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STUDY QUESTION: Can a generally applicable morphokinetic algorithm suitable for Day 3 transfers of time-lapse monitored embryos ori-
ginating from different culture conditions and fertilization methods be developed for the purpose of supporting the embryologist’s decision
on which embryo to transfer back to the patient in assisted reproduction?

SUMMARY ANSWER: The algorithm presented here can be used independently of culture conditions and fertilization method and pro-
vides predictive power not surpassed by other published algorithms for ranking embryos according to their blastocyst formation potential.

WHAT IS KNOWN ALREADY: Generally applicable algorithms have so far been developed only for predicting blastocyst formation. A
number of clinics have reported validated implantation prediction algorithms, which have been developed based on clinic-specific culture con-
ditions and clinical environment. However, a generally applicable embryo evaluation algorithm based on actual implantation outcome has not
yet been reported.

STUDY DESIGN, SIZE, DURATION: Retrospective evaluation of data extracted from a database of known implantation data (KID) ori-
ginating from 3275 embryos transferred on Day 3 conducted in 24 clinics between 2009 and 2014. The data represented different culture
conditions (reduced and ambient oxygen with various culture medium strategies) and fertilization methods (IVF, ICSI). The capability to
predict blastocyst formation was evaluated on an independent set of morphokinetic data from 11 218 embryos which had been cultured to Day 5.

PARTICIPANTS/MATERIALS, SETTING, METHODS: The algorithm was developed by applying automated recursive partitioning to
a large number of annotation types and derived equations, progressing to a five-fold cross-validation test of the complete data set and a valid-
ation test of different incubation conditions and fertilization methods. The results were expressed as receiver operating characteristics curves
using the area under the curve (AUC) to establish the predictive strength of the algorithm.

MAIN RESULTS AND THE ROLE OF CHANCE: By applying the here developed algorithm (KIDScore), which was based on six anno-
tations (the number of pronuclei equals 2 at the 1-cell stage, time from insemination to pronuclei fading at the 1-cell stage, time from insemin-
ation to the 2-cell stage, time from insemination to the 3-cell stage, time from insemination to the 5-cell stage and time from insemination to
the 8-cell stage) and ranking the embryos in five groups, the implantation potential of the embryos was predicted with an AUC of 0.650. On
Day 3 the KIDScore algorithm was capable of predicting blastocyst development with an AUC of 0.745 and blastocyst quality with an AUC of
0.679. In a comparison of blastocyst prediction including six other published algorithms and KIDScore, only KIDScore and one more algo-
rithm surpassed an algorithm constructed on conventional Alpha/ESHRE consensus timings in terms of predictive power.

LIMITATIONS, REASONS FOR CAUTION: Some morphological assessments were not available and consequently three of the algo-
rithms in the comparison were not used in full and may therefore have been put at a disadvantage. Algorithms based on implantation data
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from Day 3 embryo transfers require adjustments to be capable of predicting the implantation potential of Day 5 embryo transfers. The cur-
rent study is restricted by its retrospective nature and absence of live birth information. Prospective Randomized Controlled Trials should be
used in future studies to establish the value of time-lapse technology and morphokinetic evaluation.

WIDER IMPLICATIONS OF THE FINDINGS: Algorithms applicable to different culture conditions can be developed if based on large
data sets of heterogeneous origin.

STUDY FUNDING/COMPETING INTEREST(S): This study was funded by Vitrolife A/S, Denmark and Vitrolife AB, Sweden. B.M.P.’s
company BMP Analytics is performing consultancy for Vitrolife A/S. M.B. is employed at Vitrolife A/S. M.M.’s company ilabcomm GmbH
received honorarium for consultancy from Vitrolife AB. D.K.G. received research support from Vitrolife AB.
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Introduction
As single embryo transfers (SETs) become the desired standard of
care world-wide in clinical IVF, a major challenge in the field of embry-
ology is to develop quantitative methods of identifying which embryo,
within a cohort, possesses the highest probability of resulting in a
healthy live birth. Since the beginning of human IVF, embryo selection
for transfer has relied on the assessment of morphology (Edwards
et al., 1984; Claman et al., 1987), and over the intervening three dec-
ades, elegant grading systems have been created to assist in the classifi-
cation of embryos at successive stages of development (Scott and
Smith 1998; Gardner and Schoolcraft, 1999; Tesarik and Greco, 1999;
Van Royen et al., 1999; Gardner et al., 2000; Scott et al., 2000, 2007;
Montag and van der Ven, 2001; De Neubourg et al., 2004; Ahlström
et al., 2011; Diamond et al., 2012). Furthermore, the significance of
assessing embryos at key discrete times, thereby including the variable
of time and rates of development, has also been included in embryo
scoring systems (Sakkas et al., 2001; Gardner and Sakkas, 2003;
Salumets et al., 2003).
In 2011 an expert meeting from Alpha and ESHRE resulted in a con-

sensus paper on morphological criteria for embryo assessment (Alpha
Scientists in Reproductive Medicine and ESHRE Special Interest Group
of Embryology, 2011). In the same year the first study was published
which described a morphokinetic algorithm based on parameters,
determined by time-lapse imaging and using implantation as endpoint
(Meseguer et al., 2011). Time-lapse technology enables continuous
monitoring of embryo development in vitro. In 1997 Payne and collea-
gues successfully imaged the events following ICSI and were able to
monitor polar body extrusion and pronuclear formation in the human
embryo in vitro for the first time (Payne et al., 1997). In clinical embry-
ology routine time-lapse imaging systems have only been available
since 2008 (Pribenszky et al., 2010). The use of time-lapse allows for
the mapping of morphological changes or events with the exact time-
point of occurrence (Ciray et al., 2014). This in turn has initiated the
search for morphokinetic parameters that are characteristic of
implantation, blastocyst formation and aneuploidy, and subsequently
several reports have been published on this subject (e.g. Lemmen
et al., 2008; Wong et al., 2010; Meseguer et al., 2011, 2012; Azzarello
et al., 2012; Cruz et al., 2012; Dal Canto et al., 2012; Rubio et al.,
2012, 2014; Chamayou et al., 2013; Conaghan et al., 2013; Freour
et al., 2013; Campbell et al., 2013a, 2013b; Aguilar et al., 2014; Liu
et al., 2014, 2016; VerMilyea et al. 2014; Yalçınkaya et al., 2014; Basile

et al., 2015; Cetinkaya et al., 2015; Gardner et al., 2015; Milewski
et al., 2015; Yang et al., 2015).
Analysis of implantation-related morphokinetic characteristics has

facilitated the development of algorithms aimed at being clinically
applicable in embryo evaluation for prediction of aneuploidy risk
(Campbell et al., 2013a), blastocyst formation or implantation (e.g.
Meseguer et al., 2011; Conaghan et al., 2013; Campbell et al., 2013b;
VerMilyea et al. 2014; Basile et al., 2015; Milewski et al., 2015;
Goodman et al., 2016; Liu et al., 2016; Motato et al., 2016). Prediction
algorithms have so far been developed on the basis of relatively small
data sets, with numbers between 292 and 432 embryos in prediction
of blastocyst formation and 132–754 embryos in prediction of implant-
ation. These are relatively low numbers, which do not favour the
development of a generally applicable algorithm. Further, variations in
clinic-specific characteristics may not be represented in the data (e.g.
incubation conditions, fertilization method, media, etc.).
The majority of the published morphokinetic algorithms are based

on clinic-/chain-specific data and only a few have been tested in pro-
spective randomized trials (Rubio et al., 2014; Adamson et al., 2016).
Some algorithms have been tested on independent data sets or in
other clinical settings (Kirkegaard et al., 2014; VerMilyea et al., 2014;
Yalçınkaya et al., 2014; Basile et al., 2015; Freour et al., 2015) with
varying outcomes. While some clinics have implemented morphoki-
netic algorithms based on data from their own clinics or chain of
clinics, these algorithms may not be generally applicable without modi-
fication (Best et al., 2013; Kirkegaard et al., 2014; Yalçınkaya et al.,
2014; Freour et al, 2015). One aspect of this may be related to the
documented effect of clinical and laboratory conditions on embryo
morphokinetics (Wale and Gardner, 2010, 2016; Ciray et al., 2012;
Dal Canto et al., 2012; Kirkegaard et al., 2012, 2013, 2014; Yalçınkaya
et al. 2014). Hence, an algorithm developed from data which covers
too narrow a range of conditions is at risk of only performing
adequately on the data set it was developed from, or on data that ori-
ginates from very similar clinical conditions. This has been documented
for one generally applicable algorithm for blastocyst prediction, which
failed when tested in a multi-clinical outcome study (Kirkegaard et al.,
2014).
Morphokinetic time ranges representing optimum implantation may

vary between clinics (Freour et al., 2015). Therefore an algorithm aim-
ing at avoiding embryos of low implantation potential rather than
selecting embryos of the highest potential is more likely to be generally
applicable. In addition, such an algorithm reduces the risk of rejecting
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embryos which may still have potential for implantation. This further
underlines that when creating an algorithm capable of embracing a
broad range of clinical variation, it is important to have a sufficient
amount of data that includes multiple clinics and different culture
conditions.
Here we report a morphokinetic algorithm developed on a data set

of 3275 embryos transferred on Day 3. For all embryos, the develop-
ment up to Day 3 was documented by time-lapse and for every
embryo the fate after transfer (implanted versus non-implanted) was
known, leading to the so-called known implantation data (KID). The
resulting algorithm, KIDScore D3 Basic hereafter called KIDScore, was
based on six annotations, consisting of one morphological and five
morphokinetic events, and the output is a ranking of relative implant-
ation potential from a score of 1 to 5. One of the aims with KIDScore
was to achieve a deselection algorithm, so that the higher score groups
contain a large proportion of the embryos, subsequently leaving the
final choices for transfer or freeze to the embryologist. The algorithm
was validated on an independent data set of embryos cultured to Day
5 to test its capability to predict blastocyst formation. It was also com-
pared with other published morphokinetic algorithms.

Materials andMethods

Data used for developing the KIDScore
algorithm
Data were collected from 24 clinics between 2009 and 2014 which agreed
to share data for time periods from one to several years. No specific meth-
ods were applied in the selection of the clinics. No demographic patient
data were available except for patient age and type of treatment (IVF or
ICSI). Data were subjected to the following criteria and filtering: Patients
aged 40+ were excluded and only Day 3 transfers were included, and a
total of 3275 embryos with known outcome after transfer remained (see
Table I for details).

Data used for developing the algorithm originated from embryos with
known implantation after uterine transfer. As the number of gestational
sacs was the most widely used outcome in this data set, this was chosen as
the endpoint. In cases where this information was missing it was substi-
tuted by the number of foetal heart beats. If two embryos were trans-
ferred, only cases where either both or none of the embryos implanted
were used, according to the KID definition. Treatments with more than
two embryo transfers were not included. The references for the recorded
timings are the time of insemination defined by adding sperm to oocytes
(IVF) or by injecting sperm into the oocyte (ICSI).

Methods for evaluating predictive power
Receiver operating characteristics (ROCs) curves were calculated and the
area under the curve (AUC) was used as determination of the predictive
value (e.g. Fawcett, 2006). AUC is a commonly used quantifier of the over-
all predictive capability of an algorithm. Algorithms with zero predictive
capability will have AUC values of 0.5 on average and algorithms with per-
fect prediction will have AUC values of 1. In this study, AUC values were
used as the primary quantification method for predictive capability. A rela-
tive predictive value (RPV), given by the linear rescaling of AUC values to a
Gini Index, calculated as 2AUC-1 (Hand and Till, 2001), was used as a rela-
tive measure of the capability of the algorithms to predict blastocyst forma-
tion and blastocyst quality. This measure provides a more comprehensible
scale, where 0 signifies no predictive ability and 1 signifies perfect predic-
tion. The predictive power of the respective algorithms was tested against

a common reference using the method for estimation of the AUC for
clustered data proposed by Obuchowski (1997). P-values were adjusted
using Holm–Bonferroni correction (Holm, 1979). In order to counter
false claims of significant differences, a conservative significance level of
P < 0.001 was chosen.

Methods used for developing the KIDScore
algorithm
As an initial criterion, the presence of two pronuclei in the embryo
was a prerequisite for inclusion in the analysis. In agreement with com-
mon embryological practice (Alpha Scientists in Reproductive
Medicine and ESHRE Special Interest Group of Embryology, 2011) this
criterion was applied prior to developing the algorithm.
After testing a range of algorithm types, a decision tree approach

was selected. This type of algorithm was derived by automatically split-
ting the entire population of embryo timings into smaller subgroups.
This procedure is known as recursive partitioning where all splits are
dichotomous and each subgroup may in turn be split. The ‘rpart’ soft-
ware package (Therneau et al., 2015) was used in R (R Core Team,
2015). The specific settings applied in the rpart procedure ensured
that only the largest subgroup would be further split in order to create
a deselection rather than a selection algorithm. Each of the subgroups
that were not further split represents a population of embryos which
were given a score.
Further, we aimed at developing an algorithm based on variables

which can be consistently and objectively annotated, thereby creating
an algorithm which is easy to implement as a decision support tool in
clinical settings. A large number of annotation types and derived
equations were tested in order to have a biologically meaningful algo-
rithm with good numerical performance. The first condition is partly
subjective.

Five-fold cross-validation
A five-fold cross-validation approach was applied to evaluate the
robustness of the parameters. The Day 3 transfer data were randomly
divided into five groups and five algorithm calibration–validation runs
were performed. For each run, we performed a split procedure in a
fixed order that followed the structure of the obtained classification
tree in order to generate a calibration of the splitting value for each
variable in 4/5 of the data. The remaining 1/5 of the data which was
not part of the calibration was then used for validation. The calibrated
splitting values and the AUCs for calibrations and validations were
recorded.

Algorithm robustness with respect to
incubation environment and fertilization
method
The Day 3 transfer data included a four level grouping comprising the
combinations of the two variables insemination (IVF or ICSI) and oxy-
gen level (reduced (~5%) or ambient (~20%)), which have been
shown to impact morphokinetics (Kirkegaard et al., 2013; Bodri et al.,
2015). The robustness in relation to these different factors was tested
as follows: similar to five-fold validation, all of the data except for those
in a given environmental group were used to optimize the splitting
values according to the structure of the obtained classification tree.
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Data from the excluded environmental group were then used for valid-
ation and the splitting values and AUC were recorded.

Data used for predicting blastocyst formation
and quality
The KIDScore algorithm was tested on morphokinetic data from a
separate group of 11 218 embryos cultured to Day 5, using AUC as
the principal measure of predictive capability of blastocyst formation
and quality. Data were collected from 31 clinics between 2010 and
2014 and were not overlapping with any of the data used in the devel-
opment of the algorithms investigated in this study, see Table I for
details. As for the data used for developing the KIDScore algorithm,
the clinics agreed to share data for time periods from one to several
years and no specific methods were applied in the selection of these
clinics. Only data from embryos exhibiting at least one cell division
were included.
There was overlap at the clinic level which provided data from Day

3 cycles used for developing the KIDScore algorithm and from Day 5
cycles for predicting blastocyst development, but independence at the
patient and treatment levels. Here, blastocyst formation was defined
as whether or not an embryo had reached the stage of a fully devel-
oped blastocyst at 120 h post insemination. A subset of the embryos
(n = 4136) was classified at 114–120 h post insemination using
Gardner’s scoring criteria (Gardner and Schoolcraft, 1999). For simpli-
fication, three groups were created for inclusion in the analysis: top
quality (TQ), good quality (GQ) and poor quality (PQ) blastocysts.
The TQ group was comprised of 3AA, 4AA and 5AA blastocysts, and
the GQ group was comprised of 3/4/5BB, AB or BA. Blastocysts with
scorings below those of the GQ group were classified as PQ. The
above three groups are in accordance with Cetinkaya et al. (2015).
The blastocyst quality was further categorized in two groups; TQ and
GQ blastocysts versus PQ blastocysts.

Algorithms used for comparing capability to
predict blastocyst formation and quality
A number of published algorithms were included in the analysis of
blastocyst formation and quality for evaluation and comparison pur-
poses. Three of the evaluated algorithms originally included morph-
ology assessments. In order to make this a pure morphokinetic
algorithm comparison, we have excluded morphological assessments

from the models in question, hereby only evaluating the morphokinetic
component. Adding or removing morphology based assessments to
the algorithms is hereby implicitly assumed to give each algorithm
comparable increase or reduction in predictive capability. However,
the comparison based on this assumption can be biased if the morpho-
logical components omitted not are statistically independent of the
morphokinetic components included.
The algorithm described in Meseguer et al. (2011) (referred to as

‘Meseguer’), and the algorithm described in Basile et al. (2015)
(referred to as ‘Basile’) are both based on symmetrical decision trees
with eight morphokinetic scoring levels, from A+ as the highest to E as
the lowest. This implies that the morphological group F (‘clearly not
viable’) cannot be explored here as this seems to be a partially subject-
ive criterion. The E group could only partially be obtained here, using
the division from 1 to 3 cells (for Meseguer this timing was not speci-
fied but referred to as ‘abrupt division’ interpreted in this study as pro-
gression from 1 to 3 cells within 1 h, and for Basile direct cleavage
from 1 to 3 cells within 5 h according to Basile et al., 2015), while
uneven blastomere size at the 2-cell stage and multinucleation at the
4-cell stage were not available in the current study.
The algorithms in Conaghan et al. (2013) and VerMilyea et al. (2014)

are based on two early time intervals comprising the 4-cell stage. The
algorithm described in Conaghan et al. (2013) (referred to as ‘Eeva I’)
has two possible scores. Building upon the same two intervals,
VerMilyea et al. (2014) described an algorithm with three scores
(referred to as ‘Eeva II’).
The algorithm described in Milewski et al. (2015) (referred to as

‘Milewski’) has a score derived by multiplication of factors that differ
depending on whether morphokinetic effects occur inside or outside
given intervals. The calculated score is here shown with the quartile
grouping from the original paper.
The algorithm described in Liu et al. (2016) (referred to as ‘Liu’) has

a score derived by a decision tree with five strictly and one partially
morphokinetic scoring levels, from A+ as the highest to E as the low-
est, excluding the morphological group F as the required data were
not available in this study. The E score contains direct cleavage, which
is implemented as stated in Liu et al. (2016), but also reverse cleavage
and intercellular contact points at the end of the 4-cell stage, and data
for the latter two variables were not available in this study.
As elaborated above the Meseguer, Basile and Liu algorithms were

not implemented fully as described in the original studies.

.......................................................... ............................................................

.............................................................................................................................................................................................

Table I Overview of data sets: Day 3 transfer data set (24 clinics) and the Day 5 incubation data set (31 clinics), used for
development of KIDScore and blastocyst predictions, respectively, according to fertilization (Fert.) method and oxygen
level during incubation.

Fert. method/oxygen Day 3 transfers Day 5 incubation

Embryos (n) Treatments (n) Embryos (n) Treatments (n)

ICSI/reduced 1042 682 9294 1977

IVF/reduced 478 314 915 322

ICSI/ambient 1364 791 800 163

IVF/ambient 280 191 53 19

Unknown 111 71 156 36

Total 3275 2049 11218 2517
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The algorithm used for common reference, referred to as ‘Alpha/
ESHRE’, was derived by creating an additive score using the Day 3 trans-
fer timings from the Istanbul consensus workshop (Alpha Scientists in
Reproductive Medicine and ESHRE Special Interest Group of
Embryology, 2011). Initially all embryos are given a score of 1. Fulfilling
the criteria of the assessments referred to as early cleavage check
(exactly two blastomeres at 26 h post ICSI and 28 h post IVF), Day 2
embryo assessment (exactly four blastomeres at 44 h post insemination)
and Day 3 embryo assessment (minimum developmental stage: eight
blastomeres 68 h post insemination), each, respectively, adds 1 to the
initial score. These criteria resulted in a 4-score algorithm.

Results
The annotations used in the final KIDScore algorithm are 2PN (the
number of pronuclei equals 2 at the 1-cell stage), tPNf (time from
insemination to pronuclei fading at the 1-cell stage), t2 (time from
insemination to the 2-cell stage), t3 (time from insemination to the 3-
cell stage), t5 (time from insemination to the 5-cell stage) and t8 (time
from insemination to the 8-cell stage). Only t3 is used directly. The
utilization of t8 was derived from the criteria for number of cells at
66 h (cells66h). Therefore, the criterion of cells66h < 8 can be

substituted with t8 > 66 h, which can be used in implementations of
the algorithm.
The overall implantation rate of all 3275 embryos utilized for devel-

opment of the algorithm was 24.95%. Using recursive partitioning we
obtained a decision tree algorithm which ranked embryos according to
their implantation potential between 5.18% (Score 1) and 36.17%
(Score 5) as shown in Fig. 1. In the first split, embryos which had a very
fast development into the 3-cell stage were deselected using the
equation A = t3−tPNf (Score 1). In the second split, embryos that
were very slow to develop were deselected by measuring t3 (Score 2).
In the third and fourth splits, embryos with irregular division were
deselected, measured by equation B = (t5−t3)/(t5−t2). Equation B
was applied twice with a low and a high threshold (Scores 3 and 4,
respectively). The last split deselected embryos which had developed
beyond t5 but not reached the 8-cell stage at 66 h after insemination
(Gardner and Sakkas, 2003). In KIDScore, this is an additional way for
an embryo to obtain the Score 4. All embryos which were not dese-
lected in any of the above splits were given the Score 5. Sub-optimum
groups of embryos were identified in chronological order of develop-
ment, their implantation potential increasing in each step. The corre-
sponding scores signified a seven-fold difference in implantation
potential between Score 1 and Score 5.

Figure 1 Classification tree diagram illustrating the KIDScore algorithm, which was based on morphokinetic information from embryo culture up until Day 3.
The Scores 1–5 are indicated for each tree split with the corresponding number of embryos and implantation rate (Impl.). tPNf, time (h) from insemination to
pronuclei fading at the 1-cell stage. t2, t3, t5, time (h) from insemination to the 2, 3 or 5-cell stage, respectively. cells66h, number of cells 66 h after insemination.

2235Morphokinetic algorithm to predict implantation



The robustness of the algorithm parameters was then tested by
applying it to different randomly generated subsets of the complete
data set by conducting a five-fold validation test (Table II) as well as by
testing the robustness in relation to incubation conditions and fertiliza-
tion method (Table III). When 1/5 of the data set was removed during
the five-fold validation process, the splitting values (parameters) of the
variables used for KIDScore did not display any substantial differences.
The implantation rate varied from 22.0% to 27.6% between these sub-
sets. Overall, the splitting values were comparable although a small
variation was evident in the split using equation A and the low split of
equation B (Table II). By excluding the incubation and fertilization
groupings one at a time, very similar values were obtained for all splits
comprised by the algorithm (Table III). The splitting values were only
mildly impacted by the incubation and fertilization groupings where the

low split of the equation B parameter (Table III) displayed the largest
variation relative to its value when using the complete calibration data
set. The AUC values did not differ substantially between calibration
and validation data, with the exception of the subset validation where
oxygen level and fertilization method were unknown. Here the AUC
value was quite high compared to the calibration, presumably due to
uncertainty caused by the relatively small size of this particular subset
(n = 111). The implantation rate varied from 21.6% to 28.4% between
these subsets. Additionally the predictive performances obtained for
SET and double embryo transfer (DET) were equivalent, with
AUC = 0.642 for SET and AUC = 0.658 for DET. Combined, the five-
fold validation test and the evaluation of the culture and fertilization
conditions indicate that the KIDScore algorithm captures a structure
which is robust across data that spans multiple conditions.

....................................................................................

...............................................................................................................................................................................................

Table II Five-fold validation.

Data subset
used for
validation

Calibration
subset (n)

Validation
subset (n)

Splitting values AUC
calibration

AUC
validation

Equation A t3 (h) Equation
B Low

Equation
B High

cells66h

All data 3275 11.481 42.905 0.341 0.578 7.5 0.653

1 2620 655 11.481 42.885 0.441 0.577 7.5 0.655 0.648

2 2620 655 11.330 43.085 0.359 0.578 7.5 0.653 0.645

3 2620 655 11.481 42.905 0.341 0.578 7.5 0.656 0.640

4 2620 655 9.511 42.910 0.341 0.602 7.5 0.654 0.646

5 2620 655 11.999 42.905 0.441 0.578 7.5 0.656 0.642

Mean 11.16 42.94 0.38 0.58 7.50

SD 0.96 0.08 0.05 0.01 0.00

The stability of the algorithm structure was verified by performing five calibration procedures on the same variables and in the same order as the final output obtained by the rpart
routine. Each split was first calibrated by excluding 1/5 of the data at a time (calibration subset). The calibrated parameters obtained from the 4/5 of the data which was not
excluded were used to generate scores for both the calibration subset and the remaining 1/5 of the data (validation subset). The AUC values are shown both for the scored
calibration subset (AUC calibration) and the validation subset (AUC validation). Equation A, (t3−tPNf); Equation B, (t5−t3)/(t5−t2); cells66h, number of cells at 66 h. AUC, area
under the curve.

..................................................................................

.............................................................................................................................................................................................

Table III Incubation and fertilization method.

Data subset
used for
validation

Calibration
subset (n)

Validation
subset (n)

Splitting values AUC
calibration

AUC
validation

Equation A t3 (h) Equation
B Low

Equation
B High

cells66h

None 3275 11.481 42.905 0.341 0.578 7.5 0.653

red.ox_ICSI 2233 1042 12.010 43.475 0.446 0.579 7.5 0.646 0.647

red.ox_IVF 2797 478 11.427 42.945 0.341 0.578 7.5 0.651 0.657

amb.ox_ICSI 1911 1364 9.517 42.175 0.341 0.578 7.5 0.664 0.621

amb.ox_IVF 2995 280 11.481 42.570 0.340 0.577 7.5 0.652 0.633

Unknown 3164 111 11.481 42.905 0.441 0.577 7.5 0.651 0.724

Weighted mean 10.82 42.76 0.38 0.58 7.50

SD 1.12 0.56 0.05 0.00 0.00

The stability of the algorithm structure is verified by performing a calibration on the same variables and in the same order as the final output obtained by the recursive partitioning routine.
The splits were first calibrated by excluding one incubation type at a time (calibration subset). red.ox, reduced oxygen ~5% . amb.ox, ambient oxygen ~20%.The obtained calibrated
parameters were used to generate scores for both the calibration subset and the excluded incubation type (Validation Subset). The AUC values are shown both for the scored calibration
subset (AUC Calibration) and the validation subset (AUC Validation). Equation A, (t3−tPNf); Equation B, (t5−t3)/(t5−t2); cells66h, number of cells at 66 h after insemination.
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Capability of algorithms to predict blastocyst
formation and quality
After developing KIDScore by using KID data from embryos trans-
ferred on Day 3, we wanted to test the capability of the algorithm to
predict blastocyst formation and quality. When tested on an independ-
ent, multi-centric data set of 11 218 embryos cultured to Day 5, we
found a proficient association in terms of AUC between the score
derived by the KIDScore algorithm and the proportion of embryos
that reached the blastocyst stage. Further, we found a proficient asso-
ciation between the algorithm score and the proportion of blastocysts
assigned as TQ and GQ, using the Gardner score that is indicative of
blastocyst quality on Day 5 (Table IV, Fig. 2A). The higher the score
assigned by KIDScore, the more frequently the embryos reached the
blastocyst stage on Day 5 and the better was the quality of the blasto-
cysts. For each score group, the number of embryos and the propor-
tion of these which reached the blastocyst stage within 120 h are listed
in Table V.
For the purpose of evaluating the relative capability to predict blasto-

cyst formation and quality, we used the multi-centric data set cultured
to Day 5 to compare the Alpha/ESHRE timings algorithm with three
implantation based algorithms (KIDScore; Meseguer et al., 2011, Basile
et al., 2015, Liu et al. 2016) and three blastocyst formation based algo-
rithms (Conaghan et al., 2013; VerMilyea et al., 2014, Milewski et al.,
2015). The blastocyst proportion and quality in the respective algorithm
score groups are illustrated in Fig. 2A–G. The comparison based on the
AUC of the obtained ROC curves revealed clear differences in the rela-
tive predictive capabilities of the various algorithms (Table IV, Fig. 3).
Using the Alpha/ESHRE timings algorithm (Table IV, Fig. 2H) as a

common reference to the other algorithms, KIDScore and Liu showed
significantly higher predictive power regarding blastocyst formation.
Milewski, Eeva II, Meseguer and Basile showed predictive power not sig-
nificantly different from Alpha/ESHRE timings, whereas Eeva I was sig-
nificantly below. For blastocyst quality KIDScore and Liu showed
significantly higher predictive power, whereas Milewski, Eeva I, Eeva II,
Meseguer and Basile here showed predictive power not significantly dif-
ferent from Alpha/ESHRE timings. The number of embryos in the score
groups of the respective algorithms is given in Table V.
The inclusion of different variables in the various algorithms caused

some embryos not to become a score (‘imputes’). Therefore the total
number of embryos used in the comparison was 10 577 embryos
which could obtain a score from all the algorithms included in the
evaluation.

Discussion
Time-lapse imaging in human embryology has revealed developmental
characteristics that are associated with lower implantation and preg-
nancy rates such as direct cleavage (Rubio et al., 2012) and reverse
cleavage (Liu et al., 2014). Time-lapse has also revealed a higher inci-
dence of multinucleation than has previously been reported through
the use of static observations (Ergin et al., 2014; Aguilar et al., 2016). It
has been documented in human IVF that the rate of embryo develop-
ment, particularly that of the first cleavage division, is related to
implantation potential (Sakkas et al., 2001; Salumets et al., 2003).
Similarly, it has been shown through time-lapse that embryos with a
specific pace of development have higher implantation rates than

.............................................................................................................................................................................................

Table IV The predictive capability of the algorithms was illustrated in terms of blastocyst formation and blastocyst
quality in a multi-centric data set which was independent of the data used for developing the algorithms.

Algorithm Evaluation endpoint AUC 95% C.I. RPV (Gini index) P (adj) Development endpoint Information period

KIDScore Blastocyst formation 0.745 0.734–0.756 0.490 «0.0001 Implantation Day 3

Milewski Blastocyst formation 0.688 0.677–0.700 0.377 0.1198 Blastocyst Day 3

Eeva II Blastocyst formation 0.685 0.673–0.697 0.370 0.1028 Blastocyst Day 2

Eeva I Blastocyst formation 0.620 0.61–0.631 0.241 «0.0001 Blastocyst Day 2

Meseguer Blastocyst formation 0.676 0.665–0.688 0.353 0.0045 Implantation Day 3

Basile Blastocyst formation 0.700 0.688–0.712 0.399 0.9370 Implantation Day 3

Liu Blastocyst formation 0.753 0.743–0.764 0.507 «0.0001 Implantation Day 3

Alpha/ESHRE Blastocyst formation 0.700 0.687–0.714 0.400 Ref. Day 3

KIDScore Blastocyst quality 0.679 0.659–0.700 0.359 «0.0001 Implantation Day 3

Milewski Blastocyst quality 0.601 0.576–0.626 0.201 0.0428 Blastocyst Day 3

Eeva II Blastocyst quality 0.611 0.589–0.633 0.222 0.3743 Blastocyst Day 2

Eeva I Blastocyst quality 0.582 0.563–0.601 0.164 0.0028 Blastocyst Day 2

Meseguer Blastocyst quality 0.603 0.579–0.628 0.207 0.1991 Implantation Day 3

Basile Blastocyst quality 0.630 0.605–0.654 0.259 0.9679 Implantation Day 3

Liu Blastocyst quality 0.695 0.672–0.717 0.389 «0.0001 Implantation Day 3

Alpha/ESHRE Blastocyst quality 0.629 0.606–0.652 0.258 Ref. Day 3

The AUC was used to generate a RPVs expressed as Gini Index (2×AUC-1). The Alpha/ESHRE timings algorithm was used as a common reference (Ref.) to which the algorithms were
compared using a test for clustered receiver-operator characteristics curve (ROC) analysis, P-values <0.001 were considered significant. The endpoints on which the respective algo-
rithms were developed (development endpoint) and the general incubation period from which the algorithms considers time-lapse variables (information period) are listed. Meseguer
(Meseguer et al., 2011); Basile (Basile et al., 2015); Eeva I, (Conaghan et al., 2013); Eeva II (VerMilyea et al., 2014); Milewski (Milewski et al., 2015); Liu (Liu et al., 2016); Alpha/ESHRE
(Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology, 2011). ROC, receiver operating characteristics ; RPV, relative predictive value.
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others (Dal Canto et al., 2012; Chamayou et al., 2013). Significantly,
mapping the exact timing of developmental events and being able to
access cell cycle length and cleavage patterns has resulted in the pro-
posal of predictive algorithms (e.g. Meseguer et al., 2011; Conaghan
et al., 2013; VerMilyea et al., 2014; Basile et al., 2015; Milewski et al.,
2015; Liu et al., 2016) for different endpoints, including blastocyst for-
mation or implantation. Despite implantation being a preferable

endpoint over blastulation, implantation still remains subordinate to
live birth, which obviously is the ultimate endpoint for analyses at pre-
sent. Using implantation as endpoint for the model development is
hence an inherent limitation of the present study. However, the devel-
opment of a robust algorithm requires a large data set, and currently
the largest amounts of data are available for blastocyst development,
decreasing in amounts for embryo implantation and further decreasing

Figure 2 Percentage of embryos that developed into blastocysts (light grey) and top or GQ blastocysts (Gardner: 3AA, 4AA, 5AA, 3/4/5BB, AB or
BA; dark grey) shown according to their assigned score groups for all evaluated algorithms. GQ, good quality.
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Table V Score group summary for the evaluated algorithms: The distribution of the embryos that ended up in each
score group is given as numbers (n) and percentages, respectively.

Algorithm Score Embryos (n) Embryos (%) Blastocysts (%)

KIDScore 1 1893 17.9 13.0

2 1403 13.3 23.5

3 645 6.1 27.9

4 2235 21.1 35.9

5 4401 41.6 67.3

Milewski Q1 2163 20.5 14.0

Q2 2680 25.3 33.5

Q3 2237 21.1 58.0

Q4 3497 33.1 57.8

Eeva II Low 4592 43.4 24.0

Medium 2828 26.7 51.2

High 3157 29.8 62.5

Eeva I Low 7420 70.2 34.3

High 3157 29.8 62.5

Meseguer E 1079 10.2 7.4

D− 1027 9.7 24.6

D+ 1457 13.8 41.1

C- 1249 11.8 29.5

C+ 2106 19.9 55.0

B- 565 5.3 48.1

B+ 813 7.7 51.5

A− 879 8.3 54.9

A+ 1402 13.3 63.3

Basile E 1780 16.8 12.2

D− 1917 18.1 29.2

D+ 427 4.0 30.2

C- 1067 10.1 53.3

C+ 647 6.1 64.3

B- 437 4.1 29.3

B+ 912 8.6 56.8

A− 645 6.1 28.4

A+ 2745 26.0 65.5

Liu E 2909 27.5 16.8

D 2186 20.7 22.4

C 1709 16.2 60.7

B 1360 12.9 57.3

A 1797 17.0 71.0

A+ 616 5.8 72.7

Alpha/ESHRE 1 2460 23.3 23.7

2 2105 19.9 22.5

3 3087 29.2 49.1

4 2925 27.7 66.5

For each score group, the percentage of embryos that had formed a blastocyst <120 h post insemination is shown. Meseguer (Meseguer et al., 2011); Basile (Basile et al., 2015);
Eeva I, (Conaghan et al., 2013); Eeva II (VerMilyea et al., 2014); Milewski (Milewski et al., 2015); Liu (Liu et al., 2016); Alpha/ESHRE (Alpha Scientists in Reproductive Medicine and
ESHRE Special Interest Group of Embryology, 2011).
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for live born babies. In addition, the applicability of any algorithm relies
on the data input and consequently using data from a single clinic may
yield an algorithm that works in that clinic but cannot necessarily be
transferred to a different clinic. One such example is the level of oxy-
gen used during incubation, which has a substantial effect on embryo
development (Wale and Gardner, 2010; Kirkegaard et al., 2013). An
algorithm based on data from ambient oxygen conditions (Meseguer
et al., 2011) failed when tested at reduced oxygen (Freour et al.,
2015). This implies that considerations of aligned culture conditions
should be done before the direct transfer of any algorithm, especially
those based on single-centre data.
The KIDScore algorithm presented here is based on an extensive

data set with implantation results of a large number of embryos
derived from 24 clinics and the algorithm uses variables that are easy
to annotate. Furthermore, the algorithm is biologically meaningful as it
identifies embryos with a very fast development into the 3-cell stage
(Split 1), embryos that are too slow to develop (Split 2), embryos that

show an irregular cleavage pattern (Splits 3 and 4), and embryos that
do not reach a desirable stage of development on Day 3 (Split 5).
Significantly, the algorithm does not ‘reject’ any embryo for transfer,
but rather ranks embryo potential compared with others in the same
cohort and represents relative implantation potential based solely on
morphokinetic behaviour. As the algorithm supports the decision on
which embryo to transfer or freeze, it may be used in conjunction with
morphology for making a final choice on Day 3 (Van Royen et al.,
1999) according to morphological criteria applied by the individual
clinics. The IVF clinics that provided the data have different culture
conditions with regard to fertilization method, media, oxygen, carbon
dioxide concentration, protein source, and also handling of oocytes
prior to incubation and sperm preparation. The resulting general
applicability of the KIDScore algorithm is reflected in the fact that the
AUC of the algorithm did not change substantially when tested for dif-
ferent culture conditions such as reduced or ambient oxygen and
when used with IVF or ICSI. Thus, and of importance, this algorithm
can be applied under different conditions without the need to adapt
the algorithm parameters to specific environmental conditions. This
broad applicability is due to the utilization of a large, diverse data set
for calibration; where possible using fractions instead of actual timings,
compensating for differences relating to incubation conditions and fer-
tilization method, robust parameterization methods using cross-valid-
ation, and the achievement of a deselection algorithm.
The study has focused on predictive ability, expressed in terms of

AUC. In general, the most recent algorithms showed the highest pre-
dictive capabilities in terms of AUC, which may be owing to the overall
enhanced knowledge and experience within the relatively new field of
time-lapse embryology. But in order to provide a complete picture of
how an algorithm performs, the actual relative numbers of embryos in
each score group must also be considered, thereby not only taking
into account the percentage of embryos within each group reaching
the blastocyst stage. As an example, the Basile algorithm (Fig. 2F) dis-
plays a seemingly non-monotonous distribution of blastulation in its
eight score groups. This algorithm nevertheless has a predictive cap-
ability at a similar level as the Alpha/ESHRE algorithm, mainly owing to
the fact that the highest and lowest score groups (E, D− and A+) of
the Basile algorithm comprise more than half of the embryos. Hence
some of the seemingly irregular score groups contain quite few of the
embryos.
Another important feature is the number of embryos in the highest

group(s). Generally speaking, a low proportion of embryos in the high-
est score group(s) would designate a selection-oriented algorithm.
Such an algorithm will have low capability to select embryos with a
good to fair probability of becoming blastocysts as many embryos that
could become blastocysts would be deselected. On the other hand,
such an algorithm will be capable of deselecting embryos unlikely to
develop into blastocysts. The Eeva I algorithm may serve as an
example of this. With its two scores, the sensitivity of the Eeva I algo-
rithm (i.e. its capability to identify embryos with a high probability of
blastulating) can be calculated as 44%, which means that 56% of the
blastulating embryos are in the low group. The capability to exclude
non-blastulating embryos is designated by the specificity, which is 80%.
Only 20% of non-blastulating embryos are thus placed in the high
group. These values correspond to those reported in Conaghan et al.
(2013) where a sensitivity of 38% and a specificity of 85% were found.
Likewise, the Liu algorithm can largely be considered a selection-

Figure 3 The predictive capability of the evaluated algorithms is
illustrated for blastocyst formation (A) and blastocyst quality (B).
Predictive capabilities are shown as RPV (Gini Index; [2 × AUC]-1)
with a theoretical range from 0 to 1, with 95% confidence intervals
illustrated by error bars. The Alpha/ESHRE timings algorithm (open
circle) was used as common reference. Meseguer (Meseguer et al.,
2011); Basile (Basile et al., 2015); Eeva I, (Conaghan et al., 2013); Eeva
II (VerMilyea et al., 2014); Milewski (Milewski et al., 2015); Liu (Liu
et al., 2016); Alpha/ESHRE (Alpha Scientists in Reproductive
Medicine and ESHRE Special Interest Group of Embryology, 2011).
RPV, relative predictive value; AUC, area under the curve.
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oriented model, with 5.8% of the embryos given the A+ score and
17.0% given the A score, showing that this algorithm is comparatively
selection-orientated. The blastulation in those groups are 72.7% and
71.0%, respectively, which are the highest numbers recorded in the
comparative study. While the Liu algorithm shares many characteris-
tics with KIDScore, they are differently orientated with regards to
selection/deselection. KIDScore utilizes a more conservative
approach, retaining 62.7% of the embryos in the two highest score
groups, and 41.6% of the embryos in the highest score group, which
represents the highest proportion among the algorithms included in
the comparison. This responds to creating a deselection algorithm
rather than assigning the highest score to a small ‘top group’ of
embryos. Even though the highest score is assigned to such a relatively
large proportion, the percentage of blastulating embryos is 67.3%.
It has previously been reported that algorithms that are based solely

on blastocyst development as endpoint do not correlate well with
implantation (Kirkegaard et al., 2014). By comparing the algorithm pre-
sented here with other published algorithms, it is apparent that
KIDScore, in comparison, has a satisfying explanatory power for
blastocyst prediction, despite the algorithm being initially created for
Day 3 implantation. This is plausibly due to the use of gestational sac
and/or foetal heart beat as an endpoint, for which blastocyst forma-
tion is an inherent precondition. Consequently, this broadens the
application of such an algorithm as it can be used in Day 3 as well as in
Day 5 programs. In cases where it is difficult to determine on Day 3
whether culture can be continued to Day 5 and still have a transfer,
the algorithm may be used to support such decisions. The suitability of
the present KIDScore algorithm to support Day 5 decisions on which
embryos to freeze or transfer is not investigated, though.
The predictive capability of KIDScore in terms of AUC for blastula-

tion is higher than the predictive capability in terms of implantation. A
number of reasons for this can be identified although not quantified.
Firstly, the blastulation data set comprises all embryos which divided
whereas the implantation data set only comprises embryos selected
for transfer. Therefore, the implantation data set has been subjected
to a stronger selection by embryologists than the data set comprising
all embryos in the relevant treatments. Statistically, this could be cate-
gorized as a strong bias which reduces the variation in the data set.
Secondly, the patient’s uterus in a given treatment may not be recep-
tive at the time of transfer, regardless of the characteristics of the
transferred embryo(s). This may statistically be categorized as noise.
Thirdly, the embryo characteristics resulting in implantation possibly
differ slightly from the characteristics resulting in blastulation. This may
statistically cause a difference of parameters or even a different struc-
ture for algorithms aimed at blastulation and implantation, respect-
ively. Nevertheless, the present analysis demonstrates the suitability of
an implantation algorithm to predict blastulation as well. Whether the
reverse also holds true is not demonstrated by this analysis. A com-
parison of the algorithms using implantation data rather than the pre-
sent Day 5 blastocyst data would be preferable. However, the
KIDScore algorithm was developed on the basis of the available
implantation data, and a comparison on the same implantation data
would be biased, probably to the benefit of KIDScore.
The data set used in the evaluation has an overlap at the population

level with the data that KIDScore was developed on, as some clinics
have shared both 3-day incubation data used for calibration of the
algorithm and 5-day incubation data used for validation of blastocyst

prediction. Despite this, there is no treatment or patient overlap.
The overlap at population level may introduce bias as the variation
within those populations may be similar, which may put the
KIDScore algorithm at an advantage regarding predictive capability.
Many operators have been annotating the current morphokinetic
parameters. As annotation by embryologists has a degree of judge-
ment, the predictive power may be confounded by differences in
annotation practice and experience. However, the early timings used
in the current evaluations have low intra- and inter-operator vari-
ation (Sundvall et al., 2013), possibly minimizing this potentially con-
founding effect. The KIDScore algorithm was developed on KID data
which presumably will affect the estimated implantation probabilities.
Therefore, the estimated implantation probabilities (Fig. 1) should be
interpreted with care.
The present study aimed at giving all investigated algorithms equal

frames by not including conventional morphology assessments, even if
specified in the respective composite algorithm. This cannot be fully
achieved though, as the assessments omitted cannot be assumed stat-
istically independent of those included. The algorithms by Meseguer,
Basile, Liu and a complete Alpha/ESHRE consensus evaluation would
all have behaved differently if there was access to the respective con-
ventional morphology parameters required for each algorithm.
Therefore, the present comparison presumably favours the algorithms
that do not include conventional morphology parameters (KIDScore,
Milewski, Eeva I and Eeva II). The present simple implementation of
the timings part of Alpha/ESHRE consensus (Alpha Scientists in
Reproductive Medicine and ESHRE Special Interest Group of
Embryology, 2011) is one possible choice, but other algorithms might
have been made on the same basis. An important future study could
be an analysis of the interactions between morphokinetics and conven-
tional morphology, thus facilitating inclusion of morphology in time-
lapse algorithms.
As a quite notable outcome of this study the present attempt to

mimic the pure timings part of conventional scoring (Alpha Scientists in
Reproductive Medicine and ESHRE Special Interest Group of
Embryology, 2011), without the use of time-lapse, has higher or equal
predictive power regarding blastulation than four of the six dedicated
morphokinetic algorithms. Only Liu and KIDScore had significantly
higher predictive power than the timing part of conventional embryo
evaluation. As stated above, these two algorithms exhibit different
orientations; KIDScore, embracing the majority of the embryos with
the potential to form blastocysts, while Liu targets those with the high-
est chance of blastocyst formation.
An algorithm developed in a given clinic cannot necessarily be trans-

ferred to another clinic (Best et al., 2013; Kirkegaard et al., 2014;
Yalçınkaya et al., 2014; Freour et al, 2015). The strength and the general
applicability of an algorithm is highly dependent on the included incuba-
tion conditions and the amount and quality of the data used as input for
its development. Furthermore, the robustness of an algorithm depends
on the variables that are included in it and the borders that are applied
for selection or deselection. The availability of a robust algorithm, such
as KIDScore, enables clinics which have not yet built a large data founda-
tion to support their decision on which embryo(s) to transfer immedi-
ately upon implementing the technology, while accepting that the final
decision is always with the embryologist. This is important, especially
since embryologists who are only starting to use time-lapse technology
will rely on traditional embryo scoring based on morphological
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characteristics that are not included as variables in the KIDScore algo-
rithm, e.g. fragmentation, blastomere, size or multinucleation.
Combining these traditional morphological assessments with morphoki-
netic information, only accessible through use of time-lapse, may allow
for more well-informed decisions in embryo selection. The best com-
bination of traditional morphological and morphokinetic information
should be the subject of future studies, and even more important the
gains in terms of increase in pregnancies from such a combination should
be investigated in Randomized Controlled Trial studies.
Embryologists have preferred to transfer multiple embryos in order

to obtain high pregnancy rates, which resulted in high rates of multiple
births. The risk of a higher order pregnancy to both mother and foetus
is well documented (Adashi et al., 2003). Therefore, there is a growing
movement world-wide to achieve a single healthy pregnancy per IVF
treatment by transferring only one embryo. Time-lapse imaging, in
combination with decision support algorithms that are based on mor-
phokinetic embryo assessment, may help to facilitate the implementa-
tion of an SET policy.
Keeping the above discussion and reservations in mind, the present

study clearly indicates that there are substantial differences in the pre-
dictive power of the evaluated morphokinetic algorithms. It should still
be emphasized that the ultimate verification of the advantage of time-
lapse in terms of improved culture conditions and improved basis for
selection can only be provided by a Randomized Controlled Trial
(Kaser and Racowsky, 2014, Armstrong et al., 2015) of both sufficient
size and suitable design, not by a retrospective study as the present.
KIDScore could be a suitable candidate for a generally applicable

Day 3 algorithm which can be applied in different clinical settings. The
predictive ability of the KIDScore algorithm primarily concerns
implantation, but also relates to blastocyst development as well as
blastocyst quality.
The current analyses suggest that conventional (non-time-lapse)

timings evaluation has good predictive power for blastocyst formation.
While many of the compared algorithms showed less or equal predict-
ive power, the two most recent algorithms suggested a substantial
benefit from using a time-lapse based algorithm, relative to the present
algorithmic interpretation of a conventional timings evaluation. This
we consider an important message from this study. While not serving
as the ultimate answer on the question of the value of time-lapse, this
study implies marked differences in predictive power of the evaluated
algorithms.
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