
Frontiers in Immunology | www.frontiersin.

Edited by:
Shizuya Saika,

Wakayama Medical University
Hospital, Japan

Reviewed by:
Kenjiro Matsumoto,

Kyoto Pharmaceutical
University, Japan

Feng Qin,
University at Buffalo, United States

Sailaja Paruchuri,
University of Toledo Medical Center,

United States

*Correspondence:
Trine L. Toft-Bertelsen

trineto@sund.ku.dk

Specialty section:
This article was submitted to
Molecular Innate Immunity,

a section of the journal
Frontiers in Immunology

Received: 25 June 2021
Accepted: 30 August 2021

Published: 20 September 2021

Citation:
Toft-Bertelsen TL and

MacAulay N (2021) TRPing on
Cell Swelling - TRPV4 Senses It.

Front. Immunol. 12:730982.
doi: 10.3389/fimmu.2021.730982

REVIEW
published: 20 September 2021

doi: 10.3389/fimmu.2021.730982
TRPing on Cell Swelling -
TRPV4 Senses It
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Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark

The transient receptor potential vanilloid 4 channel (TRPV4) is a non-selective cation
channel that is widely expressed and activated by a range of stimuli. Amongst these
stimuli, changes in cell volume feature as a prominent regulator of TRPV4 activity with cell
swelling leading to channel activation. In experimental settings based on abrupt
introduction of large osmotic gradients, TRPV4 activation requires co-expression of an
aquaporin (AQP) to facilitate such cell swelling. However, TRPV4 readily responds to cell
volume increase irrespectively of the molecular mechanism underlying the cell swelling and
can, as such, be considered a sensor of increased cell volume. In this review, we will
discuss the proposed events underlying the molecular coupling from cell swelling to
channel activation and present the evidence of direct versus indirect swelling-activation of
TRPV4. With this summary of the current knowledge of TRPV4 and its ability to sense cell
volume changes, we hope to stimulate further experimental efforts in this area of research
to clarify TRPV4’s role in physiology and pathophysiology.

Keywords: TRPV4 (transient receptor potential vanilloid 4), volume-sensitive channels, volume regulation, osmo-
sensing, aquaporins (AQPs)
CELLULAR DETECTION OF VOLUME CHANGES

Accurate and rapid sensing of the surrounding environment is key to survival for cells and
organisms. Upon exposure to challenges that alter the cell volume, cellular regulatory mechanisms
required for an appropriate physiological reaction to the condition causing cell swelling or shrinkage
are set in motion.

The Discovery of TRPV4
Detection of cell volume changes is perceived through sensory mechanisms, one of which was
characterized in the invertebrates Drosophila melanogaster and Caenorhabditis elegans (1).
Organisms with mutations in osm-9 or ocr-2, which are genes encoding ion channels belonging
to the transient receptor potential (TRP) channel superfamily, the vanilloid subfamily (TRPV)
(2–4), were unable to produce cellular responses to stimuli leading to cell volume changes (1, 5).
Such genes had at that point not been identified in vertebrate cells, and the search for mammalian
homologues of osm-9 was on.

In the year 2000, an ion channel was described that related to osm-9 and VRL-1 (vanilloid
receptor-like 1 protein, or TRPV2, a member of the vanilloid subfamily) and was gated by osmotic
challenges (6). This ion channel, now known as TRPV4, was, using a combination of in silico
analysis of expressed sequence tag databases and conventional molecular cloning, isolated as a novel
org September 2021 | Volume 12 | Article 7309821
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vanilloid-like receptor from the human kidney (7). At the time,
the channel was named VRL-2 due to its resemblance to VRL-1
(or TRPV2), a homologue of the capsaicin receptor, a heat-
activated ion channel in the pain pathway (8) with a high
threshold for noxious heat, and later known as VR-OAC
(vanilloid receptor related osmotically activated channel) (6).
VRL-2 was subsequently identified in mouse, chicken and rat
(6, 7, 9, 10).

The TRP Family and Biophysical Properties
The TRP superfamily is grouped into six major subfamilies based
on nucleotide sequence homology: TRPA (ankyrin); TRPC
(canonical); TRPM (melastin); TRPML (mucolipin); TRPP
(polycystin) and TRPV (vanilloid), the latter of which can
further be subdivided into six isoforms (TRPV1-6). TRPV4
has 871 amino acid residues and topological features of the
channel are six transmembrane spanning segments (S1-S6), a
re-entrant pore forming loop between S5-S6, intracellular N- and
C-termini, and ankyrin domains in the cytosolic N-terminus (11).
The channel preferentially forms homomers (12), although
heteromers may occur with other members of the TRP
superfamily (13–15). Biophysically, TRPV4 is characterized as a
non-selective cation channel with a moderately high Ca2+

permeability ratio of PCa/PNa = 6-10 (16–18) with two
aspartate residues (Asp672 and Asp682) dictating the Ca2+

selectivity of the TRPV4 pore (16). Cryo-EM studies
demonstrated that the narrowest part of the TRPV4 selectivity
filter had a wider diameter than the pore of the open TRPV1
channel (19). In addition, TRPV4 appears to lack an extracellular
gate (19), which, taken together, allows for a broader variety of
permeant ions (20). It remains unresolved whether the reported
physiological TRPV4 activators work through the selectivity filter
of TRPV4 to activate the channel (20).

TRPV4 as an Osmo-Sensor
TRPV4 was defined as a nonspecific cation channel gated by
osmotic stimuli (2–4) and characterized as such as such from a
study done in TRPV4-transfected CHO cells (21). The cells were
exposed to osmotic challenges of ± 110 mOsm, and a robust Ca2+

transient was observed within seconds of a cell volume increase.
Such hyposmotically-induced gating was proposed to take place
via subtle changes in membrane tension (22, 23). Swelling-
induced activation of TRPV4-mediated Ca2+ influx was shortly
thereafter confirmed in HEK293 cells expressing ‘OTRPC4’
(osm9-like transient receptor potential channel, member 4,
another name for TRPV4) (9). Hence, TRPV4 was set forward
as an osmo-sensor activated by hyposmolar stress.
The physiological impact of TRPV4-mediated osmosensing
was demonstrated by the impaired regulation of systemic
tonicity in mice genetically devoid of TRPV4 (24, 25).
The dysregulation of the systemic fluid homeostasis in the
TRPV4-/- mice arose, at least in part, from impaired
osmosensing in the circumventricular organ of the lamina
terminalis and associated modification of antidiuretic hormone
(ADH) secretion into the blood (24, 25). The TRPV4-/- mice thus
displayed lesser water intake (24, 25) and, in addition, presented
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with enlarged bladder capacity as a consequence of impaired
stretch and pressure sensing in the bladder wall (25, 26). TRPV4
has, in addition, been implicated in pulmonary edema formation,
partly via the observed down regulation of the co-localized
AQP5 in the pulmonary epithelium obtained from TRPV4-/-

mice (27). Tissue obtained from meningioma patients
demonstrated AQP4/TRPV4 co-expression in both edematous
and non-edematous meningiomas, although in the surrounding
peri-meningioma tissue, only AQP4 was upregulated (28).
TRPV4 thus appears to be involved in physiological and
pathophysiological processes involving fluid dynamics, in
addition to its roles in skeletal dysplasias [for review of TRPV4
in pathology, see (29)]. However, the coupling between cell
volume regulation and TRPV4 activity remains elusive.

TRPV4 Is a Genuine Sensor of Cell
Volume Dynamics
Since the initial findings, swelling-induced activation of
TRPV4 has been further documented upon heterologous
expression of TRPV4 in yeast (30, 31) and in Xenopus laevis
oocytes (30, 32, 33). In its native setting in retinal cells, TRPV4
responded to cell swelling with slow-onset, but sustained,
activity in Müller glia, whereas in retinal ganglion neurons,
TRPV4 responded with fast, but brief, bursts of activity (33,
34). Astrocytes respond to hyposmotically-induced cell
swelling with TRPV4-mediated Ca2+ dynamics, which were
proposed to be implicated in the subsequent regulatory volume
decrease (35). However, during a more physiologically relevant
astrocytic volume transient, as that observed during neuronal
activity (in the absence of an experimentally-inflicted osmotic
challenge) (36), the regulatory volume decrease was unaffected
by TRPV4 inhibition, Figure 1 (37). The molecular coupling
between the altered osmolarity of the extracellular fluid and
activation of TRPV4 was proposed to require the presence of
an aquaporin, possibly even of a certain isoform: In renal cells;
AQP2 (38), in salivary glands; AQP5 (39), and in astrocytes;
AQP4 (35, 40, 41). However, these conclusions arose from
experimental approaches based on abrupt exposure of the
TRPV4-expressing cells to excessively large osmotic gradients
of 100-250 mOsm. Such osmotic gradients will rarely, if ever,
be observed outside the kidney in physiology or even
pathophysiology – and not as an abruptly arising challenge.
Still, the introduction of such non-physiological osmotic
challenges is a common manner of experimental induction
of cell volume changes for reasons of technical ease. Under
such experimental conditions, the rate with which the cells
swell upon an introduced osmotic challenge will depend on
expression of an AQP of any isoform. Experiments employing
such osmotic gradients will thus favor a concept of TRPV4
requiring the presence of an AQP to respond to a volume
change (21, 32, 35, 39), see (37) for discussion of technical
challenges with such experimental approaches. Notably, with
smaller osmotic challenges (of the order of 20-40 mOsm) that
promote cell swelling of a more physiological caliber, TRPV4-
mediated Ca2+ dynamics vanished from retinal ganglion cells,
but persisted in the Muller glia (33).
September 2021 | Volume 12 | Article 730982
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To resolve the ability of TRPV4 to sense altered osmolarity
versus simply the resulting cell changes, TRPV4 was
heterologously expressed in Xenopus laevis oocytes with
notoriously low intrinsic water permeability, either alone or
co-expressed with an AQP (32). Introduction of a hyposmotic
Frontiers in Immunology | www.frontiersin.org 3
challenge led to abrupt cell swelling in theTRPV4-AQP-expressing
oocytes and a resulting TRPV4-mediated membrane current,
irrespective of the AQP isoform (32). None of these observations
weredetected inoocytes expressingTRPV4alone (in theabsenceof
anAQP), demonstrating that TRPV4 responded to the cell volume
increase rather than the introduced osmotic challenge itself,
Figure 2 (32). These data are consistent with other reports in
cortical and retinal glia, concluding that membrane expression of
an AQP permitted a rapid cell swelling upon experimentally-
inflicted osmotic challenges and thus allowed TRPV4 to respond
to the resulting abrupt cell swelling (41, 42). This notion was
cemented by a demonstration that swelling of TRPV4-expressing
oocytes achievedwithout introduction of an osmotic challenge and
in the absence of AQP co-expression sufficed to activate TRPV4,
Figure 3 (32). Such oocyte cell swelling was achieved by
co-expression of a water-translocating cotransporter, the Na+,
K+, 2Cl- cotransporter (NKCC1), which upon activation leads to
cell swelling by inward transport of its substrates alongwith a fixed
number of water molecules (43, 44). TRPV4 is thereby established
as a genuine volume‐sensor, rather than an osmo‐sensor (32),
possibly induced by the membrane stretch achieved as a
consequence of cell swelling (6, 24, 45). At the time, the
molecular mechanisms coupling cell swelling to TRPV4 channel
opening remained obscure.
FROM CELL SWELLING TO TRPV4
ACTIVATION

TRPV4 represents a sensor of cell swelling. The underlying
molecular link between cell swelling and channel opening has
proven elusive, but can occur either directly or via an indirect
pathway of cellular modulators.
FIGURE 1 | TRPV4 does not modulate astrocytic regulatory volume decrease
following activity evoked astrocyte volume dynamics. Electrical stimulation of
acute hippocampal slices from rats results in neuronal activity associated with
a [K+]o transient that leads to a brief change in cell volume of nearby astrocytic
structures without application of an osmotic gradient to the test solution. Graphs
illustrate a representative recording and summarized volume decay rates of
the activity-evoked extracellular space dynamics in the absence or presence
of a TRPV4 inhibitor [1 µM HC067047, same results obtained with the less
specific TRPV4 inhibitor ruthenium red (1 µM)]. ns, not significant. Modified
from (37) with permission.
FIGURE 2 | TRPV4 is activated by increased cell volume. Oocytes expressing TRPV4 alone (top traces) did not swell when exposed to a hyposmotic gradient (-100
mOsm) and did not respond with TRPV4-mediated currents during this challenge. Oocytes co-expressing TRPV4 and AQP4 (bottom traces) responded to the osmotic
challenge with an abrupt volume increase and a resultant large membrane current (summarized in right panel). Modified from (32) with permission.
September 2021 | Volume 12 | Article 730982

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Toft-Bertelsen and MacAulay TRPV4 – A Sensor of Volume Changes
Direct Coupling of Cell Volume Changes to
TRPV4 Activation
TRPV4 Gating via Mechanical Probing Versus
Cell Volume Increase
Cell swelling may modulate TRPV4 gating in a more or less
direct manner, or the resulting membrane stretch may serve as a
mechanical disturbance that could be distinguished from the
cellular volume dynamics. Various experimental strategies have
been employed to distinguish the two, i.e. stretching of the cell
membrane in the absence of a volume change (46–48) which has
been employed to demonstrate (49–51) or not to demonstrate
(9, 52, 53) direct activation of TRPV4 by mechanical probing.
It therefore remains unresolved to what extent TRPV4 activation
occurs by direct mechanical probing, rather than as a
consequence of the cell volume changes.
TRPV4 Gating via Coupling to Cytoskeletal
Components
A direct coupling of cell swelling to channel activation could be
obtainedbya tetheringof intracellular componentsofTRPV4to the
cytoskeleton. Such coupling could provide the swelling-induced
mechanical impact on the channel required to promote channel
opening. TRPV4 has been demonstrated to co-localize with
cytoskeletal components such as actin, microtubules, and
microfilaments (54–56), with a specific binding site for F-actin in
theTRPV4N-terminus (55).Modulationof actin, viamanipulation
of the b1-integrins that couple the extracellular matrix and actin
filaments, promoted TRPV4 activity (57). Inhibition of cytoskeletal
rearrangements disrupted actin-TRPV4 co-localization (58) and
reduced TRPV4 activity (54, 55) in a manner that did not affect cell
swelling-induced TRPV4-activation (33). Cytoskeletal tethering of
TRPV4 thus affects TRPV4activity and thereforemost likely also its
Frontiers in Immunology | www.frontiersin.org 4
volume regulation, although dynamic rearrangements within the
cytoskeleton are not required for the swelling-induced channel
activation (33).

TRPV4 Gating via Its N-Terminal Volume Sensor
TRPV4 contains an extensive cytoplasmic N-terminus that
contains ankyrin repeats (59, 60). These protein domains can
be potential binding hubs for cytoskeletal components (55, 56)
and various proteins and small ligands (61). In addition to the
ankyrin repeats, the proline-rich region of the N-terminus
interacts with the SH3 domain of PACSINs, proteins involved
in vesicular membrane trafficking and endocytosis (62, 63). The
TRPV4 N-terminus could thus serve as an essential structural
element coupling cell volume changes to TRPV4 channel gating.
Full deletion of the TRPV4 N-terminus rendered the channel
non-functional (33). However, replacing the N-terminus with
that of the shrinkage-sensitive variant of the related TRPV1
(the splice variant VR.5’sv) (64) converted the chimeric TRPV4
channel into a sensor of cell shrinkage rather than a sensor of cell
swelling, Figure 4 (33). The N-terminus of these TRP channels
thus dictates the volume-sensitivity of the individual channels,
with the distal proline-rich domain serving as a key structural
element in the process (33).

Phosphorylation of TRPV4 Is Not Required
for Volume-Sensitivity
The TRPV4 N and C termini contain an abundance of consensus
sites for protein kinases, Figure 5 (65, 66) and, in addition, serve as
anchors for regulatory kinase complexes (54). Someof these kinases
may modulate basal TRPV4 activity, rather than directly activate
the channel, by altering channel sensitization (66). Such increased
channel sensitivity was observed with cell swelling-induced
activation of TRPV4 following PKC and Src kinase activity
FIGURE 3 | TRPV4 is activated by cell swelling, independently of AQPs and osmotic gradients. The water-transporting cotransporter NKCC1, co-expressed with
TRPV4 in Xenopus oocytes, was activated by exposure to K+ (15 mM, equimolar replacement of Na+). This transporter activation led to a rapid volume increase (left
panel) in the absence of an external introduction of an osmotic gradient. This cell volume increase promoted TRPV4 activation in the form of TRPV4-mediated
currents (middle and right panels). Modified from (32) with permission.
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(66, 67). Nevertheless, cell volume-dependent activation of TPV4
occurred readily in the absence of protein kinase activity (PKA,
PKC, or PKG), and this cell swelling-induced channel activation
regime therefore does not require phosphorylation events (33).

Indirect Coupling of Cell Volume Changes
to TRPV4 Activation
Phospholipase A2 and Epoxyeicosatrienoic
Acid Metabolites
The molecular coupling from cell swelling to TRPV4
activation may require intermediate steps involving swelling-
mediated enzyme activation. Phospholipase A2 (PLA2) is
activated by large cell volume increases occurring following
experimental exposure of the cells to substantial osmotic
challenges of up to 200 mOsm (68–71). Swelling-induced
PLA2 activation promotes occurrence of anandamide and its
Frontiers in Immunology | www.frontiersin.org 5
metabolite arachidonic acid. Subsequent cytochrome P450
epoxygenase-dependent formation of epoxyeicosatrienoic
acids may lead to TRPV4 channel opening (72–74), possibly
via their direct interaction with a bindingpocketonTRPV4(75).
Such PLA2 activity appeared essential for cell swelling-induced
TRPV4 activation in Müller glia and TRPV4-expressing HEK293
cells (18, 33, 34, 72–74). However, in other cell types, i.e. retinal
ganglion neurons, sensory neurons, TRPV4-expressing Xenopus
laevis oocytes or yeast, cell swelling-mediated TRPV4 activation
occurred readily in the absence of PLA2 activity (30, 31, 33, 41, 76),
suggesting that TRPV4 can be directly activated by cell swelling
irrespective of PLA2 enzymatic products. Curiously, experimental
application of downstream products of PLA2 enzyme activation,
such as 5’,6’-epoxyeicosatrienoic acids, directly activate TRPV4 (in
the absence of cell swelling) both in its native setting of Müller glia
and upon heterologous expression in HEK293 cells (18, 34). In
other cell types, i.e. retinal ganglionneurons andTRPV4-expressing
oocytes, these downstream metabolites of the PLA2 signaling
pathway (e.g. oleic acid, anandamide, 5’,6’-epoxyeicosatrienoic
acids) fail to activate TRPV4 (31, 33, 34). PLA2 activity thus
modulates TRPV4 channel opening differentially in distinct cell
types and appears to be a requirement for cell swelling-induced
activation of TRPV4 in cell types that permit direct activation of
TRPV4 by the PLA2 products and metabolites thereof.
TRPV4 MODULATION BY
INFLAMMATORY MEDIATORS AND
OTHER STIMULI

TRPV4 has been proposed a key role in the response mechanism
to pathological events, with excessive TRPV4-mediated Ca2+

influx possibly driving reactive gliosis and glial cytokine release
(34, 77), and predisposing cells to activation of Ca2+-dependent
pro-apoptotic signaling cascades (34). Inflammatory mediators
are released during activation of inflammatory signaling
pathways. A selection of such proinflammatory mediators
(TNF-a, IL-1b, TGF-b1) was demonstrated to diminished
TRPV4 function after prolonged (24h), but not acute, exposure
(78). Inflammatory markers thus join the growing list of TRPV4
modulators , which includes plant extracts such as
bisandrographolide and citric acid, apigenin (4 ’5,7-
trihydroxyflavone), a flavone found in many plants (79), RN-
1747 (80), dimethylallyl pyrophosphate, an intermediate in the
cholesterol synthesis pathway (81), phorbol esters (17, 74, 79),
but see (82), and the synthetic lipid GSK1016790A (32, 33).
GSK1016790A promotes an open channel conformation similar
to that obtained following cell volume-dependent TPV4
activation, suggesting that GSK1016790A stimulates TRPV4
opening in a manner similar to that of swelling-induced
channel activation (32). In addition to the cell swelling-
mediated activation of TRPV4 and the above-mentioned
molecular TRPV4 mediators, TRPV4 senses temperature
changes, mechanical stimuli, and flow-related sheer-stress [for
review, see (29)], underscoring the polymodality of TRPV4
activation (Figure 6).
FIGURE 4 | The N-terminus of TRPV4 dictates the directionality of the
volume sensing. Channel structures of TRPV4 (top), TRPV4:TRPV1 (VR.5'sv)
chimera (with the TRPV4 N terminus replaced by that of VR.5’sv, middle) and
VR.5’sv (bottom). The constructs were co-expressed with AQP4 in Xenopus
laevis oocytes, which were exposed to a hyposmotic or hyperosmotic
gradient (D100 mOsm) leading to robust cell swelling or cell shrinkage
(volume trace, top). TRPV4 responded with augmented membrane currents
to a cell volume increase unless its N-terminus was replaced by that of the
shrinkage-sensitive VR.5’sv variant of TRPV1 (middle and right panels).
Modified from (33).
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CONCLUSION

In summary, TRPV4 is a genuine sensor of volume changes rather
than an osmo-sensor, and is activated by increased cell volume
irrespective of the molecular mechanism underlying swelling.
The molecular mechanisms that couple altered cell volume to
gating of TRPV4 remain obscure, although its distal N-terminus
appears to be involved in dictating the volume response (Figure 6).
Some of the experimental discrepancies over the years regarding
TRPV4 activation may originate in cell-specific requirements of
volume-dependent activation of TRPV4. Future experimental
efforts may reveal how this cell type-specific response is orchestrated.
FIGURE 6 | A schematic depicting the mechanisms underlying swelling-induced TRP
molecular mechanism underlying the cell swelling. The TRPV4-mediated response to
cell-specific requirement for PLA2 activity as permissive for swelling-induced activatio
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PERSPECTIVE

The polymodality of the TRPV4 remains a topic of continued
fascination in the scientific field. The lists of TRPV4-
activating stimuli and protein-protein interaction partners
rapidly grow. We believe that the field needs to identify
which of these are physiologically relevant (perhaps even
additive) and which are curious biophysical phenomena,
which may never occur in physiology or pathophysiology.
The latter may arise due to technical issues in the
experimental design i.e. large osmotic gradients, excessively
high concentrations of stimulants (which may even be
FIGURE 5 | The TRPV4 N- and C-termini contain an abundance of consensus sites for protein kinases. Modified from (65) with permission.
V4 activation. Increased cell volume activates TRPV4 irrespective of the
cell volume changes is dictated by its distal-most part of the N terminus, with
n of TRPV4.
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synthetic), extensive mechanical insults, etc. If TRPV4, in the
end, is cemented as a true volume sensor in physiological
settings, it will be highly relevant to determine the molecular
link between volume changes and channel activation. It
follows that a revelation of the cellular implications of
swelling-activated TRPV4 activation must be resolved; does
TRPV4 activation aid the return to the original cell volume
or does it in fact worsen the outcome of the cell swelling by
promoting a Ca2+ overload? We anticipate future exploration
of these outstanding research questions alongside the clear
definition of TRPV4’s role in diverse human diseases.
Frontiers in Immunology | www.frontiersin.org 7
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