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Abstract

Background: Amplicon sequencing of phylogenetic marker genes, e.g., 16S, 18S, or ITS ribosomal RNA sequences, is still the
most commonly used method to determine the composition of microbial communities. Microbial ecologists often have
expert knowledge on their biological question and data analysis in general, and most research institutes have
computational infrastructures to use the bioinformatics command line tools and workflows for amplicon sequencing
analysis, but requirements of bioinformatics skills often limit the efficient and up-to-date use of computational resources.
Results: We present dadasnake, a user-friendly, 1-command Snakemake pipeline that wraps the preprocessing of
sequencing reads and the delineation of exact sequence variants by using the favorably benchmarked and widely used
DADA2 algorithm with a taxonomic classification and the post-processing of the resultant tables, including hand-off in
standard formats. The suitability of the provided default configurations is demonstrated using mock community data from
bacteria and archaea, as well as fungi. Conclusions: By use of Snakemake, dadasnake makes efficient use of
high-performance computing infrastructures. Easy user configuration guarantees flexibility of all steps, including the
processing of data from multiple sequencing platforms. It is easy to install dadasnake via conda environments. dadasnake
is available at https://github.com/a-h-b/dadasnake.
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Findings
Background

Since the first reports 15 years ago [1], high-throughput am-
plicon sequencing has become the most common approach
to monitor microbial diversity in environmental samples. Se-
quencing preparation, throughput, and precision have been con-
sistently improved, while costs have decreased. Computational
methods have been refined in recent years, especially with the
shift to exact sequence variants (ESVs = amplicon sequence
variants, ASVs) and better use of sequence quality data [2, 3].

While amplicon sequencing can have severe limitations, such
as limited and uneven taxonomic resolution [4, 5], over- and
underestimation of diversity [6, 7], lack of absolute abundances
[8,9], and missing functional information, amplicon sequencing
is still considered the method of choice to gain an overview of
microbial diversity and composition in a large number of sam-
ples [10, 11]. Consequently, the sizes of typical amplicon se-
quencing datasets have grown. In addition, synthesis efforts are
undertaken, requiring efficient processing pipelines for ampli-
con sequencing data [12]. Owing to the unique, microbiome-
specific characteristics of each dataset and the need to integrate
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the community structure data with other data types, such as abi-
otic or biotic parameters, users of data processing tools need to
have expert knowledge on their biological question and statis-
tics. It is therefore desirable that workflows be as user-friendly
as possible. There are several widely used tool collections, e.g.,
QIIME 2 [13], mothur [14], usearch [15], and vsearch [16], and
1-stop pipelines, e.g., LotuS [17], with new approaches contin-
ually being developed, e.g., OCToPUS [18] and PEMA [19]. Typi-
cally, workflows balance learning curves, configurability, and ef-
ficiency.

Purpose of dadasnake

dadasnake is a workflow for amplicon sequencing data process-
ing into annotated ASVs. It is set up with microbial ecologists in
mind, to be run on high-performance clusters without the users
needing any expert knowledge on their operation. dadasnake is
implemented in Snakemake [20] using the conda package man-
agement system. Consequently, it features a simple installa-
tion process, a 1-command execution, and high configurability
of all steps with sensible defaults. dadasnake includes exam-
ple workflows for common applications and produces a unique
set of useful outputs, comprising relative abundance tables with
taxonomic and other annotations in multiple formats, and re-
ports on the data processing and visualizations of data quality
at each step. The workflow is open-source, based on validated,
favourably benchmarked tools.

Implementation

The central processing within dadasnake wraps the DADA2 R
package [21], which accurately determines sequence variants
[22–24]. The dadasnake wrapper eases DADA2 use and deploy-
ment on computing clusters without the overhead of larger
pipelines with DADA2 such as QIIME 2 [13]. Within dadasnake,
the steps of quality filtering and trimming, error estimation, in-
ference of sequence variants, and, optionally, chimera removal
are performed (Fig. 1). Prior to quality filtering, dadasnake op-
tionally removes primers and re-orients reads using cutadapt
[25]. Taxonomic classification is realized using the reliable naive
Bayes classifier as implemented in mothur [14] or DADA2, or by
DECIPHER [26, 27] with optional species identification in DADA2.
BLAST [28] can optionally be used to annotate all or only unclas-
sified sequence variants. The sequence variants can be filtered
on the basis of length, taxonomic classification, or recognizable
regions, namely, by ITSx [29], before downstream analysis. For
downstream analyses, a multiple alignment [30] and FastTree-
generated tree [31] can be integrated into a phyloseq [32] object.
Alternatively, tab-separated or R tables and standardized BIOM
format [33] are generated. dadasnake records statistics, includ-
ing numbers of reads passing each step, quality summaries, er-
ror models, and rarefaction curves [34]. All intermediate steps
and configuration settings are saved for reproducibility.

Reproducibility, user-friendliness, and modular design are
facilitated by the Snakemake framework, a popular workflow
manager for reproducible and scalable data analyses (Snake-
make, RRID:SCR 003475) [20]. Snakemake also generates HTML
reports, which store code, version numbers, the workflow, and
links to results. DADA2 and the other tools are packaged in
conda environments to facilitate installation. For reasons of re-
producibility, dadasnake uses fixed versions of all tools, which
are regularly tested on mock datasets and updated when im-
provements become available. Snakemake also ensures flexible
use as single-threaded local workflow or efficient deployment on

a batch scheduling system. Currently slurm and univa/sun grid
engine scheduler configurations are defined for dadasnake.

dadasnake configuration and execution

The whole dadasnake workflow is started with a single com-
mand (“dadasnake -c configuration.yaml”). The user provides
a tab-separated table with sample names and input files, as
well as a configuration file in the simple, human-readable and
-writable YAML format (see Supplementary File 1 for a worked
example) to determine which steps should be taken and with
what settings (see description of all configurable parameters in
Supplementary Table 1). dadasnake is highly configurable com-
pared with other Snakemake-based amplicon sequencing work-
flows, e.g., Hundo [35]. To facilitate its use, dadasnake provides
easily adjustable, tested default settings and configuration files
for several use cases.

dadasnake can use single-end or paired-end data. DADA2
can be efficiently used by parallelizing most steps by processing
samples individually [36]. Pooled analysis can alternatively be
chosen in dadasnake, and we recommend it for more error prone
technologies such as 454 or third-generation long reads. While
DADA2 has been designed for Illumina technology [21], dadas-
nake has been tested on Roche pyrosequencing data [37] and
circular consensus Pacific Biosciences [38] and Oxford Nanopore
data [39, 40] (see supporting material [60]). dadasnake provides
example configurations for these technologies and for Illumina-
based analysis of 16S, ITS, and 18S regions of bacterial and fungal
communities.

dadasnake offers a range of different output formats for easy
integration with downstream analysis tools. Tab-separated or R
tables and standardized BIOM format [33], or a phyloseq [32] ob-
ject are generated as final outputs in the user-defined output di-
rectory (see description of all outputs in Supplementary Table
2). Visualizations of the input read quality, read quality after fil-
tering, the DADA2 error models, and rarefaction curves of the
final dataset are also saved into a stats folder within the out-
put. The numbers of reads passing each step are recorded for
trouble-shooting. All intermediate steps and configuration set-
tings are saved for reproducibility and to restart the workflow
in case of problematic settings or datasets, so hard disk require-
ments are ∼1.3-fold the input data. The Snakemake-generated
HTML report contains all software versions and settings to fa-
cilitate the publication of the workflow’s results (see supporting
material [60]).

Snakemake provides detailed error reports, and the logs of
each step are recorded during runs. E-mail notifications of start
and finishing can be sent. Users can find trouble-shooting help
and file issues [41].

Use cases: performance

To demonstrate dadasnake’s performance, public datasets of
different scales were processed. The performance of dadasnake
depends strongly on the number of reads, number of samples,
number of ASVs, and the required processing steps.

Small datasets can be run on single cores with <8 GB RAM,
but they profit from dadasnake’s parallelization. For example, a
24-sample dataset with 2.9 million 16S ribosomal RNA (rRNA)
V4 reads [42] could be completely processed, including prepro-
cessing, quality filtering, ASV determination, taxonomic assign-
ment, treeing, visualization of quality, and hand-off in various
formats, with a total wall clock time of 150 minutes. Running
time was reduced to 100 minutes, when 4 cores were used, espe-

https://scicrunch.org/resolver/RRID:SCR_003475


Weißbecker et al. 3

Figure 1: Overview of the dadasnake workflow for paired-end Illumina sequencing of a fungal ITS region with inputs (configuration file, sample table, and read files)
and outputs (read numbers, graphical representations of quality and error models, rarefaction curves, and “OTU tables,” in biom, table, and phyloseq format). The
steps are configurable and alternative workflows exist, e.g., for single-end, non-Illumina datasets, or other target regions. Primer removal and all post-DADA2 steps
are optional. Colours represent the level of analysis: yellow: analysis per library/sample; bright green: analysis per run; sea green: analysis of the cumulated dataset;

blue: analysis for the whole dataset with sample-wise documentation. Note that the DADA2 block can be performed in pooled mode at the level of the whole dataset.

cially owing to the parallelization of the preprocessing and ASV
determination steps (Fig. 2a and b). Hardware requirements for
small datasets are minimal, including small personal laptops. A
medium-sized ITS1 dataset (267 samples with a total of 46.8 mil-
lion reads [43]) could be processed in just under 4 hours on four
8 GB cores, including quality filtering, ASV determination, ex-
traction of ITS1, taxonomic assignment, visualization of quality,
and hand-off in various formats (Fig. 2c). While the system wall
clock time was similar, the use of 15 cores reduced the runtime
by a factor of 2 (Fig. 2d).

Generally speaking, dadasnake’s parallelization of primer
trimming, quality filtering, and ASV determination leads to
shortened running times, while some steps, like merging of the
ASV results of the single samples and all processing of assem-
bled ASV tables, such as chimera removal, taxonomic anno-
tation, and treeing, are run sequentially. While dadasnake re-
quests more cores for steps that use parallelized tools, such as

ITSx or treeing, the speed-up is usually incremental. Of note for
users of shared cluster environments, dadasnake does not oc-
cupy cores idly; e.g., when only a single core is used for merg-
ing of runs and chimera removal (Fig. 2b–d) the other cores
are available to other users, leading to high overall efficiency
(>90%).

dadasnake is able to preprocess reads, report quality, deter-
mine ASVs, and assign taxonomy for very large datasets, e.g.,
the original 2.1 billion reads in >27,000 samples of the Earth Mi-
crobiome Project publication [12] within 87 real hours on only
≤50 CPU cores. Due to the independent handling of the prepro-
cessing, filtering and ASV definition steps, the number of input
samples only prolongs the run time linearly. Sample merging
and handling of the final table, however, requires more RAM the
more unique ASVs and samples are found (e.g., >190 GB for the
>700,000 ASVs in the >27,000 samples of the Earth Microbiome
Project). Tree building was not possible for this dataset on our
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Figure 2: Visualization of resource use by processing different datasets. (a) The small (24 sample) 16S rRNA V4 amplicon dataset [42] processed linearly on a single

core; (b) the same dataset processed on up to 4 cores (each depicted as a vertical stack); (c) a medium-sized (267 sample) ITS1 amplicon dataset [43], processed on up to
4 cores; (d) the same dataset, processed on up to 15 cores. Each block represents 1 job issued by dadasnake; colours represent the respective steps. QC: quality control.

infrastructure. For very large datasets it is therefore advisable to
filter the final table before postprocessing steps.

Use cases: accuracy

To demonstrate dadasnake’s potential to accurately determine
community composition and richness, two mock community
datasets from Illumina sequencing of bacterial and archaean
[44] and fungal [45] DNA were analysed (compositions displayed
in Supplementary Table 3). In both cases, the genus-level com-
position was determined mostly correctly (Fig. 2a and b; Sup-
plementary Table 3). One fungal taxon and 2 archaeal and 3
bacterial taxa were not detected at all, likely because they
were not amplified. False-positive bacterial genera were unre-
lated to the taxa in the mock community and contained several
human/skin-associated taxa, e.g., Corynebacterium and Staphylo-
coccus, as well as commonly detected sequencing contaminants
such as Rhizobiaceae and Sphingomonas (see overlap with [46]
in Supplementary Table 3). The large number of false-positive
results was therefore likely caused by contaminants in the bac-
terial dataset, which have been observed in this dataset before
[24]. For the fungal dataset, 1 Fusarium sequence was misclas-
sified as Giberella. In the same settings, the ASV richness was
inferred close to correctly at 59 and 19 prokaryotic and fungal
ASVs, respectively (ignoring the contaminants; Fig. 2c and d).

Next to accurate information on taxonomic composition and
taxon richness, recognition of closely related strains is required
from amplicon sequence processing tools. Six bacterial genera
were represented by 2 strains each in the bacterial dataset and
recognized as such by ASVs. In the case of 3 prokaryotic gen-
era, the true diversity was not resolved by ASVs, with 3 Thermo-
toga strains and 2 Salinispora and 2 Sulfitobacter strains conflated
as 2 and 1 strains, respectively (Supplementary Table 3). Micro-
diversity was correctly identified for 2 strains of Aspergillus and
the 3 Fusarium strains (although 1 was misclassified) for the fun-
gal dataset. Strain diversity was overestimated for the fungal
dataset in Rhizophagus irregularis, which is known to contain
within-genome diversity of rRNA gene sequences [47]. Overall,
dadasnake returns accurate results for taxonomic composition,

richness, and micro-scale diversity within the limits of taxo-
nomic resolution within short regions.

Use cases: limitations

The analysis of the mock community data also revealed lim-
itations of the approach in general. A commonly used ap-
proach to detect underestimation of richness at low sequenc-
ing depths is to plot rarefaction curves or use richness esti-
mators [48–50], which use subsamples of the assigned reads to
model how much the addition of further sequencing would in-
crease the observed richness. However, the statistical require-
ments for delineation of ASVs mean that not all sequenced taxa
are represented by an ASV in a given data set [51]. This in turn
leads to the flattening of rarefaction curves derived from fin-
ished ASV tables, although an increase in real sequencing depth
would lead to a greater number of observed ASVs (Fig. 3c and
d). Richness estimates and rarefaction curves based on DADA2
datasets need to be handled with caution and, whenever rich-
ness estimates are essential, should be based on subsamples
that are processed by DADA2 independently rather than post hoc
models.

A second limitation, common to amplicon sequencing, is
that relative abundances of ASVs are not reflective of the ac-
tual abundance of the sequenced taxa, which varied for the
prokaryotic mock community and were equal in the fungal mock
community. Specifically, the relative abundance of the prokary-
otic taxa did not correlate with the relative abundance of reads
(Fig. 2e). The relative abundance of reads for the fungal taxa var-
ied by several orders of magnitude, despite equal inputs (Fig. 3f).
There are numerous reasons for misrepresentation of abun-
dances by PCR-based analyses [52]. Of note, the variation in the
relative abundance estimates is observed to be highest at low
sequencing depths (Fig. 3e and f). Therefore, whenever compar-
isons of relative abundances within samples are undertaken, it
is necessary to, at the least, ensure that sequencing depths of
all samples are sufficient to reach stable estimates. However,
the analysis of the mock community case studies also suggests
that true relative abundances can never be determined, which



Weißbecker et al. 5

Figure 3: Comparison of mock community composition with analysis results. (a) Detection of prokaryotic genera at the highest sequencing depth (1.6 million reads); (b)
detection of fungal genera at the highest sequencing depth (40,000 reads); (c) number of detected prokaryotic ASVs vs number of processed (non-chimeric) reads (black
circles: ASVs of taxa from the mock community; grey circles: likely contaminant taxa); (d) number of detected fungal ASVs vs number of processed (non-chimeric)

reads of the fungal mock community; (c, d) dotted lines indicate expected taxa richness; (e) missing correlation of real percentages of the mock communities and
detected relative abundances of prokaryotic genera; (f) coefficients of variation between relative abundances of taxa that should be equally abundant in the fungal
mock community.

should be accounted for in experimental design and interpreta-
tion.

Methods
Bacterial and archaean mock community dataset

The largest library of the Illumina sequencing datasets of a 59-
species mock community [53], comprising 10 archaea and 49
bacteria (for composition see Supplementary Table 3), was re-
trieved from the European Nucleotide Archive (ENA) under ac-
cession ERR777696. The ground-truth composition of the mock
community was manually extracted from the publication and
the taxonomic names adapted to the convention of the SILVA v.
138 database [54]. To analyse the effect of sequencing depth on
the recovery of the mock community, the dataset was subsam-
pled to 100, 200, 500, 1,000, 2,000, 5,000, 10,000, 20,000, 50,000,
100,000, 200,000, 400,000, 800,000, and 1,600,000 read pairs.

The same configuration was used to run dadasnake on all
subsamples. The most important settings include removal of
the primers from either read (515F, specified as 5-GTGYCAGCM
GCCGCGGTAA, and 806R, specified as 5-GGACTACNVGGGTWT
CTAAT, with a maximum of 20% mismatch); truncation of the
reads at positions with a quality <13, before removal of forward
and reverse reads with <170 and 130 nucleotide length, respec-
tively, and truncation to these lengths before removal of reads
with an expected error >0.2; requirement of a minimum of 12

bp overlap for merging of denoised sequences; and removal of
chimeras on consensus.

Fungal mock community sequencing

The ITS2 region of an even (i.e. having equal proportions of
each species) 19-species fungal mock community [45] provided
by Matt Bakker (U.S. Department of Agriculture, Peoria, IL, US)
for composition see Supplementary Table 3) was amplified us-
ing the primers F-ITS4 5-TCCTCCGCTTATTGATATGC [55] and
R-fITS7 5-GTGARTCATCGAATCTTTG [56] modified with hetero-
geneity spacers according to Cruaud et al. [57]. Amplicon li-
braries were prepared using the Nextera XT kit (Illumina) and
sequenced on an Illumina MiSeq (Illumina MiSeq System, RR
ID:SCR 016379) with v.3 chemistry at 2 × 300 bp. Sequenc-
ing was performed in triplicate, and all reads were pooled for
the analysis presented here. The sequencing data are accessi-
ble at the NCBI SRA under BioProject accession PRJNA626434.
The ground-truth composition of the data was manually ex-
tracted from the publication and the taxonomic names were
adjusted to the ones used in the Unite 8.0 database. To ana
lyse the effect of sequencing depth on the recovery of the mock
community, the dataset was subsampled to 100, 200, 500, 1,000,
2,000, 5,000, 10,000, 20,000, and 40,000 reads.

The same configuration was used for running dadasnake on
all subsamples. The most important settings were as follows: re-
moval of the primers from either read with a maximum of 20%
mismatch; truncation of the reads at positions with a quality

https://scicrunch.org/resolver/SCR_016379
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<15, before removal of reads with <70 nucleotide length and re-
moval of reads with an expected error >3; requirement of a min-
imum of 20 bp overlap for merging of denoised sequences; re-
moval of chimeras on consensus; and ITSx was run on the ASVs,
which would remove non-fungal ASVs (which did not occur in
the mock community).

Performance testing

To demonstrate dadasnake’s performance on a small laptop
computer, a small dataset of 24 16S rRNA gene amplicon se-
quences from a local soil fertilization study [42] were down-
loaded from the NCBI SRA (PRJNA517390) using the fastq-dump
function of the SRA-toolkit. Using the settings optimized for the
bacterial mock community, dadasnake was run either on a com-
puter cluster using 1 or ≤4 threads with 8 GB RAM each, or with-
out cluster-mode on 3 cores of a laptop with an Intel i5-2520M
CPU with 2.5 GHz and 8 GB shared RAM.

To compare the performance of dadasnake on a medium-
sized study in different settings, ITS1 amplicon sequences of
267 samples measured using Illumina HiSeq technology in a
global study on fertilization effects [43] were downloaded from
the NCBI SRA (PRJNA272747) using the fastq-dump function of
the SRA-toolkit. Owing to the variable length of the ITS1 region,
reads were not truncated to a specified length but trimmed to
a minimum per-base quality of 15 (also discarding reads with
a maximum expected error >3). After error modelling and ASV
construction per sample, read pairs were merged with ≥20 bp
overlap, allowing for 2 mismatches. After table set-up, the ITSx
classifier was run to remove non-fungal ASVs before taxonomic
annotation (using the mothur [14] classifier; for configuration
see Supplementary File 1). The same runs were performed on
either a compute cluster using ≤50 threads or only ≤4 threads
with 8 GB RAM each.

A total of 27,081 samples analysed by the Earth Microbiome
Project [12] stored under accessions ERP021896, ERP020023,
ERP020508, ERP017166, ERP020507, ERP017221, ERP016412,
ERP020884, ERP020022, ERP020510, ERP017438, ERP016395,
ERP020539, ERP016468, ERP020590, ERP020021, ERP020587,
ERP020560, ERP020589, ERP017176, ERP017220, ERP017174,
ERP016405, ERP020591, ERP021691, ERP016416, ERP022167,
ERP021699, ERP016495, ERP022245, ERP016748, ERP016749,
ERP016752, ERP016540, ERP006348, ERP016543, ERP016746,
ERP016586, ERP016735, ERP021864, ERP016588, ERP016587,
ERP016539, ERP016734, ERP016492, ERP003782, ERP016607,
ERP016581, ERP016557, ERP016464, ERP016542, ERP016541,
ERP016591, ERP016854, ERP016852, ERP016286, ERP016451,
ERP023684, ERP016869, ERP010098, ERP016879, ERP016883,
ERP016466, ERP016496, ERP016880, ERP016455, ERP016900,
ERP016924, ERP016923, ERP016925, ERP016927, ERP016469,
ERP016329, ERP016926, ERP021540, ERP021541, ERP021542,
ERP021543, ERP021544, ERP021545, ERP016937, ERP016131,
ERP016483, ERP016252, ERP022166, ERP016414, ERP016472,
ERP023686, ERP017459, ERP016287, ERP016285, ERP005806,
ERP021895, ERP016384, ERP016491, and ERP006348 were down-
loaded from the NCBI SRA using the fastq-dump function of
the SRA-toolkit. In accordance with the published analysis,
reads were trimmed to 90 bp, before quality control (discarding
reads with a maximum expected error >0.2 or positions with
<13 quality score), error modelling (per project accession),
ASV construction (per sample), table set-up, and taxonomic
annotation (using the mothur [14] classifier). To handle the
combined dataset table, 360 GB RAM were reserved for the final
steps in R.

Efficiency was calculated as the ratio of CPU time divided by
the product of slots used and real wall clock time.

Databases

The SILVA [54] RefSSU NR99 database v. 138 was used for the
taxonomic classification of bacterial and archaean ASVs. Fun-
gal ASVs were classified against the UNITE v8 database [58, 59].
Both sets of ASVs were classified using the Bayesian classifier
as implemented in mothur’s classify.seqs command [14], with a
cut-off of 60.

Visualization and Statistics

The output of all dadasnake runs was gathered in an R-
workspace (for tabular version see Supplementary Table 3). Rar-
efaction curves were plotted using vegan [34]. The coefficient of
variation was calculated as the ratio of the standard deviation
to the mean. The cluster-job information for the performance
tests was gathered in an R-workspace. Efficiency was calculated
as the ratio of CPU time divided by the product of slots used and
real wall clock time.

Availability of Supporting Source Code and
Requirements

Project name: dadasnake
Project home page: https://github.com/a-h-b/dadasnake
Operating system: Linux
Programming language: Python, R, bash
Other requirements: anaconda or other conda package manager
License: GNU GPL-3.0
RRID:SCR 019149

Data Availability

The raw sequencing data generated for this article are accessible
on NCBI’s SRA under BioProject accession PRJNA626434. Process-
ing results of the mock community datasets, the ground-truth
mock community compositions, and the scripts to visualize the
use case datasets are available from Zenodo [60]. The frozen ver-
sion of dadasnake described in this article is available from Zen-
odo [61].

Additional Files

Supplementary File 1: Example of a YAML configuration file: con-
figuration for the large dataset of the performance test.
Supplementary Table 1: Description of all configurable settings.
Supplementary Table 2: Description of outputs.
Supplementary Table 3: Mock community compositions and
identification of ASVs from mock community datasets.
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ASV: amplicon sequence variant; BIOM: Biological Observation
Matrix; BLAST: Basic Local Alignment Search Tool; bp: base pairs;
CPU: central processing unit; ESV: exact sequence variant; ITS:
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