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The diagnosis of multiple sclerosis (MS) is usually based on clinical symptoms and signs
of damage to the central nervous system, which is assessed using magnetic resonance
imaging. The correct interpretation of these data requires excellent clinical expertise
and experience. Deep neural networks aim to assist clinicians in identifying MS using
imaging data. However, before such networks can be integrated into clinical workflow,
it is crucial to understand their classification strategy. In this study, we propose to use
a convolutional neural network to identify MS patients in combination with attribution
algorithms to investigate the classification decisions. The network was trained using
images acquired with susceptibility-weighted imaging (SWI), which is known to be
sensitive to the presence of paramagnetic iron components and is routinely applied
in imaging protocols for MS patients. Different attribution algorithms were used to the
trained network resulting in heatmaps visualizing the contribution of each input voxel to
the classification decision. Based on the quantitative image perturbation method, we
selected DeepLIFT heatmaps for further investigation. Single-subject analysis revealed
veins and adjacent voxels as signs for MS, while the population-based study revealed
relevant brain areas common to most subjects in a class. This pattern was found to be
stable across different echo times and also for a multi-echo trained network. Intensity
analysis of the relevant voxels revealed a group difference, which was found to be
primarily based on the T1w magnitude images, which are part of the SWI calculation.
This difference was not observed in the phase mask data.

Keywords: convolutional neural network, deep learning, explainability, magnetic resonance imaging, multiple
sclerosis, susceptibility-weighted imaging, interpretable AI, machine learning

INTRODUCTION

Multiple sclerosis (MS) is the most common neuroimmunological disease and causes a high
demand on healthcare resources (Stenager, 2019). In addition to the necessary cost-intensive
medication and ongoing care, expert knowledge and experience are required to diagnose the disease
correctly. The McDonald criteria (Thompson et al., 2018) used to diagnose MS include the presence

Frontiers in Neuroscience | www.frontiersin.org 1 December 2020 | Volume 14 | Article 609468

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.609468
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.609468
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.609468&domain=pdf&date_stamp=2020-12-18
https://www.frontiersin.org/articles/10.3389/fnins.2020.609468/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-609468 December 13, 2020 Time: 11:15 # 2

Lopatina et al. Deep-Learning-Driven MS Identification Relevance Analysis

of clinical symptoms together with radiological signs.
Although the disease pattern can be identified by magnetic
resonance imaging (MRI) contrasts, there is a risk of clinical
misinterpretation. The development of algorithms to automate
the diagnosis of MS based on MRI data would make a valuable
contribution in this regard.

Today, machine learning algorithms and in particular deep
neural networks are making remarkable progress in biomedical
image analysis, especially in supporting clinicians in decision
making (Arbabshirani et al., 2018; Katzman et al., 2018).
Regarding MS, most of these applications perform automated
lesion segmentation based on both FLAIR and T2-weighted MR
images or a combination of both (Brosch et al., 2016; Valverde
et al., 2017; Aslani et al., 2019; Gabr et al., 2019). However, the
presence of lesions is not always associated with the disease,
and the lesion patterns can be quite heterogeneous and are not
necessarily unique for MS (Filippi et al., 2019). Therefore, a more
relevant issue now being addressed with deep neural networks
is the classification of MS patients and healthy subjects directly
from the data without prior lesion segmentation.

Recently, a few studies have focused on MS classification
based on convolutional neural networks (CNNs) without lesion
segmentation (Wang et al., 2018; Zhang et al., 2018; Marzullo
et al., 2019). Zhang et al. (2018) have proposed a 10-layer
CNN-PreLU-Dropout approach for identifying MS patients
based on 2D T2-weighted axial MRI data that outperforms
other modern MS identification approaches (Murray et al.,
2010; Wang et al., 2016; Wu and Lopez, 2017; Ghirbi et al.,
2018). Wang et al. (2018) have proposed an improved structure
of the CNN-PreLU-Dropout approach (Zhang et al., 2018)
by incorporating batch normalization, and stochastic pooling
applied to the same data and achieved superior performance
compared to the original method (Zhang et al., 2018). Marzullo
et al. (2019) used the graph CNN model to classify MS patients
into four clinical profiles (clinically isolated syndrome, relapsing-
remitting, secondary-progressive, and primary-progressive) and
to distinguish them from healthy controls. In contrast to the
studies mentioned above, the latter was applied to structural
connectivity information extracted from diffusion MRI data.

Although they have shown promising results, none of these
approaches bring new insights into the radiological signs relevant
to the diagnosis of MS. For medical diagnostics, understanding
the decision-making process of a neural network is essential, not
least to reduce the risks of clinical misinterpretation and to ensure
appropriate treatment. Today, there are various possibilities in
computer science to make neural networks more explainable.
A group of these interpretability methods is used to generate
attribution maps (heatmaps) that highlight features of the input
image that affect the output (Simonyan et al., 2013; Zeiler
and Fergus, 2014; Bach et al., 2015; Springenberg et al., 2015;
Lapuschkin et al., 2016; Shrikumar et al., 2016, 2017; Kindermans
et al., 2017; Smilkov et al., 2017; Sundararajan et al., 2017).

To the best of our knowledge, only one study has so far
taken any steps to uncover CNN decisions in MS classification.
Eitel et al. (2019) applied layer-wise relevance propagation (LRP)
(Bach et al., 2015; Lapuschkin et al., 2016) to reveal image
features captured with a proposed naive 3D CNN network for

MS identification. Their analysis showed individual lesions, the
location of the lesions, and some non-lesion areas as relevant
input data compartments. However, conventional T2-weighted
images, as used by Eitel et al. (2019), are usually only valuable
in terms of lesion information, while other MR contrasts, such
as susceptibility-weighted imaging (SWI) (Haacke et al., 2004),
may show additional radiological signs relevant to MS. Newly
established patterns in susceptibility-weighted images include the
central vein sign (Lamot et al., 2017; Sparacia et al., 2018), iron
depositions (Dal-Bianco et al., 2017; Yan et al., 2018), cerebral
microbleeds (Zivadinov et al., 2016), and venous anatomy (Dal-
Bianco et al., 2015; Öztoprak et al., 2016) and have the potential
to indicate the presence of MS or to characterize the course of
the disease. Signal intensity on SWI varies depending on tissue
composition. Iron, for example, appears on SWI as a hypointense
signal, whereas white matter demyelination appears hyper- or
isointense (Chawla et al., 2018).

The aim of this study was, therefore, to identify MS
patients using a CNN model based on SWI data and to
investigate the classification strategy of the model using different
attribution algorithms [LRP (Bach et al., 2015; Lapuschkin et al.,
2016), DeepLIFT (Shrikumar et al., 2016, 2017), saliency maps
(Simonyan et al., 2013)] and individual heatmaps indicating the
contribution of a given voxel to the classification decision. The
quality of the heatmaps was evaluated by means of perturbation
analysis (Samek et al., 2017), as this technique does not require
visual evaluation, which implicitly requires prior knowledge and
diagnostic experience.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
Three-dimensional T1-weighted multi-echo gradient-echo
images were acquired on a 3T MRI scanner (Prisma Fit,
Siemens Healthineers, Erlangen, Germany) using a 20-channel
head coil. The sequence parameters were as follows: α = 35◦;
TE1−5 = (8.12; 13.19; 19.26; 24.33; 29.40 ms); TR = 37 ms,
matrix-size = 168 × 224; FOV = 168 mm × 224 mm; slice
thickness = 1 mm; number of slices = 192. The entire database
includes data from 184 patients with MS and 66 healthy
subjects. 66 patient datasets were randomly selected to balance
the number of patients and controls. All investigations were
conducted in accordance with the Declaration of Helsinki
on Ethical Principles for Medical Research Involving Human
Subjects. The demographical characteristics of the two groups
can be found in Table 1.

Each MR dataset was preprocessed using the typical SWI
routine (Haacke et al., 2004) for each echo time separately.
This SWI preprocessing was implemented in Python using the
following steps. First, k-space data, which were retrieved from
magnitude and phase data, were filtered with a symmetric
Hamming window (Blackman and Tukey, 1958) of size
128 × 128. By using complex division, the filtered reconstructed
phase images were subtracted from the original phase images
(homodyne filtering). To generate the phase masks (PMs) in
the phase range −π to +π, positive phase values were set to
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TABLE 1 | Demographic information of MS and HC subjects included in the study.

MS HC t-Test result
(p-value)

Number of subjects 66 66

Age in years
(mean ± standard
deviation)

39.94 ± 11.71 36.05 ± 11.72 0.06

Male/female 38/62% 47/53% 0.29

The last column displays the p-value for the t-test for each attribute.

one and negative values were scaled between zero and one.
The PMs were multiplied four times with the corresponding
magnitude images. Magnitude images were not corrected for
intensity inhomogeneities prior to SWI computation to avoid
spurious residuals of this procedure in the SWI images.
We also assumed that the intensity inhomogeneity pattern
should be similar between subjects and thus not relevant
to the classification procedure. Finally, minimum intensity
projections were computed in a sliding window manner over
14 consecutive slices. Thus, for each subject, five different 3D
SWI (using the MRI data for each of the echoes separately) were
reconstructed. For the single-echo experiments, we used SWI
data reconstructed for a single echo, i.e., in section “Attribution
Methods and Perturbation Analysis” we used SWI reconstructed
for the TE5, and in section “ROI-Based Analysis” – for the
TE3. For the multi-echo experiments in section “Population-
Based Attributions,” five separate SWI data from each of the
five TEs were used.

For each SWI scan volume, one single 2D projection in
transverse orientation with its center at a predefined slice position
and predefined echo time was selected as one sample for the
resulting input dataset to the CNN. Moreover, we applied skull
stripping to each 2D image (projection) and standardized the
masked images to zero mean and unit variance. Finally, the
dataset was split into training and test sets each containing 33
samples per class.

CNN Model Architecture and Training
We used the following architecture for the CNN with empirically
adjusted hyperparameters (Figure 1): the model consists of five

FIGURE 1 | CNN architecture. Conv, convolutional layer; Max Pool,
max-pooling operation; ReLU, rectified linear unit; FC, fully connected layer;
Softmax, softmax layer.

convolutional layers with rectified linear unit (ReLU) activation
functions followed by max-pooling layers with a pooling window
size of 2 × 2. The number of filters in the convolutional layers
is equal to 16, 16, 32, 32, and 64 with a kernel size of 3 × 3.
One fully connected layer (eight neurons) with ReLU activation
and one output layer (two neurons) with soft-max activation
complete the structure of the model. Besides, we applied dropout
regularization to the output of the first and the last two max-
pooling layers.

With each iteration during the training epoch, a batch of
randomly augmented samples replaced the corresponding input
batch of samples of the training set. This in-place augmentation
technique was used to avoid overfitting and to increase robustness
to the new data. We applied several data augmentation settings to
our data, including image rotation between 20◦ and +20◦ around
the center of the slice, horizontal and vertical shifting in the range
between (−20; 20) and (−12; 12) voxels, respectively, scaling with
factors between 0.7 and 1.0 as well as horizontal flipping. The
data generator randomly transformed an image according to the
predefined settings. The training was early stopped if there were
no performance improvements to the model on the validation set,
and the model with the best validation accuracy was saved and
used for further analysis.

Attribution Methods and Perturbation
Analysis
To explain the decisions of our CNN model we rely on
attribution methods that can be divided into local and global
ones (Ancona et al., 2018). While local attributions illustrate
how small changes to the input feature contribute to the output,
global attributions represent the importance of a feature weighted
relative to other input features. We used two publicly available
global attribution methods, LRP (Bach et al., 2015; Lapuschkin
et al., 2016) and DeepLIFT (Shrikumar et al., 2016, 2017),
and compared them to saliency maps (Simonyan et al., 2013)
as a local attribution method. All of these algorithms operate
layer-wise in a backward fashion. The LRP algorithm (Bach
et al., 2015; Lapuschkin et al., 2016) decomposes the output
classification score into the relevance of the corresponding input
voxels. Similarly to LRP, DeepLIFT (Shrikumar et al., 2016,
2017) assigns relevance to the input values, which explains
the difference in the output with respect to reference input
values. Saliency maps (Simonyan et al., 2013) are computed by
propagating the partial derivative of the target output with respect
to the input features.

The attribution maps (heatmaps) were generated for all
subjects in the test set. The produced maps were analyzed
with perturbation analysis (Samek et al., 2017), a promising
method that does not require human judgment and ground truth.
The attribution algorithms as well as the perturbation analysis
were implemented using iNNvestigate (Alber et al., 2019). In
perturbation analysis, information from the image is perturbed
region by region from most to least relevant according to the
attribution map. The target output score of the classifier is
affected by this perturbation and quickly drops if highly relevant
information is removed. The faster the classification score drops,
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the better an attribution method is capable to identify the input
features responsible for correct classification. To numerically
assess changes in the classification score over the perturbation
steps, for each method we compute the area over the perturbation
curve (AOPC):

AOPC =
1

L+ 1

〈 L∑
k=0

f (x(0))− f (x(k))

〉
,

where L is the number of perturbation steps; x(0) is the non-
perturbed input image and f (x(0)) is the output classification
score for this input; x(k) is the input image after k perturbation
steps and f (x(k)) is the corresponding classification score. 〈∗〉
denotes averaging over all images in the test data set.

Population-Based Attributions
Based on the perturbation analysis, we chose one attribution
method for detailed investigation. To identify brain regions
relevant for the classification across MS and HC populations
in the test set, we first registered all subjects to the selected
reference subject using SimpleElastix (Marstal et al., 2016). All
transformations were computed on the SWI images and then
applied to the heatmaps. Next, each heatmap was smoothed with
a Gaussian kernel of size 5 × 5 voxels. Finally, we averaged
heatmaps over correctly predicted MS and HC.

In addition, we tested the stability of the chosen method by
computing average heatmaps for a model trained on adjacent
slice positions and on the same slice position, but with different
echo time. To check the consistency of the relevance patterns,
we ran multi-echo experiments by modifying the network’s
architecture such that it takes distinct echoes through multiple
channels. Similarly, to the single-echo case, we produced
average heatmaps to evaluate characteristic spatial distributed
relevance patterns.

ROI-Based Analysis
We picked out three regions-of-interest (ROI) (Figure 2A) to
analyze the potential distinguishability between MS and HC
based merely on the relevant voxels in these regions. In our
hypothesis, important areas may contain voxel information
sufficient to distinguish patients from healthy subjects. We
suppose that a straightforward statistical analysis of this
information can lead to new findings on MS markers.

We used two ROIs with the relevance pattern consistent
over different TEs in the average heatmaps and the whole-brain
area. Moreover, for each ROI we analyzed different percentage
coverage of relevant voxels (1, 5, 10, 50, and 100%). As an
input sample, we used the mean value of the SWI voxels, which
correspond to the highest positive relevant heatmap values for
the MS class and the lowest negative relevance values for the HC
class in a specific ROI with the respective percentage coverage
setting. The same kind of evaluation was performed for the T1w
magnitude data and the computed PMs, which were used for the
SWI computation, separately.

To analyze the significance of the differences between two
groups of subjects (MS and HC), for each configuration of the

contrast, ROI and relevance percentage, we computed p-values
using a two-sample t-test and Glass’ 1 effect sizes.

RESULTS

Comparison of Attribution Algorithms
We used the perturbation analysis to compare heatmaps
computed with the LRP, the DeepLIFT, and the saliency map
algorithms. For the LRP, the ε-rule with a numerical stabilizer
ε = 1, and for the DeepLIFT, reveal-cancel rule were selected as
backpropagation rules. We choose these propagation rules based
on the heatmap quality criterion (less noisy). The AOPC values
were calculated over the 66 images from the test data set. In each
perturbation step, ten regions of size 10× 10 voxels were replaced
by random values from the uniform distribution. Perturbation
order is defined by heatmap values, starting from the most
positive relevant values for prediction to the most negative ones.
We replaced the first 130 regions in 13 steps resulting in 34.5%
of the image being perturbed. We assume that this sufficiently
perturbs the brain area, which contains information important
for the classification.

In Figure 3, AOPC curves are shown for each method. It can
be seen that both LRP and DeepLIFT have the most significant
AOPC values with DeepLIFT performing slightly better after a
few perturbation steps. Since the saliency map aims to identify
local relevance only, it performs much worse but still outperforms
the random baseline. Based on the AOPC curves, we consider
DeepLIFT as the preferable method and used it for further
qualitative analysis.

Individual Heatmaps
After selecting the algorithm, we analyzed DeepLIFT heatmaps
for subjects in the test data set who had the highest classification
score. In Figure 4, we show heatmaps, which are overlaid on
the corresponding SWI images for three correctly classified MS
patients, and three correctly classified HC. The heatmaps were
threshold for the first and the last percentile of the relevance
values and display only the highest positive and the lowest
negative relevant voxels. The positive (red) and negative (blue)
values indicate the relevance of a particular input voxel for or
against a predicted class, respectively. In both groups of subjects,
the attribution is mainly detected at the location of veins and
voxels adjacent to these veins.

Average Heatmaps
In Figure 5, we show average heatmaps for all correctly classified
MS patients and HC in the test set using CNN models trained on
different slice positions. The heatmaps are thresholded, retaining
only 5% of the highest positive and 5% of the lowest negative
relevance voxels. We overlaid them with the average of all
test subjects. Relevant features were mainly found in the brain
periphery (cortical band) and showed a stable trend across
different slice positions. Areas of voxels with positive relevance
for one class are predominantly negative for the opposite class.
For MS patients, positive relevance was observed in the lower
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FIGURE 2 | (A) Example of the three ROIs for a single subject. (B) ROIGCC (upper row) and ROIOCC (lower row) for the same subject in a close-up view with different
amounts of included voxels for analysis.

parts of the brain and around central veins, while negative
relevance was seen in the anterior brain parts.

The comparison of networks trained with data computed
from different echo times and for the multi-echo case showed
only minor deviations in model performance (accuracy) and
average classification score. Neither a specific echo time nor
the multi-echo model showed a distinctly deviating high or low
performance. The corresponding numerical values are listed in
Table 2.

Figure 6 depicts average heatmaps across different echo times
for a fixed slice position for models trained on single-echo data
(A) and multi-echo data (B). In the single-echo case, each average
heatmap was generated with a trained network on data of the
corresponding echo time; the most relevant areas were found
in the frontal region around the anterior horn of the ventricles

and in the occipital region, where for the latter region the
right hemisphere was more pronounced. The highest positive
relevance was found in the occipital region for echo #3 and in
the anterior region for echo #5. Areas with the most negative
relevance were observed in a cortical band in medial and anterior
locations. The characteristics along this band changed with
different echo times. The average relevance heatmaps for the HC
group also showed different patterns for the different echo times.
Areas with positive relevance for the MS group showed negative
relevance for the HC group (anterior horn of the ventricles and
the occipital region) and in a reversed relation for the anterior
medial cortical band. The characteristics of the pattern for the
HC group also changed over different echo times. In the multi-
echo case, each average heatmap was generated on a trained
network on data for all different echo times and the relevance
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FIGURE 3 | Averaged (66 subjects) AOPC plotted over perturbation steps (0–13) for four different relevance assessment methods (including random order, which is
used as reference). In each perturbation step, 10 regions of size 10 × 10 were substituted with reference values. The upper part of the figure shows four different
stages in the perturbation analysis for a single MS subject.

patterns showed differences in comparison to the single echo
case as well as between different echo times. The relevance of the
anterior horn of the ventricles was significantly reduced, while the
occipital region was similarly pronounced for the MS group. The
maximal relevance was observed for echo #5 in the MS group. For
the HC group in the multi-echo trained network, the relevance
pattern was less characteristic in comparison to the MS group and
the single-echo case.

ROI-Based Numerical Analysis
In the last experiment, we performed an ROI-based numerical
analysis based on the information provided by the relevance
analysis for three different rectangular ROIs (Figure 2A): genu of
the corpus callosum (GCC), occipital cortex (OCC), whole-brain
slice (WBS), and for three separate image contrasts (SWI, T1w

magnitude, PM). Background voxels outside of the brain were not
considered in the analysis. The choice of these ROIs was based
on the relevance voxel pattern observed in the average heatmaps.
Voxel values assigned with 1, 5, 10, and 50% of the positive
relevance as well as the whole ROI (100%) were averaged on a
subject basis and compared between the contrasts and percentage
settings. An example of the ROI setting and the different selected
percentages is shown in Figure 2B for a single subject.

Figure 7 summarizes the collected data using box plots for
all investigated ROI-contrast combinations. For all three ROIs,
a difference in SWI and T1w magnitude between the two classes
(MS vs. HC) was observed, with values for the MS group being
consistently higher on average. This pattern was not observed
for the average PM values. Table 3 summarizes this effect in the
listed effect sizes (Glass’ 1), which also takes sample size into

Frontiers in Neuroscience | www.frontiersin.org 6 December 2020 | Volume 14 | Article 609468

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-609468 December 13, 2020 Time: 11:15 # 7

Lopatina et al. Deep-Learning-Driven MS Identification Relevance Analysis

FIGURE 4 | Voxel-wise relevance analysis results plotted as heatmaps on top of original SWI contrast images for three correctly classified MS and three HC
subjects, respectively. Red shows the relevance of voxel positions that speak for the correct class and blue against it. The class probability for the correctly assigned
class is stated at the top of each individual data set.

FIGURE 5 | Averaged voxel-wise relevance heatmaps for correctly classified subjects over a range of consecutive axial slice positions. The upper row shows the
averages for subjects from the MS group and the lower for the HC group.

account. The results for the PM data (last column in Table 3)
showed predominantly negative and smaller values for the effect
size in comparison to the SWI and T1w results, and in a number

of combinations (7 out of 12), class differences were also found
to be not significant (p > 0.05, not corrected for multiple
comparisons). For the 5 and 10% configurations, the absolute
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TABLE 2 | List of observed model performance (accuracy) and average
classification scores for the analysis using networks trained and evaluated for
different echo times as well as for the multi-echo case.

Single-echo Multi-echo

Echo 1 Echo 2 Echo 3 Echo 4 Echo 5

Model performance (accuracy)

0.95 0.91 0.92 0.92 0.94 0.92

Average classification score (MS/HC)

0.91/0.88 0.93/0.87 0.91/0.92 0.95/0.94 0.94/0.94 0.91/0.89

effect size of the PM data was larger for the ROIGCC than the
absolute effect size of the corresponding T1w data. This may
indicate that for this particular ROI (ROIGCC) PM information

contributed more to the relevant voxel in the SWI data, then the
magnitude from the T1w data.

DISCUSSION

In the current study, we introduced a framework for CNN-
based MS identification using SWI data. This framework was
subsequently examined with regard to the explainability of
classification decisions. We applied perturbation analysis to the
trained CNN to select an attribution algorithm among three
different algorithms based on the quantitative evaluation. Based
on the analysis, we used generated DeepLIFT heatmaps to
identify important features contributing to the classification task.

In contrast to other MS studies using deep neural networks
for disease identification (Eitel et al., 2019), we have chosen

FIGURE 6 | Averaged voxel-wise relevance heatmaps for correctly classified subjects from the test set across different echo times. The network was trained on
single-echo data (A) and multi-echo data (B).
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TABLE 3 | Statistical group differences and effect sizes (Glass’ 1) for the different image contrasts and different ROIs at five percentage configurations (1, 5, 10,
50, 100%).

SWI T1w PM

p-Value Glass’ 1 p-Value Glass’ 1 p-Value Glass’ 1

1%

ROIGCC 0.0725 0.4627 0.2731 0.2323 0.0188 −0.52

ROIOCC 0.0059 0.6809 5.5e-07 1.2561 0.0283 0.6568

ROIWBS 5.0e-08 1.4364 8.7e-10 1.6031 0.191 0.4399

5%

ROIGCC 0.0338 0.7076 0.0337 0.4523 0.0035 −0.6473

ROIOCC 2.2e-06 1.1975 1.3e-08 1.4496 0.2629 0.3382

ROIWBS 4.1e-10 1.6578 8.5e-11 1.7416 0.2454 −0.3673

10%

ROIGCC 0.0303 0.6406 0.0072 0.5778 0.0016 −0.6851

ROIOCC 1.4e-08 1.5128 1.9e-09 1.5656 0.3429 0.3016

ROIWBS 1.1e-09 1.5896 7.2e-10 1.606 0.0138 −0.6869

50%

ROIGCC 4.3e-08 1.7108 2.0e-06 1.1537 0.001 −0.7697

ROIOCC 1.7e-09 1.7450 7.9e-09 1.4552 0.001 0.9532

ROIWBS 7.1e-08 1.399 2.2e-05 0.9681 0.3233 −0.2687

100%

ROIGCC 2.5e-07 1.3671 4.1e-06 1.1025 0.0082 −0.6483

ROIOCC 0.0059 0.6844 1.4e-06 1.1340 0.802 −0.0772

ROIWBS 0.0002 1.5166 0.0003 1.3671 0.5372 −0.1797

p-Values for group differences (HC vs. MS) were computed using a two-sample t-test. The values with the largest effect size in each ROI-contrast triplet is in bold type.

SWI because of the evidence of venous patterns in MS in
comparison to conventional T2w data. In addition to the
venous patterns, SWI can indicate extensive demyelination and
iron accumulation. Although deep learning applications can be
developed with high performance for MS categorization, which
was also shown in this study, the main purpose was to provide
new interesting MR based patterns for MS identification, which
can then be used as starting points for further analysis. The
heatmaps of individual subjects revealed that veins and their
surroundings are most relevant for the decision. However, this
does not hold for all veins, and there appears to be a preference
for certain regions of the brain. These regions are similar
for different adjacent slice positions (trained and evaluated
completely independent) and are also similar across different
echo times. With the current study, we conclude that veins in
the anterior medial and lower peripheral regions may be helpful
in identifying MS.

According to Samek et al. (2017), heatmap information can
not only be used for explaining CNNs but also to prioritize
image regions and use them for detailed inspection. Thus,
we concentrated on ROIs with high heatmap values and
used a classical intensity-based analysis. We found numerical
differences between the two classes (MS vs. HC) in SWI and
T1w data. To check the relevance dependency of SWI data on
T1w data, we trained a model based on the T1w data. Figure 8
demonstrates averaged heatmaps for the T1w and the SWI case.
The relevance pattern in the anterior medial region differs in
detail between contrasts; however, in general, the heatmaps look
rather similar. The SWI-based model was found to perform with

higher accuracy, which suggests that the PM information added
additional identification supporting features to the data.

The classification decision and the corresponding relevance
pattern could possibly depend on the demographical attributes of
the two groups (MS and HC). To assess the statistical relevance
of the findings, we computed p-values using a t-test for these
attributes. The age and gender differences were found to be
non-significant (p > 0.05).

One limitation of this study is the limited number of samples
in the dataset. This circumstance is partly mitigated by using
a shallow network and extensive data augmentation during the
training procedure. The number of samples (n = 132) used in
this study is similar to other deep learning studies in detecting
neurological disorders (Noor et al., 2020). However, in this
study, the pattern relevant for MS identification might only be
specific for this limited group of patients. For future studies,
we suggest using a larger number of subjects to confirm our
results. We also checked the stability of our generated heatmaps
by swapping individual datasets between the training and test
group and obtained similar heatmap patterns. In addition, the
quality of a heatmap depends on the network performance, i.e.,
a better-trained model provides a useful heatmap that is sparse
and less noisy. A second limitation of the study is that the T1w
image data used for SWI computation were not corrected for
intensity inhomogeneities, which could lead to different results.
In combination with the observed averaged intensity differences
of relevant voxels between the two classes (MS vs. HC), the
question arises whether a class-specific inhomogeneous intensity
profile may drive the classification. A brief analysis using intensity
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FIGURE 7 | Boxplots of mean values for a given ROI (columns) and number of relevant voxels as a portion of ROI size based on SWI data, T1-weighted data without
preprocessing, and PMs.

FIGURE 8 | Averaged relevance heatmaps separated for MS (upper row) and
HC (lower row) for a network trained and evaluated with T1w (left column) and
SWI data (right column).

corrected magnitude data for SWI computation, network training
and evaluation revealed similar locations of relevant voxels
(close to veins) for the classification task, but with an overall
lower classification performance (∼0.8). Thus, the discrepancy in
performance should be investigated in future studies.

Moreover, the choice of the reference input for the
DeepLIFT algorithm has an impact on the results. Choosing
a useful reference is more intuitive or relies on domain-
specific knowledge. Following the recommendation in Shrikumar
et al. (2017), we computed DeepLIFT maps against different
reference inputs. In our case, we obtained the most promising
results with a blurred version of the original input image as
a reference. DeepLIFT assigns relevance to the input values,
which explains the difference in the output with respect to the
reference input values.

A similar attribution analysis of a deep neural network for
MS identification has been recently performed by Eitel et al.
(2019). This study used a 3D CNN to classify MS patients and
healthy controls based on FLAIR contrast and transfer learning.
The network was pre-trained on the ADNI MRI data set and
fine-tuned on the MS data set. The LRP heatmaps showed that
the CNN model was concentrated on posterior periventricular
lesions. Compared to Eitel et al. (2019), we focused on 2D SWI
data and the DeepLIFT attribution method in the present study.
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The pattern of most relevant inputs in their LRP-based study
differs from data found in our study, which we attribute mainly
to the different image contrast.

For future studies, we suggest employing methods of
image-to-image-translation (Isola et al., 2017) in order to
analyze network decisions in a more human interpretable
fashion. With this type of analysis, a successfully trained
network for MS identification could be used to perform
image modifications to SWI data of a healthy control until
the dataset is classified as an MS subject or vice versa.
Such an approach might be implemented with StarGAN
(Choi et al., 2018) or more specifically using Fixed-Point-
GAN (Siddiquee et al., 2019) with image-level annotation
during training. However, these new approaches have been
only applied for human visible patterns like brain tumors
or pulmonary embolism. Thus, it remains currently unclear
whether such techniques can be used to identify class-
specific patterns in neurological diseases. However, in
combination with the results presented in this study the analysis
using Fixed-Point GAN might be guided by the obtained
averaged heatmaps.

CONCLUSION

In the current work, we demonstrated identification of
MS patients using a CNN based on 2D SWI data. The
subsequent relevance analysis revealed specific areas that
were highly relevant for the identification process of the
proposed network (the anterior part around the CC and the
occipital part). In a simple downstream intensity analysis,
we observed statistically significant intensity differences
between the two classes in the SWI data. This observation,
and the fact that the relevant voxels were mainly located
in and around venous vessels, strengthens the presumed

association of changes in the vascular system and the
development of MS.
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