (A.12) and (A.7) (y-axes) and the relative difference
between the synaptic efficacy uR for a regular and a modulated/grouped spike train (x-axes). Each of the dots corresponds to one data point
from Figure 8, that is, one parameter set (U , τfacil, τrec). In addition, the right figure has a decrease in τrec denoted by increasing gray levels.
Also, the smallest (resp. largest) value for τrec is denoted in crosses resp. circles.

can be derived as with a single-spike optimization, but
with much less computational complexity. Also, further
dependencies can be extracted from the parameter sweep: if
both U and τfacil decrease to low values, the relative difference
of the response to modulated and regular spike trains gets
more and more independent of τrec. Additionally, to a certain
extent, higher values for U can be compensated with lower
values for τfacil, and vice versa.

In the following, we try to analyze the above parameter
dependencies, based on our modeling of u and R as
exponential decays. In particular, based on our noniterative
time constants for u and R and on the converged values
uc and Rc that scale the exponential decay functions, we
postulate the following mechanisms for a preference of either
regular or grouped (bursty) spike trains by the synapse.

There is a dependency of this preference on the relation
between the time constants τR,λ1 and τu,λ1 , that is, for the
convergence during the high rates/bursts (Figure 9(c)). A
bursty spike train benefits if the time constant τu,λ1 is
relatively low, so that u rises fast to its converged value, which
is a factor of five above its relaxed value (i.e., at the end of
the low-rate interval, Figure 9(a)), as this increases markedly
the total value of uR. On the other hand, R diminishes
to a small value for the high rate, so its convergence time
constant τR,λ1 should be large relative to τu,λ1 , so that most
of the spikes during the burst still “see” the high relaxed
value (Figure 9(a)). Compared to a parameter regime which
preferentially transmits a regular rate (Figures 9(b) and
9(d)), a low time constant τR,λ1 diminishes the value of R
during a burst, and a corresponding high time constant τu,λ1

would prevent u from rising to compensate this decrease in

R, especially if at the same time u has a smaller dynamic
range (Figure 9(b)). Thus, for this parameter regime and its
resulting time constants,a bursty regime would result in a
lower synaptic efficacy compared with a regular rate.

A second criterion based on which it can be predicted if a
bursty or regular regime is preferred by the synapse, would be
the relation between the convergence time constant for R for
low and high rate τR,λ2 and τR,λ1 . This relation expresses the
basic intuition that τR,λ2 should be relatively low compared to
τR,λ1 , so that R can relax very fast to a high value during the
low-rate intervals. In contrast, τR,λ1 should be high compared
to the burst duration so that R does not decrease too much
during the high rate intervals. So a parameter regime that
results in a low τR,λ2 relative to τR,λ1 should preferentially
transmit bursts.

From the above postulates, two criteria can be derived
where the time constants derived in this paper allow to
predict if a grouped/bursty or a regular regime is preferred
by the synapse. The first one would be the difference between
the convergence time constants for the high rates, that is,
τR,λ1 − τu,λ1 , see Figure 10(a).

As can be seen, there is a definite correlation in the
way suggested above, that τR,λ1 should be larger than τu,λ1

in order for the synapse to transmit a bursty spike train
better than a regular one. In the figure, this is expressed
on the x-axis by the normalized difference between ΣuR for
a regular, respectively, a bursty spike train (for the same
quantal parameter set). The second criterion would be the
quotient between the convergence time constant for R for
low and high rate, as expressed by τR,λ2 /τR,λ1 . Figure 10(b)
shows a plot of this criterion, against the same synaptic
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efficacy criterion as in Figure 10(a). For clarity reasons, the
natural logarithm of the above quotient is plotted rather
than the quotient itself. Again, as postulated above, there
is a clear correlation between a measure based on the
convergence time constants and the amount a bursty spike
train evokes more or less synaptic efficacy compared to
a regular spike train. Interestingly, there also seems to be
some parameter which causes a change in slope as well as
a shift of the correlation curve. When plotting the data
points based on their parameter values, it becomes evident
that this parameter is τrec, that is, for larger τrec, the spike
trains enter the bursty regime earlier. This trend towards
burstiness with increasing τrec can be explained based on
Figures 9(a) and 9(c). As can be seen, for larger τrec the
slope of the R curve increases, so that the (converged) value
of uR for a regular rate diminishes, while for the short
high rate episodes characteristic of a burst, the relaxed R
is still close to one. Due to the fact that τu,λ for the high
rate does not decrease, the burst benefits from this high
relaxed value in the same way as it did for lower τrec. At
the same time, τR,λ increases with increasing τrec, so that
there is a more pronounced trend towards long periods
of little activity in the spike train, so that R can reach its
relaxed value even if its convergence time constant becomes
larger. That the synapse exhibits a mechanism which prefers
modulated spike trains for certain parameter sets (as shown
above) might also provide an alternative, synapse-based
way for bursting behavior to emerge. This could comple-
ment the conductance-based bursting behavior shown in
[7].

How could these results be applied in the wider neu-
roscience context? One important topic of current interest
is the interaction of the different forms of plasticity on
the same synapse, especially with regard to the different
temporal timescales of expression [5, 15–17]. Some studies
which employ both kinds of plasticity act on an abstract
idea of weight, but with basically unchanging parame-
ters of the dynamic synapse [5]. On the other hand,
Spike-Timing-Dependent Plasticity (STDP) is postulated
to depend on the modulation of neurotransmitter release
probability ([16, 17]), which in the model discussed herein
is expressed as the initial release quantity U [11]. As
evidenced by our analysis, this influences directly the spike
pattern preferences through the mechanisms postulated
in Figure 9. So these are not just plasticity mechanisms
overlaid on the same synaptic weight [17], instead STDP
might govern the operating regime of the short term
dynamics. Thus, STDP might not only provide a basis
for static, weight-based memory formation [18], but also
serve as a substrate for memory and computation in
dynamical models. Examples for this could be attractor
neural networks [13], or liquid computing [19], which
rely heavily on the short term dynamics of synapses. In
this respect, our analysis indicates several ways in which
a U modulated by some other plasticity mechanisms
might in turn govern the absolute temporal dynamics of
a synapse, namely through uc, τu,λ, and τR,λ. Pushing this

speculation further, there might also be a feedback path
back towards STDP, in which the absolute synaptic time
constants τu,λ and τR,λ of our derivation influence the time
course of the STDP learning window. Of course, classical
STDP relies on coincidence between pre- and postsynaptic
spikes, so the quantal release mechanism which only acts
on presynaptic spikes would not work in this context.
However, several newer forms of STDP rely on dendritic
spikes [20], which depend on coincident heterosynaptically
expressed presynaptic spike transmission rather than on
postsynaptic spikes. Thus, this form of STDP could, through
its influence on U , change τu,λ and τR,λ and these in
turn would impact on the temporal learning window. This
could form some kind of metaplasticity or homeostasis
[21], in which STDP influences its own expression at the
synapse.

3. Conclusion

We have derived an explicit expression for the iterative
quantal model [11] describing short term plasticity of
dynamic synapses. A wide range of naturally occurring pulse
trains could be subjected to detailed mathematical analysis
using this model. For example, our analysis is also valid if
the pulse rate during a burst is not constant (see Figure 5).
Thus, the selective treatment of bursts by dynamic synapses
as derived in Section 2 could also be extended to cases were
the information is contained in the fine structure of the
bursts [4, 8, 12]. Also, the modulation does not have to be
constant, that is, pauses between bursts could vary, so that
pulse trains derived in [8, 14] could also be treated with a
more rigorous, global approach, rather than an analysis via
simulations.

We have shown how the filtering characteristics might
be determined from the synaptic parameters. Specifically, we
have provided an explanation how the filtering characteristic
of a dynamic synapse depends on the effective time constants
τu,λ and τR,λ and their interaction with the converged values
for u and R (see Figures 5 and 10). Also, in extension of [10],
we have provided a more complete picture how the filtering
characteristic relates back to the original parameters (see
Figure 8). The mechanisms/correlations shown in Figure 10
could be applied to characterize the transfer/decoding
function of synaptic networks, such as the ones used in
[4]. Also, the closed expression for the transfer function
developed in this manuscript could be employed to deriving
the synaptical parameter set for the optimal coding of stimuli
in, for example, the auditory cortex [6]. We have shown a
limited example of this in Figure 6, where we use our transfer
expression to derive the optimal modulation frequency for
a parameter set, which is in good agreement with the
numerical simulations of [10].

Our noniterative expression for the behavior of the
dynamic synapses of [11] could also have consequences
on plasticity mechanisms. Synapses exhibit very diverse
modulatory and plastic behaviors, where the interdepen-
dences and governing variables often cannot be clearly
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determined [15, 16]. Since the time constants of neural
actions are not very amenable to change [1], it might be
assumed that the temporal dynamics and preferences of
a synapse are relatively fixed. In contrast, our derivations
in this paper predict mechanisms by which a synapse
could change its effective time constants and spike pattern
preference based on U even though the basic temporal
parameters τrecand τfacil of the dynamic synapse might be
constant. In this context, we have speculated on possible
repercussions of this modulation of τu,λ and τR,λ on models
of long-term plasticity (STDP), especially with regard to
extending STDP to dynamical models of computation and
learning/memory.

Appendix

A. Transient Analytical Description of
Quantal Plasticity

The convergence of iterative equations like those of the
quantal model [11] can only be expressed explicitly for
some special cases [22]. Whereas the convergence limits
for a constant presynaptic pulse rate λ can be derived
with relatively little effort [11], the time course and speed
of convergence is difficult to define, especially due to the
constant parts of the iterative equations for un, (2), and Rn,
(3).

However, as Figure 11 shows, in case of regular spike
trains with a defined pulse rate, the iterative descriptions
of u and R in (2) and (3) can be interpreted as settling of
transient responses to a steady-state value, comparable to
the exponential convergence of, for example, an RC voltage
settling curve.

In this case, an absolute time constant for this settling
may be derived, which is likely to depend on the fundamental
time constants of the quantal model.

In the following, an explicit expression for the con-
vergence of u toward a steady-state value will be derived.
Equation (2), recursively describing the value of u after inter-
spike interval (ISI) Δtn, can be rewritten as

un = un−1 · e−Δtn−1/τfacil · (1−U) + U. (A.1)

Note that all variables are shifted by one ISI compared to the
original formulation. For deriving an explicit expression, we
restrict ourselves to pulse trains having a constant rate λ, so
that Δtn = 1/λ for all n. Recursively extending (A.1) by one
ISI yields

un = un−2 · e−2/(λ·τfacil) · (1−U)2

+ U · e−1/(λ·τfacil) · (1−U) + U.

(A.2)

The further recursion back to u0 is obvious from (A.2),
resulting in

un = u0 ·
[

(1−U)e−1/(λ·τfacil)
]n

+U ·
n−1∑
i=0

[
(1−U)e−1/(λ·τfacil)

]i
.

(A.3)

Because the term (1−U)e−1/(λ·τfacil) never exceeds the interval
[0, 1), the geometric series of the second term converges, and
its sum can be calculated to yield [22]:

un=u0 ·
[

(1−U)e−1/(λ·τfacil)
]n

+U

[
(1−U)e−1/(λ·τfacil)

]n − 1

(1−U)e−1/(λ·τfacil) − 1
.

(A.4)

The limit for n → ∞ is the same as the value for uc(λ)
calculated in (5). In fact, equation (A.4) can be rewritten in
the following form to make this limit obvious:

un =
(
u0 − U

1− (1−U)e−1/(λ·τfacil)

)
·
(

(1−U)e−1/(λ·τfacil)
)n

+
U

1− (1−U)e−1/(λ·τfacil)
.

(A.5)

The speed of convergence is determined by the term
dependent on n. For introducing the notion of a time
constant, we extend un in (A.5) to a continuous-time variable
u(t) that is equal to un at the time of pulse n, which means
u(n ·Δt) = un for a constant pulse rate. At this point in time,
equality n = λ·t holds, which we use to reformulate the term
dependent on n:

(
(1−U)e−1/(λ·τfacil)

)λ·t = et·[λ·ln(1−U)−1/τfacil] = e−t/τu,λ ,

(A.6)

with the time constant describing the speed of convergence
following:

τu,λ = 1
λ · ln(1/(1−U)) + 1/τfacil

. (A.7)

The time constant thus is dependent on both the time
constant of the iteration, τfacil, and the pulse rate, λ.
Therefore, (A.5) can be modeled as follows:

u(t) = (u0 − uc)e−t/τu,λ + uc. (A.8)
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Figure 11: Comparison of simulated and analytically derived time
course of u (A) and R (B). Parameters are the same as used in
Figure 1.

An explicit expression for Rn can be derived in a similar
way, starting with an equation analogous to (A.2):

Rn = Rn−2 · (1− un−2)(1− un−1)e−2/(λ·τrec)

+
(

1− e−1/(λ·τrec)
)
·
[

(1− un−1)e−1/(λ·τrec) + 1
]
.

(A.9)

This again makes the further recursion back to R0 clear:

Rn = R0 · e−n/(λ·τrec)
n−1∏
i=0

(1− ui) +
(

1− e−1/(λ·τrec)
)

×
⎧⎨
⎩
n−1∑
j=0

⎡
⎣e−(n− j)/(λ·τrec) ·

n−1∏
i= j

(1− ui)

⎤
⎦ + 1

⎫⎬
⎭.

(A.10)

Because of the varying ui, the terms in the product are not
constant like in the derivation for u, so that the resulting
series is not geometric, making a straightforward derivation
impossible. Nevertheless, an exponential decay with a fixed
time constant like for u is the dominant behavior also for
R, as can be seen from Figure 11. We will therefore use a
heuristic approximation for deriving an explicit expression
for the time constant of R. We first insert the explicit
expression of un (A.8) and the starting value for R0 to derive
the following expression:

Rn =
(

1− e−1/(λτrec)
)

·
⎧⎨
⎩
n−1∑
j=0

[(
− M

1−M
· e−1/(λτrec)

) j

×
n−1∏
i=n− j

(
1− e−1/(λτfacil) −U ·Mi

)⎤⎦ + 1

⎫⎬
⎭,

with M = (1−U) · e−1/(λτfacil).
(A.11)

The constant factor outside the sum does not have an
influence on the convergence speed of R. When neglecting
the product inside the sum, the expression reduces to the
sum of a geometric series, whose time constant may be
determined analogously to (A.4) and (A.5). The deviations
from the original formulation then have to be corrected
by additional or modified terms in the time constant. The
exponential function and the term for M in the numerator of
the simplified expression result in terms 1/τrec and 1/τfacil in
the time constant, respectively. By using the approximation
(1 − ε) = eε, the term (1 − M) in the denominator can
be transformed to yield an inverse proportional relation
between U and the time constant for R, τR,λ.

Now, the product term in (A.11) has to be accounted
for. The term Mi results in a quadratic dependency between
the time constant for R and the pulse rate λ due to the
additional potentiation of M. At the same time, the term
(1 − U) of Mi is again transformed into ln 1/(1 − U),
resulting in λ2τfacil ln 1/(1−U). The constant factor U results
in an inverse linear dependency of τR,λ on λ, while U is
again transformed into ln 1/U . The term (1 − e−1/(λτfacil))
can be neglected for high frequencies λ, but has to be
taken into account for low frequencies. This can be done by
combining the constant terms 1/τrec and 1/τfacil while adding
a frequency-dependent factor U · λ.

With all principal dependencies being identified, the
resulting time constant of R reads:

τR,λ = 1
U · [λ2 · τfacil · ln(1/(1−U)) + 2/3λ · ln(1/U) + 2/(3τrec · Uτfacil · λ)]

, (A.12)
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Analogously to the derivation for u, an explicit formula-
tion for R can be stated using the time constant defined by
equation (A.12):

R(t) = (R0 − Rc)e−t/τR,λ + Rc . (A.13)

Equations (A.8) for u and (A.13) for R were verified
against simulations of the iteration formulae (2), (3) over
a wide range of parameters for τfacil, τrec and U , see
results. Despite the continuous-time generalization and the
approximations made in the derivation of τR,λ, analytical and
simulation results are in good agreement. Figure 11 shows
an example of the resulting time courses. The differences
between simulated and analytically derived u(t) are due
to the discrete nature of the original iterative equations
that were generalized to continuous time for the analytical
formulation. Slightly bigger, but still negligible deviations are
visible for R(t), which are due to the approximations made.
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