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Abstract: This paper develops a 3D base force element method (BFEM) based on the potential energy
principle. According to the BFEM, the stiffness matrix and node displacement of any eight-node
hexahedral element are derived as a uniform expression. Moreover, this expression is explicitly
expressed without a Gaussian integral. A 3D random numerical model of recycled aggregate concrete
(RAC) is established. The randomness of aggregate was obtained by using the Monte Carlo random
method. The effects of the recycled aggregate substitution and adhered mortar percentage on the elastic
modulus and compressive strength are explored under uniaxial compression loading. In addition,
the failure pattern is also studied. The obtained data show that the 3D BFEM is an efficient method to
explore the failure mechanism of heterogeneous materials. The 3D random RAC model is feasible
for characterizing the mesostructure of RAC. Both the substitution of recycled aggregate and the
percentage of adhering mortar have a non-negligible influence on the mechanical properties of RAC.
As the weak points in the specimen, the old interfacial transition zone (ITZ) and adhered mortar are
the major factors that lead to the weakened properties of RAC. The first crack always appears in
these weak zones, and then, due to the increase and transfer of stress, approximately two-to-three
continuous cracks are formed in the 45◦direction of the specimen.

Keywords: 3D BFEM; recycled aggregate concrete; numerical simulation; failure pattern

1. Introduction

In the last several years, recycled aggregate concrete (RAC) has become a popularly used
construction material that can effectively alleviate the shortage of natural resources. As a kind of green
building material, RAC has attracted many researchers to explore its mechanical performance [1–5].
Compared to natural aggregate concrete (NAC), RAC has a highly heterogeneous internal composite,
and its mechanical behavior is related to the mesostructure of its components. The literature has revealed
that the substitution of recycled aggregate, water/cement ratio, aggregate content, the percentage of
adhered mortar, air content, etc. play a significant role in the mechanical properties of RAC [6,7].
At the mesostructural level, the component of RAC identified to be a five-phase system including
recycled aggregate, adhered mortar, new cement mortar, an old interfacial transition zone (ITZ), and a
new ITZ. There are two ways to explore the mechanical properties of engineering materials, namely
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macroscopic experimental tests and mesoscopic numerical simulations. Since the concept of the finite
element method (FEM) was proposed by Clough in the 1960s [8], FEM has become an effective and
accurate approach for assisting macroscopic experiments [9–13]. In addition, this method reduces the
consumption of natural resources, time, and testing costs.

At the mesoscopic level, lots of work about the modelling of aggregate have been conducted by
many researchers. For the simulation of concrete, a numerical concrete concept was proposed by Zaitsev
and Wittmann, and three random 2D structures including spherical geometry, polygons and arbitrary
polygonal were first generated based on meso-mechanics [14,15]. Subsequently, different mesoscale
structures were proposed to simulate the concrete fracture process according to the FEM. For instance,
Peng et al. [16] established a model of a circular aggregate model to explore the mechanical properties
of concrete according to the Walraven formula [17] and the Monte Carlo random sampling principle.
Additionally, based on the Monte Carlo random sampling principle, a particle model was established
to represent the fragile aggregates by Bazant et al. [18]. Wang et al. [7] proposed a convex aggregate to
model crushed stone based on a round aggregate. Wriggers et al. [19] and Chen et al. [20] proposed
a 3D geometrical model for NAC according to the random mesostructure of natural aggregates in
a specimen.

These natural aggregate models have provided effective reference methods to simulate recycled
aggregate. Some researchers conducted a series of numerical research studies, and some conclusions
have been obtained about RAC. Xiao et al. [11] designed a nine recycled aggregate model to study
the effect of the relative elastic modulus of ITZs of cement mortar on the damage crack of RAC
under uniaxial compression and tensile loading; the obtained data showed that the relative elastic
modulus had a major effect on the stress–strain curves and RAC strength. Sun et al. [21] presented a
3D FEM model to research the effect of recycled aggregate substitution on shear strength by using
the ABAQUS/Standard module software. The data showed that the shear stress was reduced by
up to 13.8% by ranging the substitution from 0% to 100%. Chen et al. [22] designed four levels of
recycled aggregate substitution to explore the damage mechanism of RAC under uniaxial compression
loading. The data showed that the compressive strength reduced as the replacement ratio increased.
Jayasuriya et al. [23] presented four different adhered mortar percentages to analyze the effect of
adhering mortar on compressive strength, and their numerical data showed that the compressive
strength was reduced up to 9% as changing the adhering mortar from 2% to 50%. Wang et al. [7]
established two types of aggregate shapes to explore the effect of recycled aggregate replacement ratios
on mechanical properties, and their simulation results demonstrated that the elastic modulus reduced
by up to 16%~25%, and the compressive strength reduced by up to 12%~15% as the replacement ratios
increased from 0% to 100%. Due to the exceedingly complicated stiffness matrix and multiple degrees
of freedom per each element in the 3D level, a structure and mesh topology was rarely generated [19].
Most numerical simulations of RAC mechanical properties have been concentrated on the 2D level and
scaled up by a thickness of the fictitious slice, and only a little consideration has been focused on 3D
models of RAC.

As mentioned previously, the FEM has been proven to be an efficient approach to explore the
mechanical properties of materials. In recent years, according to the potential energy principle, a new
FEM concept and a new 2D FEM method were presented by Gao [24] and Peng et al. [25], named
base force and the base force element method (BFEM), respectively. Based on the BFEM, the element
stiffness matrix is conveyed by an explicit tensor formulation for an element with an arbitrary shape in
any coordinate system. Moreover, the Gaussian integrals are not used in the calculations and deriving
processes of the element stiffness matrix.

For this paper, the 2D BFEM was developed into a 3D BFEM. In addition, a hexahedron element
was established. A 3D numerical RAC model was established according to the 3D Fuller grading
curve and the Monte Carlo random sampling method. The recycled aggregate was assumed to be
a spherical particle. Several numerical models of RAC with five substitutions of recycled aggregate
and six different percentages of adhered mortar were designed. These 3D RAC models were subjected
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to uniaxial compression loading that was controlled by displacement. The effects of the recycled
aggregate replacement ratio and the adhered mortar content on the compressive strength and elastic
modulus were investigated. Additionally, the failure pattern of a 3D RAC model was also calculated.

2. Basic Formula of 3D Base Force Theory

For a 3D region of a solid medium in the Lagrangian coordinate system, xi(i = 1, 2, 3) denotes the
coordinate axes, and P, Q denote the initial/after position vector. The base vectors of material points
can be defined as:

Pi =
∂P
∂xi , Qi =

∂Q
∂xi (1)

The displacement gradient can be expressed by the base vectors, as follows:

ui =
∂u
∂xi = Pi −Qi =

∂P
∂xi −

∂Q
∂xi (2)

To express the stress state of the point Q, assuming a current configuration of this solid medium
in the Cartesian coordinate system xi, define a parallel hexahedron element and let dx1, dx2, dx3 denote
the element edges, as illustrated in

The force applied on the front surface of the element is marked as dTi, so let:

Ti =
1

dxi+1dxi−1
dTi dxi

→ 0 (3)

In Equation (3), the indexes are promised 3 + 1 = 1 and 1 − 1 = 3, where Ti(i = 1, 2, 3) is the base
force acting on the point Q in the 3D coordinate system xi. Figure 1.
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To describe Ti(i = 1, 2, 3), define an arbitrary plane with normal n. The plane and coordinate axes
xi intersect at dx1, dx2, dx3, as shown in Figure 2. According to the equilibrium condition, the stress
vector that acts on the surface can be obtained as:

σndS =
1
2

dx1dx2dx3
( 1

dx1
T1 +

1
dx2 T2 +

1
dx3 T3

)
(4)

Let VQ denote the current base volume of xi system, and

VQ = (Q1, Q2, Q3) = Q1 · (Q2 ×Q3). (5)

Then,

σn =
1

VQ
Ti ∂n
∂xi (6)
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The key point to note here is that:

∂n
∂xi = Qi · n = ni (7)

Equation (6) can be derived as:

σn =
ni

VQ
Ti (8)

Then, for a small deformation case, the strain ε can be obtained as:

ε =
1
2

(
ui ⊗Pi + Pi

⊗ ui
)

(9)

The relationship between the base forces and the various stress tensors can be obtained according
to the base force.

As for the Cauchy stress, σ is:

σ =
1

VQ
Ti
⊗Qi (10)

As for the Piola stress, τ is:

τ =
1

VP
Ti
⊗Pi (11)

As for the Kirchhoff stress, Σ is:

Σ = Pi ⊗Qi 1
VP

Ti
⊗Pi (12)

The equilibrium equation is the balance of the stress, inertial force and volume forces of the
structure. For static problems, the equilibrium equation can be expressed by the base force, as follows:

∂

∂xi Ti + ρ0VPf = 0, (13)

and the geometric equation can be obtained according to the displacement gradient:

ε =
1
2

(
ui ·P j + Pi · u j

)
Pi
⊗P j (14)

Similarly, based on the base force, the physical equation is:

Ti = ρ0VP
∂W
∂Qi

(15)
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in which W is the strain energy of the element.

3. BFEM Model of Hexahedron Element

Following the BFEM, a hexahedron element considering boundary conditions can be presented,
as depicted in Figure 3. A, B, . . . , G are the vertices of the element, uI j(I = A, B, . . .G; j = x, y, z) denote
the component of the displacement of the point I on the coordinate axes J, and α, β,γ . . . are the six
areas of the model.
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Figure 3. A hexahedron element.

The hexahedron elements contact each other through the faces in the model. A relationship can be
established between the displacements of the points and the displacements of the faces. Take any plane
in the hexahedron as a typical face and let it be represented by α, as depicted in Figure 4. Connect the
centroid point and the midpoint of the four sides; therefore, the quadrilateral is divided into four parts.
Let Sα express the area of α and SαI(I = A, B, C . . .) denote the area of the separated part.
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It is hypothesized that in the process of deformation, the shape and line segments are always kept
flat and straight, respectively. Hence, the deformation of the centroid can be obtained as:

uα =
1

Sα
(SαAuA + SαBuB + · · ·) (16)

3.1. Strain Tensor

Assume that the volume VQ of the hexahedron element is small complete and the actual strain ε
can be replaced by the average strain ε. In addition, the average strain ε can be obtained as:

ε =
1
V

∫
V
εdV (17)
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Then, by substituting Equation (9) into Equation (17), one can obtain:

ε =
1

2V

∫
V
(uα ⊗Pα + Pα ⊗ uα)dV (18)

According to Gauss theorem, Equation (18) can be replaced by:

ε =
1

2V

(
uI ⊗mI + mI

⊗ uI
)

(19)

Equation (19) implies the summation rule, so mI is:

mI = SaInα + SβInβ + SγInγ + . . . (20)

The expressions of the hexahedron element are:

mI = SαInα + SβInβ + SγInγ
= SαI

(
nαxex + nαyey + nαzez

)
+ SβI

(
nβxex + nβyey + nβzez

)
+SγI

(
nγxex + nγyey + nγzez

)
=

(
SαInαx + SβInβx + SγInγx

)
ex +

(
SαInαy + SβInβy + SγInγy

)
ey

+
(
SαInαz + SβInβz + SγInγz

)
ez

(21)

Then, by substituting Equation (21) into Equation (19) and by letting x, y, z represent the Cartesian
coordinate system, the following can be obtained:

ε = 1
2V

n∑
I=1

(
2uIxmI

xex ⊗ ex + 2uIymI
yey ⊗ ey

+2uIzmI
zez ⊗ ez +

(
uIxmI

y + uIymI
x

)
ey ⊗ ex

+
(
uIxmI

y + uIymI
x

)
ex ⊗ ey +

(
uIxmI

z + uIzmI
x

)
ex ⊗ ez

+
(
uIxmI

z + uIzmI
x

)
ez ⊗ ex +

(
uIymI

z + uIzmI
y

)
ey ⊗ ez

+
(
uIymI

z + uIzmI
y

)
ez ⊗ ey

)
(22)

or
εx = 1

V

n∑
I=1

(
uIxmI

x

)
εy = 1

V

n∑
I=1

(
uIymI

y

)
εz =

1
V

n∑
I=1

(
uIzmI

z

)
γxz =

1
V

n∑
I=1

(
uIxmI

z + uIzmI
x

)
γxy = 1

V

n∑
I=1

(
uIxmI

y + uIymI
x

)
γyz =

1
V

n∑
I=1

(
uIymI

z + uIzmI
y

) (23)

3.2. Stiffness Matrix

As the linear elastic material, the strain energy expression of the element can be obtained as:

WD =
VE

2(1 + ν)

[
ν

1− 2ν
(ε : U)2 + ε : ε

]
(24)

In this formula, V denotes the hexahedron volume, E expresses the elastic modulus, ν expresses
the Poisson’s ratio, and U denotes the unit tensor.

Then, by substituting Equation (19) into Equation (24), the strain energy can be obtained as:

WD =
E

4V(1 + ν)

[ 2ν
1− 2ν

(
uI ×mI

)2
+

(
uI · uJ

)
mIJ +

(
uI ·mJ

)(
uJ ·mI

)]
(25)
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Based on Equation (25), the force applying to the node I(A, B, . . .G) on the element can be expressed
as:

fI =
∂WD

∂uI = KIJ
· uJ (26)

Then, the stiffness matrix K of the can be obtained as:

KIJ =
E

2V(1 + ν)

[ 2ν
1− 2ν

mI
⊗mJ + mIJU + mJ

⊗mI
]

(27)

Here, mI = mI
iei = mI

xex + mI
yey + mI

zez, and mIJ = mI
·mJ.

By transforming Equation (27) into a Descartes coordinate system (x, y, z), the stiffness matrix K
can be described to be:

KIJ = E
2V(1+ν)

[
ex ⊗ ex

(
2ν

1−2νmI
xmJ

x + mI
xmJ

x + mI
ymJ

y + mI
zmJ

z + mI
xmJ

x

)
+ex ⊗ ey

(
2ν

1−2νmI
xmJ

y + mI
ymJ

x

)
+ ey ⊗ ex

(
2ν

1−2νmI
ymJ

x + mI
xmJ

y

)
+ex ⊗ ez

(
2ν

1−2νmI
xmJ

z + mI
zmJ

x

)
+ ez ⊗ ex

(
2ν

1−2νmI
zmJ

x + mI
xmJ

z

)
+ey ⊗ ez

(
2ν

1−2νmI
ymJ

z + mI
zmJ

y

)
+ ez ⊗ ey

(
2ν

1−2νmI
zmJ

y + mI
ymJ

z

)
+ey ⊗ ey

(
2ν

1−2νmI
ymJ

y + mI
xmJ

x + mI
ymJ

y + mI
zmJ

z + mI
ymJ

y

)
+ez ⊗ ez

(
2ν

1−2νmI
zmJ

z + mI
xmJ

x + mI
ymJ

y + mI
zmJ

z + mI
zmJ

z

)]
(28)

or

KIJ = E
2V(1+ν)


2−2ν
1−2νmI

xmJ
x + mI

ymJ
y + mI

zmJ
z

2ν
1−2νmI

xmJ
y + mI

ymJ
x

2ν
1−2νmI

xmJ
z + mI

zmJ
x

2ν
1−2νmI

ymJ
x + mI

xmJ
y

2−2ν
1−2νmI

ymJ
y + mI

xmJ
x + mI

zmJ
z

2ν
1−2νmI

ymJ
z + mI

zmJ
y

2ν
1−2νmI

zmJ
x + mI

xmJ
z

2ν
1−2νmI

zmJ
y + mI

ymJ
z

2−2ν
1−2νmI

zmJ
z + mI

xmJ
x + mI

ymJ
y

 (29)

in which mI
i can be calculated:

mI
x = 1

4 S
(
nαx + nβx + nγx

)
mI

y = 1
4 S

(
nαy + nβy + nγy

)
mI

z =
1
4 S

(
nαz + nβz + nγz

) (30)

where (I, J = 1, 2, 3 . . . , 8) are the nodes of an element, and nIJ(I = α, β,γ; J = x, y, z) is the normal
vector component of the air I about coordinate axes J.

4. Random Model of RAC

4.1. Aggregate Number

When considering the actual specimen of RAC, the aggregates are randomly distributed inside
the test piece. Therefore, to obtain a more realistic mesostructure of RAC, the Fuller grading curve was
adopted to calculate the amount of aggregate in the specimen.

By assuming that the aggregate shape is spherical, the simple equation is as follows:

P = 100
(

d
Dmax

)n

(31)

where P denotes the cumulative distribution of the aggregate that was filtered through the diameter
of sieve pore, d denotes the diameter of sieve pore, Dmax denotes the maximum size of aggregate, n
denotes the index, and, in this paper, n = 0.5.

The volume of all aggregates in the grading interval [dc, dc+1] is defined as:

Vi = 0.5×V × (Pci − Pci+1) (32)

where V is the specimen volume.
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Then, the numbers of random spherical coarse aggregate particles with different diameters can be
calculated:

Ni = Vi/
(
πD3

i /6
)

(33)

where Di represents the sizes of the spherical coarse aggregate particles.
According to Equations (31)–(33), the amount of random spherical coarse aggregates with different

radii can be calculated. The amount of recycled aggregate (RA) and natural aggregate (NA) with
different replacement ratios are displayed in Table 1.

Table 1. The amount of the aggregate.

Replacement Ratio

Aggregate Radius (mm)

7.5 12.5 17.5

RA NA RA NA RA NA

0% 0 468 0 77 0 23
15% 70 398 12 65 3 20
30% 140 328 23 54 7 16
50% 234 234 38 39 11 12

100% 468 0 77 0 23 0

4.2. Placing Algorithm

Following to Monte Carlo random method, three independent random numbers Rn, En, Fn between
0 and 1 were generated to calculate the xn, yn, zn position of the aggregate particles.

It should be noted that the placing algorithm should satisfy the following conditions: the named
boundary condition and overlapping condition:

(1) The aggregate particles must be completely located in the specimen.
(2) The aggregate particles must not overlap with each other.
(3) The distance between centers of any two adjacent aggregate particles must be larger than that of

1.20 (da + db), where da and db are the radii of the two adjacent aggregates.

The placement process used can be summarized as follows:
Step 1: Generate three random numbers to get the particles coordinate.
Step 2: Check the boundary condition and the overlapping condition; if they do not meet the

requirements, go back to Step 1.
Step 3: Place the aggregate into the specimen.
Step 4: Repeat the above steps for each aggregate.
The obtained aggregate coordinates are depicted in Figure 5.
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4.3. Numerical Model of RAC

The numerical models of RAC are displayed in Figure 6. Here, the dimension was 100× 100× 100 mm,
and the replacement ratio was 50%. It should be mentioned that the dark blue aggregates and purple
aggregates represent the natural and recycled aggregates, respectively.Materials 2020, 13, x FOR PEER REVIEW 10 of 15 
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Figure 6. 3D Random aggregate model of recycled aggregate concrete (RAC). (a) The radius is 8.75 mm;
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As can be observed in Figure 6, the aggregates had a good distribution and did not overlap with
one another. In addition, four slices were extracted from the model to verify the accuracy of the placing
algorithm. Here, the mesh size was 0.8 × 0.8 mm, as detailed in Figure 7a. Meanwhile, the five-phase
system is also indicated in Figure 7b.
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4.4. Mechanical Parameters

It is well accepted that the concrete is regarded as a quasi-brittle material, and lots of damage
constitutive models have been presented [26–28]. In this work, the failure mechanical behavior of the
five-phase system was described by a bilinear failure model [7].

According to the experiment results of [29–32] and numerical results of [7,23,33], it has been
accepted that the mechanical properties of ITZs are weaker than those of the corresponding cement
mortars. In addition, their elastic modulus is randomly distributed as 0.5–0.85 times that of cement
mortar. Therefore, for this paper, the elastic modulus of the ITZs was selected as 0.55 times of the
corresponding cement mortars, as noted in Table 2.

Table 2. Mechanical properties of the five-phase system.

Mechanical Properties
Five Phases

Natural Aggregate Old ITZ Adhered Mortar New ITZ New Cement Mortar

Elastic modulus/GPa 75 13.75 25 16.50 30
Poisson’s ratio 0.16 0.20 0.22 0.20 0.22

Tensile strength/MPa 10.0 2.0 2.5 2.0 3.0

5. Simulation of Uniaxial Compressive Test

For this section, several RAC models were applied to the uniaxial compression loading. All nodes
of the bottom elements and the nodes of the mid-bottom elements were restrained in the vertical
direction and horizontal direction, respectively. In addition, the displacement loading was applied to
the nodes of the top elements at 0.005 mm/step. These models were used to explore the influences of
recycled aggregate substitution and the adhered mortar percent on the elastic modulus, the compressive
strength, and the crack pattern. Therefore, (1) five different substitutions of recycled aggregate (0%,
15%, 30%, 50%, and 100%) were established for these models, and the adhered mortar was chosen as
40%; (2) another RAC model with one recycled aggregate was established, and six levels of adhered
mortar percentage (0%, 5%, 10%, 30%, 40%, and 50%) of the recycled aggregate were designed; and (3)
the RAC model with one aggregate was cut off to display the occurrence and development of cracks
inside the specimen, with the percentage of the adhered mortar being 40%.

5.1. Effect of Aggregate Substitution

It is well known that the substitution of recycled aggregate is a major factor that affects mechanical
properties. When increasing the substitution portion of natural aggregates by the recycled aggregate,
both the elastic modulus and compressive strength decrease [28]. The obtained data are shown
in Table 3.

Table 3. Effect of substitution on the mechanical properties of RAC.

Mechanical Properties
Replacement Ratio

0% 15% 30% 50% 100%

Elastic modulus/GPa 25.56 24.29 22.36 22.06 21.34
Compressive stress/MPa 28.09 26.08 25.23 25.19 25.06

As can be seen from Table 3, when the substitution was less than 30%, despite the reduction in
the elastic modulus and compressive strength, only slight differences were obtained. However, when
the substitution was increased from 0% to 100%, both the modulus of elasticity and the compressive
strength showed reductions of up to 15.6% and 10.8%, respectively.

These phenomena can be attributed to the increasing substitution of recycled aggregate, which
resulted in an increase in the mortar adhering to recycled aggregate and the old ITZ between them.
These two increased phases were considered to be the weak phase in the specimen and had lower
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mechanical properties. Therefore, as the substitution increased, the elastic modulus of the specimen
decreased. These observed data coincide with other results in the literature [9,34–37].

5.2. Effect of Adhered Mortar Percentage

Due to how waste concrete is dealt with, it is inevitable that some adhered mortar will remain
around the surface of the aggregate. The physical property of the recycled aggregate depends on the
percent and property of the adhering mortar. Previous studies have shown that the adhered mortar is
a major factor that weakens the mechanical properties of RAC [36,38,39].

In this section, it should be mentioned that only one recycled aggregate was placed to test the
effect of adhered mortar on the mechanical properties of RAC. This design avoided the influences
of aggregate grading and aggregate distribution on its properties. Therefore, it was meaningless to
use this model to investigate the values of the mechanical properties of RAC. Consequently, only the
relative values of compressive strength and modulus of elasticity are given, as listed in Table 4.

Table 4. Effect of the percent of adhering mortar on the mechanical properties of RAC.

Mechanical Properties Percentage of Adhered Mortar

0% 5% 10% 30% 40% 50%

Elastic modulus/GPa 1 0.96 0.93 0.86 0.84 0.82
Compressive
stress/MPa 1 0.97 0.95 0.92 0.91 0.88

Note: 0% corresponds to natural aggregate concrete.

As listed in Table 4, with the increasing percentage of adhered mortar, both the modulus of elasticity
and compressive strength decreased. This was the same effect as that of the substitution—when the
percent of the adhering mortar was less than 10%, the value of the mechanical properties showed a
slight reduction. As the percentage of the adhered mortar increased from 0% to 50%, the compressive
strength and elastic modulus decreased by 12% and 18%, respectively. These results can be attributed
to the lower mechanical properties of the adhered mortar than that of the new cement mortar and
aggregate. Consequently, this weak phase weakened the compressive strength and elastic modulus
of RAC.

5.3. Failure Mechanism

As follows experimental and numerical works [7,9,40–42], the first cracks always appeared in
old and new ITZs and then propagated into the old and new cement mortar, resulting in several
continuous cracks.

Due to the limitation of the technology, it was difficult to view the failure pattern during the
macroscopic experiment loading, especially that of the damage process of internal materials. To explore
the damage mechanism of RAC, the crack pattern of a 3D model with one aggregate was created,
as illustrated in Figure 8.

From Figure 8, one can see that the first crack was formed in the old ITZ zones and then appeared
in the new ITZ and adhered mortar. As the loading increased, several isolated cracks appeared in
the cement mortar, and approximately two-to-three continuous cracks were formed in the specimen.
As displayed in Figure 8g,h, the continuous cracks were inclined in the direction of 45◦, and the
materials in the middle of the specimen appeared to fall off. In addition, due to the restraining action
on the bottom and top of the specimen, there was no failure crack in these zones. These phenomena
can be attributed to the inferior properties of the ITZ and adhering mortar materials to other media.
In a five-phase system, the mechanical properties of ITZs are the weakest, so cracks always appeared in
these areas. Then, the stress of the adhered mortar adjacent to the damaged ITZs increased, and several
isolated cracks were formed. When increasing the loading, a plurality of cracks was formed in the new
cement mortar near the damaged ITZ and the adhered mortar. Finally, two-to-three continuous cracks
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were distributed in the specimen. These results showed a good agreement with other numerical and
experimental data [13,22,40–43].
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6. Conclusions

This paper developed a new finite element method named the 3D base force element method
(BFEM) that can be applied to analyze the damage behavior of materials. According to the 3D BFEM,
the stiffness matrix and node displacement of a hexahedron element were derived. A 3D model
of recycled aggregate concrete (RAC) with sphere aggregates was established. These models were
applied to the uniaxial compression loading that was controlled by displacement loading. The effects
of the replacement ratio of the recycled aggregate and the percentage of adhering mortar on the
elastic modulus and compressive strength were explored. Additionally, the failure pattern was also
displayed. According to the research and data described in this work, several conclusions can be
reached as follows.

(1) The 3D BFEM can be used to explore the failure mechanism of heterogeneous materials.
The stiffness matrix and the node displacement of a hexahedron element can be derived as an explicit
expression and without the use of Gaussian integration.

(2) The 3D placing algorithm of the RAC numerical model is feasible to characterize the random
structure of an aggregate in a specimen. The mesostructure and the mechanical behavior of RAC can
be characterized by this numerical model.

(3) The replacement ratio of recycled aggregate has a major influence on mechanical
properties. When increasing substitution, both the elastic modulus and compressive strength reduce.
The substitution should be controlled below 30% in civil engineering.

(4) The percentage of the adhering mortar around the surface of the recycled aggregate has a
negative influence on mechanical properties. The modulus of elastic and compressive strength decrease
as the percentage increases. The waste concrete should be treated in a reasonable and inexpensive
manner to advance the quality and performance of the recycled aggregate.

(5) The weak mechanical properties of an old ITZ and adhered mortar are major factors that cause
the mechanical property degradation of RAC than that of NAC. In addition, these two phases have a
significant influence on the failure mechanism of RAC.
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