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Abstract: Tissue phantoms are important for medical research to reduce the use of animal or human
tissue when testing or troubleshooting new devices or technology. Development of machine-learning
detection tools that rely on large ultrasound imaging data sets can potentially be streamlined with high
quality phantoms that closely mimic important features of biological tissue. Here, we demonstrate
how an ultrasound-compliant tissue phantom comprised of multiple layers of gelatin to mimic
bone, fat, and muscle tissue types can be used for machine-learning training. This tissue phantom
has a heterogeneous composition to introduce tissue level complexity and subject variability in the
tissue phantom. Various shrapnel types were inserted into the phantom for ultrasound imaging to
supplement swine shrapnel image sets captured for applications such as deep learning algorithms.
With a previously developed shrapnel detection algorithm, blind swine test image accuracy reached
more than 95% accuracy when training was comprised of 75% tissue phantom images, with the rest
being swine images. For comparison, a conventional MobileNetv2 deep learning model was trained
with the same training image set and achieved over 90% accuracy in swine predictions. Overall, the
tissue phantom demonstrated high performance for developing deep learning models for ultrasound
image classification.

Keywords: tissue phantom; ultrasound imaging; shrapnel; detection; deep learning; artificial
intelligence; classifier; algorithm; foreign body

1. Introduction

Ultrasound (US) imaging is critical in a wide range of medical applications from
obstetric procedures to time-sensitive emergency medicine decision support [1]. This
emergency medicine use case extends beyond the civilian sector to military medicine where
important triage decisions for limited medical evacuation resources could rely on US-based
casualty triage [2]. This is especially true in austere medical scenarios or combat casualty
care situations where access to higher fidelity imaging modalities may not be possible for
up to 72 h post-injury [3,4]. US in these emergency use cases could be used to detect foreign
bodies or the aid in the diagnosis of pneumothorax, hemoperitoneum, and other injury
states within the extended Focused Assessment with Sonography for Trauma (eFAST)
exam [5]. However, access to trained radiology expertise to interpret ultrasound images is
likely not feasible in these military or emergency situations. As a result, automation of US
image interpretation or classification through development of deep learning models can
potentially lower the expertise threshold for making critical triage decisions.

A number of efforts have been focused on deep learning model development for
medical image interpretation. These include the detection of SARS-CoV-2 using X-ray
images [6–8], neurological disease progression in MRI images [9–11], and the identification
of tumors using CT scans [12–14], among others. Advances in foreign body detection
have been limited to X-ray imaging techniques identifying pathologies like tuberculosis,
however high contrast items in chest cavities like coins, medical devices, jewelry can
be confounding [15]. High contrast foreign objects can affect the diagnostic quality of
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an image [16] and remain an area of concern for training medical diagnosis algorithms.
Focusing on ultrasound imaging, review articles have been written on various deep learning
model architectures for a range of medical applications [17]. For example, COVID-19 and
pneumonia detection have been achieved at close to 90% accuracy from US brightness
mode (B-mode) images using an InceptionV3 network [18].

With most neural network architectures and training problems, deep learning algo-
rithms for medical diagnoses require thousands of positive and negative images to properly
develop, train, and test algorithms [19]. Collecting these datasets can be inefficient, costly,
or impossible if only relying on animal or human image sets. In these scenarios, algorithm
development using tissue phantoms may bridge the gap and supplement the need for
large quantities of animal or human images sets if the tissue phantom is able to accurately
mimic the desired tissue’s echogenicity. The development of various phantom tissues
with high contrast backgrounds continues to be a need for the advancement of automated
diagnostic methodologies. Review articles have been written on how biomaterials can
be used for ultrasound tissue mimicking phantoms [20–22]. To support medical research
studies, tissue phantoms are cost-effective options for initial studies and training exercises
where available resources are scarce [23–28]. This is also true for animal studies, where
high fidelity tissue phantoms can help reduce the animal testing burden [29,30]. Tissue
phantoms have been used for applications such as instrument calibration, manual needle
steering, and robotic surgery training, but one current area of interest is medical imaging.
Developing a tissue phantom relevant for medical imaging requires adequate complexity
to mimic tissue, incorporation of subject variability for creating more robust data sets, and
tuning the phantom to the specific medical application.

We have recently shown development of a shrapnel detection convolutional neural
network trained from images acquired from a custom-developed tissue phantom [31]. Here,
we show how this custom phantom has sufficient heterogeneity and subject variability
compared to swine tissue that it can be utilized in a hybridized training format to reduce the
animal images required. Further, we highlight the effectiveness of a previously developed
ShrapML neural network for this application, in comparison to MobileNetV2 [31]. This
results in a shrapnel detection algorithm suitable for US image classification of shrapnel in
swine tissue.

2. Materials and Methods
2.1. Fabrication of a Tissue Phantom Mold

The thigh mold design was based on circumferential measurements of human adult
male thighs and resulted in an average outer diameter of 120 mm. The mold was subdivided
into three components: bone, muscle, and fat (Figure 1). The bone had a diameter of 26 mm
to mimic an average femoral bone [32,33]. The muscle layer was 94 mm in diameter and
the fat layer was the remaining diameter resulting in the fat layer equaling ~ 20% of the
total tissue diameter. 3D models were developed using computer aided design software
(Autodesk Inventor, San Rafael, CA, USA), converted to STL files, and fabricated using
a fused deposition modeling 3D printer (Raise3D, Irvine, CA, USA) with Polylactic Acid
(PLA, Raise3D, Irvine, CA, USA) filament. 3D printed parts were finished with a brush
on resin coating (XTC-3D, Smooth-On, Macungie, PA, USA) to reduce fluid leaking into
the walls of the mold. A muscle layer mold was fabricated with a recess for a nylon bone
of proper diameter to slot in the center. The mold was two parts that snap together and
were secured by vise-grip and tape to minimize leakage as the tissue phantom solidified.
The muscle mold was also fitted with a lid (Figure 1) that was clamped and taped shut
after pouring the tissue phantom, as solid components in the phantom fell out of solution
if not inverted regularly throughout the solidification process (See next section). An outer
fat layer mold was also fabricated with an inner diameter of 120 mm with the same bone
recess in the middle. The tissue phantom was created sequentially so that after the muscle
layer solidified, it could be placed into the larger fat layer mold to add the outer gelatin
layer. A thin plastic film (McMaster Carr, Elmhurst, IL, USA) was cut to the height of each
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respective mold and placed against the outer wall during solidification to minimize the
tissue phantom adhesion to the PLA plastic.
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Figure 1. Overview of Sequential Mold Setup. (A,B) The inner muscle mold was comprised of 4
components shown as a (A) cross-sectional view with inner dimensions shown as dashed lines and
(B) in exploded view. Two shells were snapped together with an inner bone; top lid was assembled
after the phantom solution was added. (C) The outer fat layer mold shown with the same bone in the
middle of the drawing. Scale bars denote 20 mm.

2.2. Tissue Phantom Construction Using Gelatin

The phantom made to simulate a human thigh was an adaptation of commonly used
gelatin tissue phantoms [26,31], which use gelatin as their bulk component due to the
similarity in ultrasound properties to fat and muscle tissue [28]. For our purposes, we used
10% (w/v) gelatin (Thermo-Fisher, Waltham, MA, USA) dissolved in a 2:1 solution of water
and evaporated milk (v/v) (Costco, Seattle, WA, USA) with different flour (unbleached
wheat flour, H-E-B, San Antonio, TX, USA) concentrations per layer. Evaporated milk’s
colloidal composition increased echogenic reflection of the tissue phantom compared to
using water alone [33]. Evaporated milk has been previously used in tissue-mimicking
phantoms to alter the attenuation coefficients to better mimic soft-tissues [34]. Flour has
been previously used as an echogenic scattering agent when developing tissue-mimicking
phantoms [31,35]. To obtain desired consistency, the water and milk solution was heated
to approximately 45 ◦C, to aid gelatin solubility but not burn the milk. Half of the gelatin
mixture was then transferred to another container for adding a different flour concentration.
A higher concentration of flour was utilized for the inner layer (muscle), 0.25% w/v, while
a lower concentration was used for the outer layer (fat), 0.10% w/v. After mixing the flour
into solution, the solutions were kept at 45 ◦C in an oven to maintain the gelatin as a liquid.

Similar to gelatin-based tissue phantoms, agarose-based materials have also been shown
to mimic the attenuation coefficients of soft tissue [26,36]. To better simulate the heterogeneous
muscle tissue, we incorporated agarose (Fisher Scientific, Fair Lawn, NJ, USA) fragments into
the inner layer muscle bulk. A 2% agarose solution (w/v) in water was created by bringing
water to a boil until the agarose dissolved and the solution was held at approximately 65 ◦C
until ready for solidification. Brighter and darker fragments were included in the muscle layer
by splitting the 2% agarose solution in half, and adding 1.0% and 0.1% w/v flour, respectively.
These solutions were solidified at 4 ◦C in 50 mL centrifuge tubes (Fisher Scientific, Fair Lawn,
NJ, USA) followed by manual crumbling with a spatula to produce irregularly sized pieces
(Figure 2A). Agarose components were then added into the muscle layer mold and then
the inner layer gelatin mixture was added (Figure 2B,C). A lid on the inner muscle layer
mold allowed inversion every minute for 15 min during solidification to keep the agarose
components in suspension in the muscle layer (Figure 2D). After solidification of the muscle
layer, the inner tissue phantom with bone was removed from the fabricated mold, placed
within the outer layer mold, and the fat-mimicking outer layer was added around the muscle
layer (Figure 2E). Solution was held at 4 ◦C until solidification, approximately one hour. After
this time, the completed tissue phantom was removed from the outer mold and used for
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ultrasound imaging applications within the 48 h of fabrication. The tissue phantom was stored
at 4 ◦C in an airtight container when not in use.
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Figure 2. Stepwise construction of the gelatin phantom. (A) Chopped agarose fragments with
different flour concentrations were first created. (B) Next, black plastic liner was placed into
the inner mold (muscle layer) and the agarose fragments were added, as well as a plastic bone.
(C) Then, muscle gelatin solution is poured into the inner mold. (D) The lid was secured with tape
and the sealed mold placed on ice. (E) After solidification, the muscle layer was removed from the
inner mold and placed in the center of the outer mold (fat layer). (F) After outer layer solidification,
the tissue phantom (with bone, muscle layer, fat layer) was removed from the mold and used for
imaging applications.

2.3. Ultrasound Shrapnel Imaging

Using different iterations of the tissue phantoms, images were collected using a
Sonosite Edge (Fujifilm, Bothell, WA, USA) ultrasound instrument and HF50 probe (Fujifilm,
Bothell, WA, USA). For simplicity, all ultrasound imaging was performed underwater to
avoid the need for ultrasound gel. Baseline images were captured at varying depths and
with longitudinal and transverse probe placement in 10 s video clips. Various shrapnel
fragments were inserted into the tissue phantom underwater, to avoid air introduction,
using surgical forceps. Images were collected for each of 8 shrapnel types (asphalt, ceramic,
glass, metal, plastic, rock, rubber, and wood) in each tissue phantom iteration with shrapnel
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depth varying from 2 cm to 5.5 cm, where it was almost impacting the bone. The entire
circumference of the tissue phantom was utilized for shrapnel insertion and imaging.

Similarly, baseline and shrapnel images were collected using recently euthanized
animal tissue, e.g., porcine thighs from an unrelated Institutional Animal Care and Use
Committee tissue sharing agreement. Similarly, to the tissue phantom, baseline images
were obtained at varying depths, angles, and with bone sometimes in view. Subsequently,
two lateral 3 cm incisions were made on the bicep and the various types of shrapnel
were inserted to depths of 2 to 4.5 cm. An average of 30 images were taken for every
shrapnel type, with shrapnel placed at different depths within the tissue and varying angle
of imaging. The full collection of ultrasound images (14 iterations of tissue phantoms
and swine biceps) was compiled for further image preprocessing. For quantifying image
properties, ultrasound images were cropped based on average histogram intensities in
the row and column direction to identify the edge of each image using MATLAB R2021b
(Mathworks, Natick, MA, USA). Mean and standard deviation values across the cropped
images were calculated on grey scale images using MATLAB.

2.4. Training Image Classification Algorithms for Shrapnel Detection

Briefly, ultrasound images were imported after cropping to a 512 × 512 size using
ImageJ/FIJI [34,35]. Next, 20% of images were held out as a testing image set, and the
remaining images were split 80:20 between training and validation. Image augmentation
in the form of zoom, rotate, flip, contrast adjustments were performed randomly at magni-
tudes up to 10%. The classifier algorithm architecture, previously described and termed
ShrapML, is shown in Figure 3 and summarized in Table 1. Briefly, it is comprised of a series
of 2D convolution layers connected to a rectified linear unit activator with each followed by
a max pooling layer. This is repeated 5 times, followed by a dropout regularization layer
set at 55% to help reduce model overfitting and then a flattening layer to reduce the image
to 1D. A fully connected neural network layer with a sigmoid activator is the final step
in the network and results in a binary image classification output: baseline (no shrapnel)
or shrapnel. Training was conducted over 100 epochs with a 32-image batch size using
an RMSprop optimizer to minimize loss (Table 1). The deep learning image classification
algorithm was previously designed using TensorFlow/Keras (version 2.6.0) and Jupyter
Notebook in Python (version 3.8) [31]. Training was performed on an HP workstation
(Hewlett-Packard, Palo Alto, CA, USA), running Windows 10 Pro (Microsoft, Redmond,
WA, USA) with an Intel Xeon W-2123 (3.6 GHz, 4 core, Santa Clara, CA, USA) processor
with 64 GB RAM.

Table 1. Summary of ShrapML Architecture and Training Parameters.

Parameter. Value

Total # of trainable parameters 17.17 million
Number of Sparsely Connected CNN Layers 5 CNN Layers
Filters in Each CNN Layer 16/32/64/128/256
Number of Fully Connected Layers 1
Filters in Fully Connected Layer 256
Dropout Rate 55%
Training Optimizer RMSprop
Number of Epochs 100
Learning Rate 0.001
Batch Size 32
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The ShrapML classification algorithm was used to demonstrate the functionality of
the tissue phantom, specifically how it can be used to reduce or supplement the number of
human or animal images required to train an algorithm. We constructed hybrid training
data sets of swine images supplemented with different ratios of phantom images, keeping
the total image number approximately the same (Table 2). Ratios tested were 1:0, 1:1, 1:3,
1:9, and 0:1 of swine to phantom images. Each ratio was used as the training data set
for the algorithm. Training was performed three times with different random validation
splits from the total number of images. After training, swine test image sets were used
for evaluating trained ShrapML model predictions that were not part of the training data
sets (111 unaugmented baseline images, 116 unaugmented shrapnel images). These results
were used to calculate performance metrics including accuracy, precision, recall, specificity,
and F1 score. The true positive rate, or the rate the classifier model correctly predicted a
positive category, was tabulated, along with the false positive rate to generate Receiver
Operating Characteristic (ROC) Curves. These ROC curves graphically illustrate how well
the classifier model predicts a binary outcome with the dashed diagonal line representing
random chance while a perfect classifier would maximize the area under the ROC (AUC)
with a true positive rate (or sensitivity) of 1 for all threshold values. Confusion matrices add
additional variables, such as the true negative and false negative predictions to visualize if
the classifier is confusing classes, i.e., commonly mislabeling negatives as positives. ROC
curves, area under the ROC curve (AUC), and confusion matrices were generated using
GraphPad Prism 9 (San Diego, CA, USA).

Table 2. Total number of swine and phantom images for each training set used in this study. Five
swine: phantom ratios are shown: 1:0, 1:1, 1:3, 1:9, 0:1.

1:0 Image Ratio
(0% Phantom)

1:1 Image Ratio
(50% Phantom)

1:3 Image Ratio
(75% Phantom)

1:9 Image Ratio
(90% Phantom)

0:1 Image Ratio
(100% Phantom))

Baseline Shrapnel Baseline Shrapnel Baseline Shrapnel Baseline Shrapnel Baseline Shrapnel

Total 443 467 428 480 422 486 418 490 415 493
Swine 443 467 221 234 111 117 45 47 0 0

Phantom 0 0 207 246 311 369 373 443 415 493

We had previously compared a version of the shrapnel image classification algorithm
to more than 10 conventional deep learning models, and identified MobileNetv2 as most
comparable in accuracy and computational time for this application [36]. As a result,
MobileNetv2 was trained using the same five ratios of swine to phantom hybrid image
training sets to compare overall performance. For training with MobileNetV2, however,
MATLAB R2021b (Mathworks, Natick, MA, USA) was used to train and test, using the
same training options and similar testing setup as shown for ShrapML.
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3. Results
3.1. Overview of the Tissue Phantom for Shrapnel Image Acquisition

The thigh tissue phantom was constructed with gelatin as it was a cost-effective ma-
terial that is nearly anechoic with its high-water content (Figure 4A). However, higher
contrast components can be added to modify the bulk properties of the phantom. For
mimicking thigh tissue, the tissue phantom was constructed in two layers around a central
bone with different concentrations of flour to show varying ultrasonic scatter at different
layers in the phantom. This was suitable for modifying bulk properties of the tissue phan-
tom, but it cannot mimic the heterogeneous complexities observed in physiological thigh
tissue (Figure 4C). For that, solidified agarose with two different flour concentrations were
suspended in the muscle layer which significantly increased the complexity and created
subject variability in the phantom design. The final version of the phantom (Figure 4B) after
optimization of these different features had proportional complexity to the swine tissue
images (Figure 4C). The ultrasound image heterogeneity was quantified by measuring
standard deviation of the pixel intensity across each image (n = 10 images each), with swine
images having a pixel standard deviation of 30.6 and the final phantom version having a
standard deviation of 30.1, a 2% error. Mean pixel intensities were 47.1 for the swine images
vs. 41.5 for the final phantom version, a 12% error. While the biological organization of
muscle fibers as seen in physiological tissue is not observed in the phantom, the overall
complexity of the phantom created a more challenging ultrasound environment compared
to traditional tissue phantoms, which is essential in algorithm training scenarios.
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Figure 4. Ultrasound view of the tissue phantom compared to swine tissue. Representative ultra-
sound images for (A) plain gelatin phantom with no additional components, (B) the developed tissue
phantom with evaporated milk, flour, and agarose fragments, and (C) swine tissue.

3.2. Application for Automated Shrapnel Detection

To highlight a deep-learning use case for the tissue phantom developed in this study,
the phantom was used to train ShrapML, a deep-learning algorithm for detecting shrapnel
in ultrasound images [31]. Various shrapnel shapes, material types, and sizes were embed-
ded in the tissue phantom at different depths and proximities to the bone (Figure 5A,C).
With certain shrapnel types and locations in the phantom, the shrapnel was easy to identify
via ultrasound. However, the non-uniform complexity of the tissue phantom can make
shrapnel identification challenging especially with smaller objects embedded deeper in
tissue. This same trend was observed with imaging and shrapnel detection in the porcine
thigh subjects embedded with the same shrapnel types (Figure 5B,D). To highlight the
location of the shrapnel in each, manually generated segmentation mask overlays are
provided (right panels of Figure 5A–D).
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replicates of the left image in each panel with segmentation mask overlays (orange) manually drawn
to better identify the location and shape of the shrapnel.

3.3. Phantom and Swine Training Datasets for ShrapML

With the phantom baseline and shrapnel-containing images acquired, we evaluated
if the phantom can reduce the number of animal or human images required to properly
train a deep learning image classification algorithm. ShrapML [31] was trained with five
swine to phantom image ratios: 1:0, 1:1, 1:3, 1:9, 0:1. This created different use cases where
only a fraction of the required images were collected from an animal while the rest of the
data set was created from tissue phantom images. Overall accuracy to detect shrapnel
in test swine images was as high as 99% in the ShrapML model fully trained on swine
image sets (1:0) and at only 61% when trained with only tissue phantom images (0:1),
indicating the phantom alone cannot be used to develop a classifier model for animal
tissue (Figure 6). When a 1:1 ratio was used, accuracy reached 95% and the AUC was
also high (Figure 6A). Supplementing training image sets at a 1:3 ratio of swine images
to phantom images, kept accuracy equally high at 96% and ROC analysis had a similar
AUC (Figure 6B). Slight increases in false positive and negative rates were detected but
performance remained strong, similar to 100% swine image training. With even further
supplementation of the swine training image sets with tissue phantom images, the 1:9
ratio model began to drop in accuracy and AUC with average results being 87% and 0.97,
respectively (Table 3). However, performance was still much higher compared to the 100%
tissue phantom trained scenario. Overall, while accuracy was slightly lower than the 100%
swine trained ShrapML model, greater than 95% accuracy with a quarter of the required
swine images could represent a much more cost-effective means of developing models
such as this.
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Table 3. Summary of ShrapML model performance metrics for each training situation. Results are
shown as average for three random training: validation splits.

Swine to Phantom Training Image Ratio for ShrapML Algorithm

1:0 (Swine Only) 1:1 1:3 1:9 0:1 (Phantom Only)

Accuracy 0.990 0.950 0.960 0.870 0.610
AUC 0.990 0.990 0.990 0.970 0.620

Precision 0.990 0.930 0.970 0.870 0.690
Recall 0.990 0.990 0.950 0.910 0.520

Specificity 0.980 0.910 0.970 0.840 0.710
F1 0.990 0.960 0.960 0.880 0.580

3.4. Ratio Comparison ShrapML vs. MobileNetv2

Results were then compared to MobileNetv2 as its performance was best for this
shrapnel image classification as previously determined [36]. Using the same hybrid training
ratios, MobileNetv2 performed similarly in 100% swine images, with an accuracy of 0.982
(Table 4). The 100% phantom trained version performed worse when evaluated with swine
test images when compared to ShrapML, with an accuracy of 51% and a poor AUC of
0.499 (Figure 7B). At the 1:1 ratio, accuracy remained high at 99%, outperforming ShrapML
(95% accuracy), but that trend was reversed for the 1:3 ratio where MobileNetv2′s accuracy
dropped to 91% compared to 96% for ShrapML. This downward trend persisted for the
1:9 hybrid training ratio, with ShrapML (87%) outpacing MobileNetv2 (69%) shrapnel
prediction accuracy for swine test images.
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Table 4. Summary of MobileNetv2 model performance metrics for each training situation. Results
are shown for a single training run for each ratio.

Swine to Phantom Training Image Ratio for MobileNetv2

1:0 (Swine Only) 1:1 1:3 1:9 0:1 (Phantom Only)

Accuracy 0.982 0.991 0.908 0.693 0.509
AUC 1.000 0.998 0.987 0.871 0.499

Precision 0.964 0.982 0.829 0.414 0.901
Recall 1.000 1.000 0.979 0.902 0.498

Specificity 0.967 0.983 0.858 0.633 0.593
F1 0.982 0.991 0.898 0.568 0.641

4. Discussion

US imaging can have a critical role in emergency and military medicine if the skill
threshold for image acquisition and interpretation can be lowered. US image interpretation
has the potential to be automated with properly developed and trained deep learning mod-
els. Unfortunately, each deep learning application will require large datasets of condition-
specific positive and negative images, which may be impossible to obtain for rare injuries
or diseases. To that end, tissue phantoms will be critical for supplementing training sets to
lower the need for hard to obtain human or swine image sets.

The tissue phantom detailed here for shrapnel applications is a multi-layer construct
comprised of a center bone, muscle, and outer fat layer to mimic thigh tissue properties.
This was selected as an initial, simple proof of concept tissue choice. The bulk of the
phantom was a gelatin base supplemented with flour, a non-soluble particulate, and
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evaporated milk, to modulate the echogenic properties of the tissue. This approach allows
for increasing or decreasing the flour concentration when other tissue types need to be
mimicked. However, this resulted in a uniform construct, quite unlike physiological thigh
tissue with muscle and ligament fibrous microstructures creating heterogeneity. Towards
that, the high and low flour concentration agarose components added to the tissue phantom
were successful at creating a unique non-uniform phantom composition. Obviously, this
approach cannot mimic the physiological organization commonly seen in live tissue, but the
agarose complexities created a much more challenging ultrasound visualization model. This
complexity was highlighted with the addition of shrapnel embedded in the tissue phantom.
In a simple phantom without the agarose, flour, and milk components, identifying shrapnel
is trivial, but in animal tissue and the phantom developed here, that was not the case.

Using this tissue phantom, different training image sets were configured to evaluate
training accuracy in blind swine images. Using a previously developed ShrapML image
classification network [31], training with 100% swine images resulted in 99% accuracy,
suggesting the model can be trained for identifying shrapnel in animal tissue with its
current architecture. However, this was only proof-of-concept, and, for a model fully ready
for integration with ultrasound hardware, would require tens of thousands additional
swine images to account for sufficient subject variability. To supplement the shrapnel
training set, the phantom was designed to mimic the biological complexity, heterogeneity
faced in shrapnel detection in physiological tissue, but 100% phantom trained ShrapML
models yielded only 61% accuracy in blind swine test image sets.

While the phantom alone cannot replace animal image sets entirely, it exhibited a
strong utility in supplementing training sets to reduce the overall animal image requirement.
Supplementing the swine images with phantom images so that less total number of animal
images would need to be collected, we reached similar accuracies with as little as 25% of
the required training images being swine. Further, with as little as 10% of the required
images as swine, accuracy was still near 90% in test swine image sets. We compared
ShrapML training performance with similar hybrid training ratios with a widely used
MobileNetv2 [37] model, as we previously demonstrated it could be trained to achieve high
accuracy for shrapnel detection with higher computational efficiency than other models [36].
Training trends were similar for all hybrid ratios except when only 10% of the images were
swine, as MobileNetv2 had a much lower accuracy (69%) when compared to ShrapML
(87%). ShrapML’s stronger training performance could be due to training challenges when
more phantom images were present due to the large difference in number of trainable
parameters between the two models (17.2 million ShrapML vs. 3.5 million MobileNetv2).
The additional trainable parameters in ShrapML could provide additional opportunities
for ShrapML to identify unique features within datasets to correctly correlate classification
outcomes. Overall, this improvement, achieved by supplementing with phantom images,
could dramatically reduce image acquisition requirements from animals, which are often
challenging or costly to acquire. Deep-learning algorithms for more complex applications
involving multiple classification categories [38–40] will require even more extensive image
collection and reducing the required image number by 90% will be substantial.

While supplementing the training set with phantom images reduced the number of
swine images needed for reaching strong test accuracies, there are some limitations with
the current phantom and training methodology. First, more swine and phantom images are
needed to account for enough subject variability to allow this to be implemented with US
instrumentation for real-time shrapnel detection. This will also allow for further evaluating
the benefit of the tissue phantom by ratio training with larger data sets compared to a
reduced number of swine images to fully evaluate the benefit the phantom is providing. For
the phantom, the complexity of the phantom can be further improved to better mimic tissue.
The heterogenous structure of the phantom made for a variable, challenging training set,
but more attention to matching ultrasound properties or integration of key physiological
landmarks may further improve on this study. For validating the platform’s echogenic
properties, traditional ultrasound properties such as attenuation coefficients, impedance,
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and speed of sound can be measured using various specialized test setups [41–44] to better
assess how similar the tissue phantom is to physiological soft tissue. In addition, we will
look at integration of femoral neurovascular features or translation into other more complex
anatomies, such as the thorax and abdomen. A critical task in combat casualty care for
ultrasound is the extended Focused Assessment with Sonography for Trauma (eFAST)
examination for detecting fluid in the lungs or abdomen. A similar phantom development
methodology and subsequent training could be used for tasks such as this, as we have
already shown for pneumothorax [45], to create a more complex training environment for
training neural network models.

5. Conclusions

Deep-learning models have the potential to simplify and reduce the expertise threshold
for collecting and interpreting ultrasound images, expanding its use case further into
emergency or battlefield medicine. However, as neural network architectures often require
large, variable data sets to properly develop models, the approach shown in this work to
supplement the training process with easy to obtain tissue phantom images can potentially
accelerate model development. In this work, shrapnel detection accuracy in swine images
was 96% with 75% fewer animal images or 87% with 90% fewer animal images, due to
supplementation with phantom images. Additional work is needed to build more robust
tissue phantoms and human or animal data sets for comparisons, but a similar methodology
may be translated to other medical imaging applications where adequate image numbers
may be hard to obtain.
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