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Polyphenols are used as antioxidants in various foods and beverages, which are
considered to be a health benefit. The measurement of polyphenols contents is of
great interest in food chemistry and health science. This work reported a microgels
based photonic device (etalon) to detect polyphenols. Dopamine was used as a model
compound of polyphenols. Herein, we proposed a “block” concept for dopamine
detection. The dopamine was oxidized and formed dopamine films catalyzed by
tyrosinase on the surface of etalon. As the etalon was immersed in ZnCl2, the
dopamine films blocked the ZnCl2 diffusion into etalon that caused optical property
changes. The film thickness is associated with the concentration of dopamine which
can be readout via optical signals.
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INTRODUCTION

Polyphenols are strong antioxidants existing in fruits and beverages like tea, red wine, and coffee,
which play an important role in human health (Ponder and Hallmann, 2019; Zheng et al., 2020). The
catechol structure allows polyphenols to scavenge free radicals and inhibit lipoprotein oxidation,
reducing the incidence of cardiovascular diseases and some cancers (Ru et al., 2019; Gao et al., 2020;
Zhang et al., 2020). Therefore, it is very important to detect such compounds in foods in the fields of
food chemistry and healthy science. Up to now, some methods have been developed for polyphenols
detection, such as chemiluminescence (Nalewaiko-Sieliwoniuk et al., 2015; Nalewajko-Sieliwoniuk
et al., 2016; Zhao et al., 2017), mass spectra (Fayeulle et al., 2019), electrophoresis (Yasui and Ishii,
2014; Matei et al., 2016; Parveen et al., 2016), electroanalysis (Fu et al., 2012; Thangaraj et al., 2012;
Alcalde et al., 2019) and chromatography (Hashim et al., 2020; Ovchinnikov et al., 2020; Yuan et al.,
2020). However, these methods get involved with complicated sample purification, and the complex
composition and the presence of interferences in the extracted samples often caused big experimental
errors during polyphenols content measurement. Meanwhile, these detection are expensive and
require professional technicians to complete, which significantly restricts their abroad applications.

Photonic materials are composed of close packed arrays of nanoparticles that self-assemble into
crystal structures. As light illuminated the crystal structure, it will be constructed or deconstructed in
a certain direction to generate an interference light. The color and optical properties (e.g., reflected
light wavelength) of photonic materials depends on the distance between lattice planes. In recent
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years, photonic materials have been explored as colorimetric
sensors due to their attractive features such as visual readout,
low cost, and easy handling (Hou et al., 2018; Zhang et al.,
2018). For example, the Asher group developed a series of two-
dimensional photonic crystals that were prepared by locking
3D ordered colloidal particles in hydrogels (Cai et al., 2015; Cai
et al., 2016). Then, they utilized these materials to sense various
chemical small molecules and biomacromolecules (Zhang et al.,
2011; Zhang et al., 2013; Zhang et al., 2014b). Similarly, 3D
photonic crystals have also been reported and used to sense
various environmental factors, such as metal ions (Liu et al.,
2020), RNA (Li et al., 2020), gas (Huang et al., 2019; Afsari and
Sarraf, 2020; Huang et al., 2020), protein (Cai et al., 2016; Cai
et al., 2017), and bacteria (Massad-Ivanir et al., 2014; Hou et al.,
2018; Zhang et al., 2018). Our group prepared specific
microgel-based optical devices (i.e., an etalon). We
subsequently studied their optical properties and utilized the
device to sense various environmental analytes, e.g.,
triglycerides (Zhang et al., 2015a), Tabun (Zhang et al.,
2014b), Cu2+ (Zhang et al., 2015b), CO2 (Zhang et al.,
2015c) and H2O2 (Zhang et al., 2016). Briefly, etalons were
prepared by depositing a single layer of microgels on an Au-
coated glass substrate, and then another layer (15 nm) of Au
was deposited on the microgels to form a sandwiching structure
(Zhang et al., 2014a). The optical properties of etalon can be
described using Eq. 1:

mλ � 2ndcosθ (1)

where n is the refractive index of the microgels layer, d is the space
between two Au layers, θ is the angle of incident light relative to
the normal, and m is the order of reflected peaks that should be
integers. Therefore, the reflection wavelength and etalon colors
are dependent on the distance of Au-Au layers and the refractive
index of microgels.

In the submission, we developed a “block” concept for
polyphenols determination using etalons. First, the surfaces of
etalons were modified using tyrosinase that could catalyze
polyphenol oxidation generating polyphenol films on the
etalon surface in presence of O2. The thickness of polyphenol
films depends on the concentration of polyphenols. When the
device was soaked in ZnCl2 solution, the polyphenol films
blocked Zn2+ entering into etalon that caused optical property
changes of etalons. Therefore, the concentration of polyphenols
can be deduced according to optical property change of etalons.
In this paper, dopamine was used as a mode compound of
polyphenols for polyphenol detection research. In a
comparison of electrochemical methods, mass spectroscopy-
based methods, and fluorescent probes, this system does not
get involved with bulk and expensive equipment, complicated
sample pre-treatment, and complex operation.

EXPERIMENTAL SECTION

Synthesis of Microgels (MG-AAc)
N-isopropylacrylamide (11.9 mmol), acrylic acid (0.65 mmol),
and N,N′-methylenebisacrylamide (0.65 mmol) were dissolved in

100 ml deionized (DI) water, and then the solution was filtered
using a 0.45 μm filter. The solution was added into a 3-necked
round bottom flask with a reflux condenser, nitrogen inlet, and
temperature probe. The solution was heated to 70°C under N2

atmosphere. The polymerization was then initiated using
ammonium persulfate (0.2 mmol) in 1 ml of DI water. After
4 h reaction, the resulting suspension was cooled to room
temperature and the filtered using Whatman #1 filter paper to
remove any large aggregates formed during the polymerization.
Themicrogel solution was purified for six times via centrifugation
to remove unreacted monomers and supernatant. The purified
microgels solution was kept in a brown glass jar before use.

Modification of Etalon Surfaces With
Tyrosinase
The etalon was cleaned by rinsing with deionized (DI) water and
ethanol separately. N-hydroxysuccinimide ester groups were
attached on etalon surface by soaking into 3,3′-
Dithiodipropionic acid di (N-hydroxysuccinimide ester)
(DTSP) solution at a concentration of 0.1 mmol ml−1 for 2 h.
Then, the etalon was taken out from solution, followed by
washing with massive ethanol and stored in ethanol solution
overnight to remove residual DTSP.

Tyrosinase was fixed on the etalon surface through covering
the DTSP functionalized etalon with 100 μL tyrosinase aqueous
solution (1 mgml−1) for 2 h. The residual tyrosinase was removed
by rinsing the etalon surface with massive DI water.

Etalon Pre-Treatment Using Dopamine
100 μL dopamine aqueous solutions at a certain concentration
were sprayed on the etalon surfaces. After 2 h, the dopamine
aqueous solutions were removed from the etalon surfaces using
micropipette, followed by washing with massive DI water to
remove unreacted dopamine monomer from polydopamine
film. The edge of these etalons was sealed using nail polish to
prevent solvent and solute entering etalon from periphery.

Reflectance Spectroscopy
Reflectance measurements were completed in a home-made
sample holder using a USB2000 + spectrophotometer, a HL-
2000-FHSA tungsten light source, and a R400-7-VISNIR optical
fiber reflectance probe, all from Ocean Optics (Dunedin, FL). The
spectra were recorded using Ocean Optics Spectra Suite
Spectroscopy Software over a wavelength range of 350–1025
nm. Measurements were performed in the sample holder that
leads to careful sample positioning, test stability, and precise
temperature control.

RESULTS AND DISCUSSIONS

First, microgels were synthesized by the precipitation
polymerization of N-isopropylacrylamide, acrylic acid, N, N′-
methylene bis (acrylamide) (crosslinker). The resultant microgels
have been characterized using transmission electron microscope
(TEM) and dynamic light scattering (DLS), as shown in Figure 1.
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The microgels exhibited the diameters of ∼340 nm (±10 nm) in
dried state and diameters of 840 nm (±15 nm) in swelling state
(polydispersity index: 1.03) at 30°C. The characterized microgels
were then used to construct microgel-based etalons following
previous reported protocol by our group (Xia et al., 2020). These
etalons were comprised of single layer microgels sandwiched by
two semi-transparent gold layers on glass substance, as shown in
Figure 2. In order to deposit polyphenol films on the surfaces of
etalons, we covalently fixed tyrosinase on etalon surfaces that can
catalyze catechol oxidation generating benzoquinone and
polyphenol films (Solem et al., 2016). Firstly, oxysuccinimide
ester groups were attached on etalon surface via Au–S bonds by
soaking etalons in DTSP solution (1 mg ml−1). Tyrosinase was
subsequently fixed on etalon surfaces through substitution
reaction between amine groups of tyrosinase and
oxysuccinimide ester groups on etalon surfaces. When
catechols present in the system, tyrosinase catalyzes oxidation
reactions of catechol into o-quinone (Desentis-Mendoza et al.,

2006). Subsequently, a conjugate addition of diverse nucleophiles
(catechols) with o-quinone takes place (Espín et al., 2001). These
reactions repeatedly happened yielding polymers with high
molecular weights and further forming polymeric films. The
solute was prevented from entering into the etalon from edges
by sealing fringes with nail polish. The schematic process of
etalons was shown in Figure 2.

The process of surface modification was monitored using
X-Ray photoelectron spectroscopy (XPS) surface analysis
technique, and the results were shown in Figure 3. The N1s
XP spectra showed there is trace amount of N atoms on the
surface of etalons. It dramatically increased when the etalon
surface was modified using DTSP, which was attributed to the
imide groups of DTSP. The intensity change of N atoms was also
observed when tyrosinase was attached on the surface of etalons.
As the polydopamine films were deposited on the surfaces of
etalons, enormous intensity increase of N atoms in XPS spectrum
was observed due to the high content of N atoms in

FIGURE 1 | (A) TEM image of microgels; the scale bar stands for 2 μm (B) microgel diameters at 30°C determined three times by DLS.

FIGURE 2 | Schematic process of etalons.
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FIGURE 3 | Element-specific high-resolution XP spectra of N1s (A) and S2p (B) regions. Panels in the two pictures: a: etalon; b: etalon modified with DTSP;
c: etalon modified with tyrosinase; d: etalon modified with polydopamine film (C) The Raman spectra of polydopamine film on the surface of the sensors.

FIGURE 4 | SEM images of microgels: (A) etalon without surface modification (B) etalon modified using 500 ppm dopamine (C) etalon modified using 1000 ppm
dopamine (D) The thickness of polydopamine film as a function of dopamine concentration. These values are averages of three repeat analyses using three etalon
devices.
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polydopamine films. The S2p XP spectra also confirm the
modification process on etalon surfaces (Figure 3B). The
surface modification of etalon with tyrosinase caused the
intensity change of S2p (162 eV) in XPS spectra. The peak of
S2p at 162 eV almost disappeared, when polydopamine film was
deposited on etalon surfaces. The phenomenon was due to the
fact that the etalon surfaces and S atoms were covered by
polydopamine films. The structure of polydopamine film on
the etalon surface also has been investigated by Raman
spectra, which has been shown in Figure 3C. The strong
adsorption peak at 1650 cm−1 was assigned to the C � C
stretching vibration of benzene. The polydopamine films were
also investigated using SEM through observing the cross-section
of etalons. In comparison of pure etalons, obvious polymeric
films were found on the top of polydopamine modified etalons
(Figure 4). The thickness of polydopamine films depends on the
concentration of dopamine solution. As shown in Figure 4D, the
thickness of polydopamine film increases from 18 to 128 nm as
concentration increasing of dopamine from 500 ppm to
1250 ppm.

The response of the etalons to ZnCl2 was investigated at room
temperature, and the reflectance spectra of etalons were shown in
Figure 5. As can be seen, a characteristic peak at 630 nm was
observed for pure etalon. When the etalon was exposed to 0.01M
ZnCl2, the reflectance spectrum of etalon exhibited a blue-shift of
65nm and got stable around 5min. The blue-shift of reflectance
spectrum was attributed to deswelling of microgels caused by
ZnCl2. Our group has found in 2013 that the semi-transparent Au

layer contains pores, which allow penetration of high molecular
weight (Mw) polyelectrolytes (MW 100 000–200 000) from
solution into etalons (Islam and Serpe, 2013). In the
submission, ZnCl2 penetrates the semi-transparent Au layer
and enters microgels. Zn2+ could coordinate with carboxylate
groups of microgels with a ratio of 1: 2. In this case, Zn2+ acts like
crosslinkers which make microgels shrink. Figure 5A
demonstrates reflectance spectra of etalons subjecting to
0.01 M ZnCl2. When ZnCl2 present in the system, the
reflectance spectra exhibit fast a blue-shift of 66 nm. The
reflectance spectra become stable at 5 min. Therefore, all of
spectrum data in the following experiment were read out at
5 min. The amplitudes of peak shift of reflectance spectra are
inversely proportional to the concentration of dopamine used to
surface modification of etalons. The etalons modified using 500
ppm dopamine exhibit a blue shift of 52 nm in response to 0.01M
ZnCl2, which is 14 nm less than that of pure etalon (66 nm). These
values are averages of three repeat analyses using three different
etalon devices. As the concentration of dopamine increases from
500 to 1250 ppm, the amplitude of spectra shift decreases from 52
to 10 nm. The similar trends of peak shifts were also observed
when the detection was carried out in urine and serum. This
phenomenon is attributed to thickness changes of dopamine films
that block the diffusion of ZnCl2 through the film into microgels.
The calibration curvesof spectral shift as a function of dopamine
concentration were shown in Figure 5D. The sensor exhibited a
limit of detection of 11.5 ppm in DI water, 18.7 ppm in urine, and
21.4 ppm in serum. Five devices were used to measure dopamine

FIGURE 5 | Reflectance spectra of etalon upon exposure to the ZnCl2 aqueous solution of 0.1 M recorded in 5 min: (A) etalon (B) etalon modified using 500 ppm
dopamine (C) etalon modified using 1000 ppm dopamine (D) The peak shifts of reflectance spectra as a function of dopamine concentration: (1) in DI water, (2) in urine,
(3) in serum. These values are averages of five repeat analyses using five etalon devices.
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concentration at each point, which shows a maximum deviation
of 8% between these devices. The result indicates a good device-
to-device reproducibility for dopamine detection. Therefore,
etalon can be used to quantitatively measure dopamine
content in samples using the calibration curve. This method
also can be used to detect other catecholamines with
corresponding calibration curves.

CONCLUSION

A method of polyphenols detection was developed based on
“block” concept using etalon devices. First, the etalon surfaces
were modified using tyrosinase that could oxidize polyphenols
into polymeric films. The polymeric films impede the diffusion of
ZnCl2 into etalons, which lead to different optical properties of
etalons. The optical property of etalon is related to polyphenol
concentration using surface modification of etalons. The
concentration of polyphenol can be measured according to
optical property change of etalons.
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