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Abstract
Age-	related	changes	 in	human	T-	cell	populations	are	 important	contributors	 to	 im-
munosenescence.	 In	 particular,	 terminally	 differentiated	 CD8+	 effector	 memory	
CD45RA+	TEMRA	cells	and	their	subsets	have	characteristics	of	cellular	senescence,	
accumulate	in	older	individuals,	and	are	increased	in	age-	related	chronic	inflammatory	
diseases.	In	a	detailed	T-	cell	profiling	among	individuals	over	65	years	of	age,	we	found	
a	high	interindividual	variation	among	CD8+	TEMRA	populations.	CD8+	TEMRA	pro-
portions	correlated	positively	with	cytomegalovirus	(CMV)	antibody	levels,	however,	
not	with	the	chronological	age.	In	the	analysis	of	over	90	inflammation	proteins,	we	
identified	plasma	TRANCE/RANKL	levels	to	associate	with	several	differentiated	T-	
cell	 populations,	 including	CD8+	 TEMRA	 and	 its	 CD28−	 subsets.	Given	 the	 strong	
potential	of	CD8+	TEMRA	cells	as	a	biomarker	for	immunosenescence,	we	used	deep-	
amplicon	bisulfite	sequencing	to	match	their	frequencies	in	flow	cytometry	with	CpG	
site	methylation	levels	and	developed	a	computational	model	to	predict	CD8+	TEMRA	
cell	proportions	from	whole	blood	genomic	DNA.	Our	findings	confirm	the	associa-
tion	of	CD8+	TEMRA	and	its	subsets	with	CMV	infection	and	provide	a	novel	tool	for	
their	high	throughput	epigenetic	quantification	as	a	biomarker	of	immunosenescence.
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1  |  INTRODUC TION

Deterioration	of	T-	cell	function	has	a	central	role	in	the	age-	related	
impairment	of	immune	responses	associated	with	an	increased	risk	of	
infections	and	chronic	diseases,	and	poor	vaccine	efficacy	(Nikolich-	
Žugich,	2018).	Predominant	changes	in	the	T-	cell	compartment	are	
related	 to	 loss	 of	 thymic	 output,	 resulting	 in	 lower	 production	 of	
new	 antigen-	naive	 T-	cells.	 In	 addition,	 T-	cell	 subpopulations	 with	
late	differentiation	and	effector	functions	increase	in	old	individuals	
(Mittelbrunn	&	Kroemer,	2021);	(Elyahu	&	Monsonego,	2021).

With	age,	the	human	naïve	CD4+	T-	cell	population	relies	more	on	
the	homeostatic	proliferation	of	existing	T-	cell	clones	rather	than	de	
novo	generation	of	new	ones	from	the	thymus	(Goronzy	&	Weyand,	
2019).	The	cell	division	of	naive	CD4+	T-cells	depends	on	homeo-
static	cytokine	IL-	7	and	they	retain	higher	expression	of	IL-	2	receptor	
CD25,	enabling	them	to	receive	sufficient	survival	and	proliferation	
signals	for	cellular	maintenance	(Sprent	&	Surh,	2011).	Nevertheless,	
the	progressive	thymic	 involution	and	decreased	naive	T-	cell	 turn-
over	in	the	periphery	results	in	the	decline	of	naïve	CD4+	T-	cells	and	
increase	of	effector	memory	(EM)	cells	with	age	(Mold	et	al.,	2019).

The	homeostatic	proliferation	is	less	efficient	in	maintaining	the	
naïve	CD8+	T-	cell	population,	and	the	numbers	of	differentiated,	ex-
hausted,	and	senescent	CD8+	effector	and	memory	cells	accumulate	
faster	than	in	the	CD4+	population	(Mold	et	al.,	2019).	The	popula-
tion	of	terminal	effector	memory	CCR7−CD45RA+	(TEMRA)	T-	cells	
and	its	subsets	(Appay	et	al.,	2002),	characterized	by	increased	sen-
sitivity	to	innate	signals,	a	decline	in	T-	cell	receptor	(TCR)	dependent	
activation,	and	lower	TCR	clonal	diversity,	is	particularly	prominent	
among	old	individuals	(Henson	et	al.,	2012).	The	loss	of	membrane	
receptors	CD28,	CD27,	and	CD127,	re-	expression	of	CD45RA,	and	
expression	of	exhaustion	marker	PD1+	or	senescence	marker	CD57	
in	CD8+	TEMRA	cell	populations	are	likely	caused	by	several	factors,	
of	which	 cumulative	 antigenic	 load	 induced	by	 chronic	 viral	 infec-
tions is considered prevalent.

Frequent	 reactivation	 of	 latent	 cytomegalovirus	 (CMV)	 re-
petitively	 stimulates	CD8+	 T-	cells,	 increasing	 their	 population	 size	
(Pawelec,	 2014;	 Sylwester	 et	 al.,	 2005).	 The	 repetitive	 activation	
by	 CMV	 is	 considered	 as	 the	 main	 driving	 force	 of	 inflammaging	
(Franceschi	 et	 al.,	 2000),	 a	 low-	grade	 chronic	 inflammatory	 state	
associated	with	 the	 release	 of	 pro-	inflammatory	 cytokines	 (Aiello	
et	al.,	2017;	Akbar	et	al.,	2016).	Large	CMV-	specific	responses	ob-
served	in	older	people	correlate	with	the	presence	of	CMV	antibod-
ies	and	are	also	implicated	in	T	cell	“memory	inflation”	(Akbar	et	al.,	
2016;	Huang	et	al.,	2019).	Although	the	role	of	CMV	in	clinical	out-
comes	and	CD8+	T-	cell	alterations	are	not	fully	understood,	higher	
proportions	 of	 CD8+	 TEMRA	 cells	 often	 indicate	 adverse	 health	
consequences	(Pawelec	et	al.,	2014).

The	high	 levels	of	CD8+	TEMRA	cells	 correlate	positively	with	
CMV	 serostatus	 (Souquette	 et	 al.,	2017;	Wertheimer	 et	 al.,	 2014)	
and	with	 age-	related	 chronic	 inflammation	 and	 several	 comorbidi-
ties	(Boßlau	et	al.,	2021;	Chiu	et	al.,	2018,	2020;	Jacquemont	et	al.,	
2020;	Spyridopoulos	et	al.,	2016;	Yang	et	al.,	2018;	Yu	et	al.,	2016).	
Their	quantification	may	serve	as	a	potential	tool	to	measure	T-	cell	

immunosenescence,	however,	this	has	so	far	relied	on	cell	counting	
by	flow	cytometry	that	requires	a	sufficient	sample	of	intact	leuko-
cytes	 from	well-	preserved	blood	and	time-	critical	cytometry	anal-
ysis,	which	is	not	always	feasible	for	various	medical	applications.

Herein,	we	conducted	a	broad	T-	cell	profiling	in	older	individu-
als	and	correlated	the	results	with	their	CMV	antibody	and	over	90	
inflammatory	marker	levels.	We	performed	deep-	amplicon	bisulfite	
sequencing	of	preselected	CD8+	specific	CpG	sites	and	developed	
an	epigenetic	cell	quantification	model	for	CD8+	TEMRA	cells.	The	
epigenetic	quantification	could	provide	a	high	throughput	biomarker	
for	the	stratification	of	immunosenescence	and	to	monitor	immune	
health	status	in	patients	with	chronic	inflammatory	diseases.

2  |  RESULTS

Aging	is	characterized	by	prominent	changes	among	T	lymphocytes	
and	other	immune	cell	populations.	Using	moving	average,	we	con-
firmed	 previously	 reported	 increase	 in	 monocyte	 and	 neutrophil	
numbers,	reduction	 in	CD4+	T-	cells,	and	 increase	 in	CD8+	TEMRA	
cells	 in	 individuals	 ranging	 from	 4	 to	 96-	year-	old	 (Figure	 S1A–	C;	
Table	S2).	In	particular,	we	found	a	steady	increase	of	CD8+	TEMRA	
cells	over	the	years	with	gradient	rise	after	50	years	of	age	and	emer-
gence	of	CD4+	TEMRA	cells	in	the	same	period.	This	trend	indicated	
that	the	increase	in	TEMRA	populations	becomes	prominent	at	the	
sixth	decade	of	life,	prompting	detailed	analysis	of	T-	cell	populations	
in older individuals.

2.1  |  Differentiated CD8+ T- cells are prevalent and 
have high degree of interindividual variation

We	 investigated	 the	proportion	 and	 interindividual	 variation	of	T-	
cell	populations	among	old	individuals.	For	this,	we	studied	26	CD4+ 
and	CD8+	 T-	cell	 subpopulations	by	 flow	 cytometry	 in	 a	 cohort	 of	
140	persons	with	an	age	range	from	65	to	96	years	and	a	female-	
male	ratio	of	3	to	1	(Figure 1a,	Table 1).

The	CD4+	and	CD8+	T-	cells	were	divided	based	on	their	expres-
sion	 of	 CD45RA	 and	 CCR7	 into	 naive	 (CD45RA+	 CCR7+),	 central	
memory	 (CM;	CD45RA−	CCR7+),	 effector	memory	 (EM;	CD45RA− 
CCR7−),	 and	 terminally	 differentiated	 effector	 memory	 (TEMRA;	
CD45RA+	 CCR7−)	 cells.	 Among	 EM	 and	 TEMRA	 populations,	 we	
studied	 four	CD4+	 subsets	 (a)	CD27−,	 (b)	CD27−	CD28−,	 (c)	CD27− 
CD28−	CD57+	 and	 (d)	 PD1+,	 and	 five	CD8+	 subsets	 (a)	CD28−,	 (b)	
CD28−	CD27−,	(c)	CD28−	CD27−	CD57+,	(d)	CD127−,	and	(e)	PD1+. It 
should	be	noted	that	among	CD4+	T-	cell	compartment,	the	effector	
cells	first	downregulate	CD27	and	later	CD28	marker,	whereas	this	
is	opposite	within	CD8+	compartment.	Thus,	among	the	CD4+	T-	cell	
population	CD27-		cells	are	parent	population	for	CD27−	CD28−,	and	
these	in	turn	are	parent	population	for	CD27−	CD28−	CD57+. In con-
trast,	among	the	CD8+	T-	cell	population	CD28− cells are parent pop-
ulation	for	CD28−	CD27− and these are in turn a parent population 
for	CD28−	CD27−	CD57+.	In	contrast,	the	CD4+	and	CD8+	EM	and	
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F I G U R E  1 Increased	proportions	and	high	interindividual	variability	of	CD4+	and	CD8+	T-	cell	subsets.	(a)	Schematic	picture	of	studied	
CD4+	and	CD8+	T-	cell	populations.	(b–	e)	Relative	sizes	of	CD4+	and	CD8+	T-	cell	subsets	among	CD4+	(b)	and	CD8+	(c)	compartments	and	
among	whole	blood	cells	(WBC)	(d	for	CD4+	subsets,	e	for	CD8+	subsets).	Red	point	shows	the	mean	and	adjacent	line	a	standard	deviation.	
The	color	bar	shows	signal-	to-	noise	ratio	(SNR)	calculated	as	mean/SD	with	brighter	color	denoting	higher	SNR	value	(in	brackets).	In	
addition,	mean	and	standard	deviation	are	written	next	to	each	measurement.	The	two	heatmaps	(f	and	g)	are	based	on	correlation	matrices	
that	contain	pairwise	Pearson's	correlation	coefficients	in	CD4+	and	CD8+	T-	cell	subsets,	respectively
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TEMRA	PD1+	cells	are	separate	subsets,	as	well	as	the	CD8+	T-	cell	
subset	that	is	negative	for	CD127	(IL7RA).

In	 the	 CD4+	 compartment,	 the	 most	 prevalent	 subtypes	 were	
EM	 and	 naïve	 cells,	 on	 average	 35.5%	 and	 29.1%,	 respectively	
(Figure 1b).	 The	 majority	 (60.6%)	 of	 CD4+	 EM	 cells	 were	 negative	
for	 the	CD27	marker,	and	13.3%	had	an	exhaustion	marker	PD1	on	
their	surface.	The	proportion	of	CD4+	TEMRA	cells	was	relatively	low,	
around	10%.	From	all	blood	cells,	both	CD4+	EM	and	naive	cells	formed	
on	average	3.1%	(Figure 1d).	As	the	variation	within	the	cellular	com-
partments	was	 in	correlation	with	their	size,	we	used	signal-	to-	noise	
ratio	 (SNR)	 to	pinpoint	 the	 interindividual	variation	 in	 the	cell	popu-
lations,	by	dividing	each	cell	population	mean	with	its	corresponding	
standard	deviation.	According	to	the	spread	of	the	data	and	SNR,	the	
central	memory	 (CM),	naive	and	EM	populations	varied	most	among	
CD4+	T-cells	(Figure 1b and d).

Among	CD8+	T-	cells,	differentiated	TEMRA	cell	subpopulations	
were most prevalent (Figure 1c and e).	 The	 proportion	 of	 CD8+ 
TEMRAs	reached	on	average	nearly	60%	of	all	CD8+	T-	cells,	and	it	
was	represented	as	a	major	cell	type	among	all	T-	cells	and	4.8%	of	
whole	blood	cells	(WBCs;	Figure 1e).	The	CD8+	TEMRA	cells	were	
dominated	by	age-	associated	CD28−	or	CD27−	and	CD28− subpopu-
lations,	of	which	many	were	positive	for	CD57,	a	senescence	marker	
for	T-	cells.	We	also	found	high	inter-	individual	variation	among	CD8+ 
TEMRA	 subpopulations,	 including	 CD28−,	 CD28−CD27−,	 CD127−,	
and	PD1+ subsets (Figure 1c and e).	Furthermore,	in	addition	to	their	

high	numbers,	the	CD8+	TEMRA	populations	had	the	highest	inter-	
individual	variability	of	all	T-	cells	 in	old	individuals	(Figure 1e).	The	
data	on	mean	values	and	inter-	individual	variability	of	all	studied	T-	
cells	is	in	Table	S1.

The	 subsets	 of	 EM,	 CM,	 and	 TEMRA	 cells	 correlated	 highly	
within	 their	 families,	 except	 PD1+CD8+	 TEMRA	 that	 formed	 a	
separate	 cluster	 from	other	CD8+	 TEMRA	 (Figure 1f and g).	 The	
CD4+	EM	cell	populations	were	in	positive	correlation	with	CD4+ 
and	CD8+	TEMRA	cell	subsets	and	formed	a	joint	cluster	in	a	cor-
relation	 matrix	 whereas,	 interestingly,	 CD8+	 EM	 cells	 clustered	
together	with	CD4+	 and	CD8+	CM	T-	cells	 (Figure	S2).	The	CD4+ 
and	CD8+	TEMRA	cells	were	also	in	negative	correlation	with	cor-
responding	naive	T-	cells.

An	 analysis	 of	 T-	cell	 population	 dynamics	 after	 the	 age	 of	
65	 years	 showed	 no	 significant	 changes	 (Table	 S3),	 although	we	
saw	 a	 trend	 indicating	 a	 decline	 in	 CD4+	 naive	 T-	cells	 and	 in-
crease	 in	 CD4+	 EM	 cells	 lacking	CD27	marker	 after	 80	 years	 of	
age (Figure 2a),	suggesting	a	continuous	shift	between	CD4+ naive 
and	effector	 cell	 populations.	 In	 contrast,	 the	moving	average	 in	
CD8+ cells was very stable (Figure 2b).	Although	both	CD4+ and 
CD8+	TEMRA	cells	are	considered	as	age-	related	cell	types,	after	
65 years their levels do not correlate with age (Figure 2c,	Figure	
S3),	 implying	that	other	 factors	are	at	play.	 In	addition,	since	the	
study	group	expectedly	had	a	diverse	set	of	chronic	diseases	(e.g.,	
hypertension,	cardiovascular	disease,	 type	2	diabetes	 [T2D],	and	
chronic	kidney	disease),	we	did	not	find	any	significant	association	
between	cellular	levels	and	those	phenotypes	(Figures	S4	and	S5,	
Tables	S4	and	S5).

2.2  |  Antibody responses to CMV correlate 
with the proportion of CD8+ TEMRA cells

We	next	studied	CD8+	TEMRA	cells	and	their	relation	to	the	immune	
response	to	CMV	as	its	chronic	infection	has	been	linked	to	immunose-
nescence	(Aiello	et	al.,	2017).	To	this	end,	we	applied	CMV	antibody-	
specific	 ELISA	 and	 found	 the	 majority	 of	 individuals	 over	 65	 years	
(91.2%)	 to	be	positive	 for	CMV	antibodies	 (Figure 3a).	Because	 the	
CMV	ELISA	is	not	optimal	for	the	quantification	of	CMV	antibodies,	
we	developed	a	LIPS	 (luciferase-	based	 immunoprecipitation	system)	
method	using	NanoLuc	enzyme	recombinantly	 tagged	to	 two	highly	
immunogenic	CMV	tegument	pp150	protein	(Tomtishen,	2012)	frag-
ments	(p150d1	and	p150d2)	to	measure	the	antibody	levels	specific	to	
CMV.	LIPS	has	several	advantages	over	ELISA	as	it	uses	recombinant	
target	antigens	in	native	conformation.	LIPS	output	also	ranges	over	
multiple	orders	of	magnitude	making	it	suitable	to	monitor	quantita-
tive	antibody	levels.	The	LIPS	with	CMV	p150	fragments	was	highly	
specific	and	able	to	measure	anti-	CMV	antibody	 levels	with	a	broad	
quantitative	range	(Figure 3b).	We	tested	its	sensitivity	and	specific-
ity	in	ROC	analysis,	which	showed	an	excellent	separability	with	AUC	
over	0.97	for	fragment	p150d1	(AUC	0.973)	and	p150d2	(AUC	0.990)	
when	 compared	with	 ELISA	 results	 (Figure 3c).	 The	 antibody	 levels	
to	 CMV	 p150d1	 and	 p150d2	 fragments	were	 in	 strong	 correlation	
(r =	 0.66,	 Figure 3d),	which	was	 higher	 among	 females	 (r	= 0.7 vs. 

TA B L E  1 Gender,	age,	disease,	and	CMV	seropositivity	of	the	
old	individuals'	cohort

n Proportion SD

Total 140

Gender

F 105 0.75

M 35 0.25

Age

65–	69 30 0.21 1.44

70–	74 28 0.2 1.33

75–	79 39 0.28 1.47

80–	84 30 0.21 1.36

85–	89 8 0.06 1.55

90–	94 3 0.02 1

95–	99 2 0.01 0.71

Disease	(ICD0	code)

Hypertension	(I10) 105 0.75

Type	2	diabetes	(E11) 34 0.24

Kidney	disease 20 0.14

Chronic	(N18) 19 0.14

Acute	(N17) 1 0.01

CMV

CMV− 10 0.07

CMV+ 103 0.74

NA 27 0.19
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r =	0.3)	as	a	relatively	small	number	of	males	had	the	antibodies	with	
high levels.

We	then	compared	the	CMV	p150	antibody	 levels	with	T	 lym-
phocyte populations (Figure 3e;	Tables	S6	and	S7,	and	for	both	sexes	
separately	Figure	S6,	Tables	S8	and	S9).	Antibodies	to	p150d1	frag-
ment	correlated	positively	with	CD8+	TEMRA	cells	and	its	subpop-
ulations	(CD28−,	CD27−CD28−,	CD57+).	A	similar	trend	was	present	
between	CD8+	TEMRA	proportions	and	antibodies	to	the	p150d2	
fragment,	 albeit	 the	 correlations	were	weaker.	 In	 agreement	with	
previous	analyses,	a	negative	correlation	was	present	between	CMV	
antibodies	and	CD8+	CM	and	EM	cells.

2.3  |  CD8+ TEMRA cell associations with plasma 
inflammatory proteins

Regarding	 the	critical	 role	of	 inflammation	 in	T-	cell	 immunosenes-
cence,	we	undertook	a	targeted	proteomic	analysis	of	92	individual	
soluble	inflammation-	associated	proteins	and	calculated	their	corre-
sponding	correlations	with	CD4+	and	CD8+	T-	cell	populations	in	the	
same	cohort	of	old	individuals	(Figure 4a,	Table	S10).	The	most	prom-
inent	correlations	in	the	clustered	matrix	of	Olink	proximity	exten-
sion	assay	(PEA)	measurements	and	T-	cells	indicated	the	association	

of	 TRANCE	 protein	 with	 TEMRA	 cells	 (Figure 4a).	 TRANCE,	 also	
known	as	RANKL,	 is	a	TNF	family	member	known	for	 its	 function	
in	 bone	 remodeling,	 lymph	node	 formation,	 and	 differentiation	 of	
thymic	epithelial	cells	(Hanada	et	al.,	2011).	We	took	the	two	clusters	
containing	CD4+	and	CD8+	TEMRA	cells	together	with	CD27−	CD28− 
and	CD27−	CD28−	CD57+	CD4+	EM	cells	for	detailed	analysis	of	their	
correlations	with	TRANCE/RANKL	 (Figure 4b,	Table	S11).	Overall,	
we	saw	a	moderate	negative	correlation	between	TRANCE/RANKL	
and	CD8+	TEMRA	and	its	CD28−	and	CD27−	CD28−,	CD27−	CD28− 
CD57+	 and	 CD127+	 subpopulations.	 Furthermore,	 it	 correlated	
negatively	 with	 highly	 differentiated	 CD27−CD28− and senescent 
CD57+	EM	CD4+	T-	cells,	and	a	weaker	negative	association	was	also	
present	with	CD4+	TEMRA	CD27−	and	CD27−	CD28− populations.

2.4  |  CD8+ TEMRA cell- specific CpG 
methylation sites

Given	its	association	with	age-	related	chronic	inflammatory	diseases	
and	CMV	infection,	CD8+	TEMRA	cell	proportion	could	be	regarded	
as	a	biomarker	for	immune	senescence.	Therefore,	we	aimed	to	cre-
ate	a	computational	model,	based	on	epigenetic	differences,	to	pre-
dict	CD8+	TEMRA	cell	proportion	in	the	whole	blood.	We	focused	

F I G U R E  2 T-	cell	subset	dynamics	in	old	individuals.	The	dynamics	of	CD4+	(a)	and	CD8+	(b)	T-	cell	subset	sizes	in	old	age	(≥65	years),	
respectively,	via	moving	average.	(c)	Scatterplots	of	CD4+	and	CD8+	T-	cell	subset	changes	in	old	age.	Scatterplots	report	Pearson's	
correlation	coefficient	and	an	adjusted	p-	value
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on	epigenetic	quantification	on	WBC	level	as	the	peripheral	blood	is	
a	common	source	of	human	genomic	DNA.

Earlier	 age-	related	 DNA	 methylation	 profiling	 with	 Illumina	
HumanMethylation450	array	enabled	us	to	identify	multiple	candi-
date	CpG	 sites	 in	 genes	with	 differential	methylation	 and	 expres-
sion	within	CD4+	and	CD8+	T-	cell	populations	from	old	individuals	
(Tserel	et	al.,	2015).	From	this	dataset,	we	selected	191	CpG	sites	for	
site-	specific	DNA	methylation	screening	(Table	S12),	of	which	many	
were	close	to	the	genes	expressed	in	differentiated	T-cells.	We	used	
bisulfite	deep-	amplicon	sequencing	of	 the	samples	of	165	 individ-
uals	to	identify	specific	DNA	methylation	levels	in	those	CpG	sites	
using	whole	blood	as	a	source	of	genomic	DNA.

We	next	correlated	the	T-	cells	proportions	from	flow	cytometry	
analysis	with	the	CpG	site	methylation	levels	(Table	S13)	to	develop	
an	epigenetic	model	for	the	estimation	of	the	CD3+,	CD8+,	and	CD8+ 
TEMRA	 frequencies	within	 peripheral	 blood.	 Because	 the	methyl-
ation	and	flow	cytometry	analyses	reflect	the	proportions	of	T-	cell	
populations	in	the	same	tissue,	we	could	assume	a	linear	relationship	
between	the	methylation	level	of	the	cell-	specific	CpG	site	and	the	
fraction	of	a	particular	cellular	subset	in	the	blood.	The	methylation	
levels	of	multiple	CpG	sites	clustered	together	within	T-	cells,	which	
differed	 from	NK	 cells	 and	 neutrophils;	 and	 differential	 clustering	
was	 also	 present	 between	 CD4+,	 CD8+,	 and	 CD8+	 TEMRA	 cells	
(Figure	S7).	Furthermore,	all	CD8+	TEMRA	subsets	(including	CD28−,	
CD27−CD28−,	CD27−CD28−	CD57+,	and	CD127−	populations),	except	
CD8+PD1+	 TEMRA,	 formed	a	distinct	 separate	 cluster	 from	CD4+ 
TEMRA,	 naive	 CD8+,	 CD8+	 EM,	 and	 CD8+	 CM	 T-	cells,	 indicating	
their	cell-	type-	specific	DNA	methylation	pattern	(Figure	S8).

Before	 the	 identification	of	 the	 core	 set	of	CpG	sites	of	 inter-
est,	we	reduced	the	number	of	CpG	sites	as	it	exceeded	the	number	
of	 observations.	 To	 this	 end,	we	 applied	 several	 feature	 selection	
methods	(further	described	in	methods)	to	identify	the	most	infor-
mative	 CpG	 sites	 for	 CD3+,	 CD8+,	 and	 CD8+	 TEMRA	 cells.	 After	
this,	we	 selected	12	CpG	sites	 for	CD3+	 (Figure	S9A),	5	CpGs	 for	
CD8+	(Figure	S9B),	and	7	CpGs	for	CD8+	TEMRA	(Figure 5a)	into	the	
modeling	 task,	with	 correlations	 ranging	 from	moderate	 to	 strong	
(|r| =	0.42…0.70).

The	4	out	of	7	CpG	sites	selected	for	predicting	CD8+	TEMRA	
cells	 were	 located	 close	 to	 genes	 expressed	 in	 T-	cells:	 CD8A	
(chr2:87012808,	 chr2:87012817,	 chr2:87020937)	 and	 GALNT8/
KCNA6	 (chr12:4915855)	genes.	However,	 the	highest	 correlations	
with	 CD8+	 TEMRA	 cells	 of	 those	 CpG	 sites	 were	 present	 with	
chr1:240164755	on	chromosome	1	and	chr17:79921715	on	chromo-
some	17,	near	to	FMN2	and	NOTUM	genes,	respectively	(Figure 5a).	
The	seven	sites	also	correlated	with	the	parent	CD8+	T-	cell	popula-
tion;	however,	five	of	them	had	weaker	correlations	and	only	CpGs	

close	to	CD8A	had	comparable	coefficients	to	CD8+	TEMRA	sites.	
Altogether,	those	CpG	sites	convey	information	about	CD8+	TEMRA	
levels	as	illustrated	by	a	coloring	on	PCA	plot	(Figure 5b).

The	models	were	 built	 using	 5-	fold	 cross-	validation	 altogether	
on	125	training	instances.	The	random	forest	algorithm	showed	the	
best	performance	 in	 the	prediction	of	CD3+	cell	proportion,	while	
ridge	regression	was	superior	for	predicting	CD8+	and	CD8+	TEMRA	
proportions.	We	 validated	 these	 models	 on	 a	 test	 set	 containing	
28	 samples	 and	measured	 the	 correlation	 and	 root	mean	 squared	
distance	(RMSE)	between	actual	and	predicted	values.	We	obtained	
the	 most	 accurate	 model	 for	 CD3+	 T-	cells	 (r	=	 0.915,	 RMSE	 3.1)	
(Figure	S9C).	Likewise,	the	models	for	CD8+	T-	cells	(Figure	S9C)	and	
CD8+	TEMRAs	(Figure 5c)	showed	a	closely	similar	correlation	with	
their actual values (r =	0.877,	RMSE	= 2.1 and r =	0.887,	RMSE	=	2.2,	
respectively).	Due	to	the	limited	sample	size	and	high	variability	of	
target	measurements,	we	confirmed	the	usefulness	of	our	selected	
features	by	additionally	sampling	a	new	training	and	test	set	 from	
the entire dataset multiple times and automatically built linear re-
gression	models	using	the	same	features.	This	further	supported	the	
suitability	of	the	selected	CpG	sites	in	the	prediction	of	the	cellular	
compartments since even then the observed correlation between 
predicted and actual values remained strong (r >	 0.6)	 (Figure 5c,	
Figure	S9C,	gray	points).

3  |  DISCUSSION

Accumulating	in	old	individuals,	CD8+	TEMRA	cells,	which	are	char-
acterized	by	their	high	cytotoxicity,	 low	proliferation,	and	sensitiv-
ity	to	apoptosis,	have	been	associated	with	excess	inflammation	and	
several	chronic	inflammatory	conditions	(Lanna	et	al.,	2017)	(Aiello	
et	al.,	2017;	Yang	et	al.,	2018).

We	here	 confirmed	 the	 findings	 showing	 an	 increase	of	CD8+ 
TEMRA	cells	with	age,	 in	particular,	 a	 steep	 rise	 after	50	years	of	
age	 together	with	 the	 increase	of	CD4+	 TEMRA	cells.	Both	CD4+ 
and	CD8+	 senescent	 T-	cells	 lose	 the	 expression	 of	 the	 costimula-
tory	CD28	and	CD27	molecules	and	upregulate	 the	expression	of	
terminal-	differentiation	markers,	such	as	CD57,	that	has	been	used	
to	 identify	 senescent	 T-	cells	 (Akbar	 et	 al.,	 2016;	 Mittelbrunn	 &	
Kroemer,	2021).	CD8+	TEMRA	cells	accumulate	faster	and	our	re-
sults highlight the high variability among its subsets in old individu-
als.	Nevertheless,	despite	high	 interindividual	variability,	the	CD8+ 
TEMRA	subpopulations	did	not	increase	with	the	chronological	age	
after	65	years.	 This	 suggests	 that	 age	 itself	 has	no	 significant	 im-
pact	 on	 differentiated	 T-	cell	 variability	 in	 old	 individuals	 and	 that	
the	interindividual	variability	among	CD8+	TEMRA	subsets	is	more	

F I G U R E  3 CMV-	specific	antibody	level	correlations	with	T-	cell	subsets	in	old	individuals.	(a)	Age-	gender	distribution	of	CMV	positive	
and	negative	individuals.	(b)	The	levels	of	anti-	p150d1	and	p50d2	antibodies	in	CMV	positive	and	negative	individuals	are	shown	as	
luminescence	units	(LU)	of	luciferase	enzyme	activity	as	boxplots.	(c)	ROC	curve	for	the	p150d1	and	p150d2	fragments’	LIPS	analysis	shows	
the	classification	performance	by	dividing	individuals	into	CMV	positives	and	negatives.	(d)	Correlation	between	antibody	levels	to	p150d1	
and	p150d2	fragments	in	LIPS	measurements.	(e)	Correlation	between	p150d1	specific	LIPS	results	and	T-	cell	subset	proportions	in	flow	
cytometry	shown	together	with	and	without	age-	adjusted	Pearson's	correlation	coefficient	and	adjusted	p-	values
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influenced	by	 lifelong	determinants	such	as	chronic	metabolic	dis-
eases	and	chronic	virus	infections.

As	 CMV	 infection	 has	 been	 associated	with	 T-	cell	 immunose-
nescence	and	repertoire	oligoclonality,	we	correlated	CD8+	TEMRA	

cells	 to	 CMV	 antibodies	 and	 found	 their	 positive	 correlation	with	
CD8+	 TEMRA	 cells	 and	 its	 subpopulations	 (CD28−,	 CD27−CD28−,	
and	CD57+).	The	chronic	CMV	infection	is	known	to	drive	repeated	
CD8+	 T-	cell	 stimulations	 and	 extensive	 replication	 contributing	 to	

F I G U R E  4 Plasma	inflammation	markers	correlations	with	T-	cell	subsets	in	old	individuals.	(a)	Correlation	between	CD4+	and	CD8+	T-	cell	
subset	proportions	and	plasma	inflammation	markers	measured	by	proximity	extension	profiling	and	shown	as	a	clustered	heatmap.	(b)	Top	
10	correlations	of	TRANCE	with	the	proportions	of	CD4+	and	CD8+	T-	cell	subsets.	The	inflammatory	protein	levels	are	shown	as	normalized	
protein	expression	(NPX)	values,	a	metric	that	is	on	a	log2	scale	and	where	a	higher	value	indicates	a	higher	protein	level.	The	Pearson's	
correlation	coefficient	and	adjusted	p-	value	for	each	correlation	are	shown
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their	senescence;	however,	whether	the	CD8+	TEMRA	cells	contrib-
ute	 to	 age-	related	 inflammatory	 diseases	 by	 their	 elevated	 proin-
flammatory	functions,	remains	unknown.	We	used	LIPS	approach	as	
it	quantitatively	assesses	the	antibody	levels	and	is	suitable	to	detect	
antibodies	directed	against	 linear	and	conformational	epitopes.	As	
LIPS	method	has	 a	dynamic	 range	of	measurement,	we	were	 able	

to	use	correlation	analysis	to	define	CD8+	TEMRA	as	the	cell	type,	
which	 is	most	 associated	with	 anti-	CMV	antibody	 levels.	 The	 fre-
quent	CMV	activation	 induces	 antibodies	 and	T-	cell	 clones	 to	 the	
virus,	which	are	mostly	of	CD8+	EM	and	TEMRA	origin	(Fuchs	et	al.,	
2019).	A	recent	study,	however,	showed	that	the	changes	in	the	T-	
cell	 pool	 of	 CMV-	infected	 individuals	 cannot	 be	 explained	 by	 the	

F I G U R E  5 CD8+	TEMRA	associations	with	methylations	levels	of	selected	CpG	sites.	(a)	The	correlations	between	methylation	levels	
of	CpG	sites	that	were	incorporated	into	the	prediction	model	and	CD8+	TEMRA	cell	proportions	in	WBC.	(b)	PCA	calculated	on	the	
methylation	levels	of	those	7	CpG	sites	in	(a)	and	colored	according	to	the	level	of	percentages	of	CD8+	TEMRA/WBC.	(c)	The	accuracy	of	
the	final	model	in	red	together	with	predictions	of	models	that	were	built	on	resampled	training	dataset	using	linear	(light	gray)	and	ridge	
(dark	gray)	regression	models.	Those	illustrate	the	variability	caused	by	selecting	different	training	and	test	set
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presence	of	 large	numbers	of	CMV-	specific	T-	cells	suggesting	that	
CMV	infection	may	also	affect	the	phenotype	of	non-	CMV	specific	
CD8+	T-	cells	(van	den	Berg	et	al.,	2021).

We	also	studied	TEMRA	cell	correlations	with	 inflammation	pro-
teins.	We	 found	 the	 strongest	 association	with	TRANCE/RANKL,	 a	
TNF	family	cytokine	well	known	for	its	functions	in	the	immune	sys-
tem	and	bone	differentiation	(Hanada	et	al.,	2011),	which	levels	cor-
related	negatively	with	CD8+	TEMRA	and	its	subpopulations	as	well	
as	with	CD4+	TEMRA	and	EM	subpopulations.	TRANCE/RANKL	has	
a	role	in	the	regulation	of	bone	metabolism,	as	well	as	the	formation	
of	lymphoid	organs	such	as	thymus,	lymph	nodes,	and	Peyer's	patches	
(Sobacchi	et	al.,	2019).	 In	the	thymus,	TRANCE/RANKL	is	produced	
by	differentiating	CD4+	T-	cells	and	 is	 involved	 in	 the	differentiation	
of	medullary	thymic	epithelial	cells,	which	act	as	mediators	of	the	thy-
mic	tolerance	process	 (Rossi	et	al.,	2007).	Thus,	 its	 lower	 levels	may	
indicate	thymic	 involution	and	a	decrease	in	naive	T-	cells.	TRANCE/
RANKL	plasma	levels	have	also	been	reported	lower	in	patients	with	
nonalcoholic	 fatty	 liver	disease	 (Nikseresht	et	al.,	2020),	a	condition	
related	 to	 insulin	 resistance	and	obesity.	TRANCE/RANKL	has	been	
shown	 to	 suppress	 proinflammatory	 cytokine	 production	 in	 mouse	
model	 (Maruyama	 et	 al.,	 2006);	 however,	 in	 humans,	 the	 RANKL	
gene	mutations	do	not	result	in	an	increased	risk	of	immune	disorders	
and	 its	 inhibitor	 (denosumab)	has	no	significant	effect	on	 inflamma-
tory	processes	 (Ferrari-	Lacraz	&	Ferrari,	2011).	The	mechanistic	 link	
between	 the	decreased	 systemic	 levels	 of	TRANCE/RANKL	 and	 in-
creased	proportions	of	TEMRA	cells	remains	to	be	studied.

CD8+	 TEMRA	population	with	 their	 reduced	capacity	 to	 repli-
cate,	decreased	survival,	and	high	expression	of	nuclear	γH2AX	can	
serve	 as	 an	 indicator	of	 age-	related	T-	cell	 senescence.	We,	 there-
fore,	developed	a	statistical	model	for	CD8+	TEMRA	quantification	
using	 site-	specific	 DNA	 methylation	 levels.	 The	 data	 of	 differen-
tially	methylated	DNA	at	transcriptionally	active	chromatin	regions	
have been used to deconvolute major cell types in peripheral blood 
(Houseman	et	al.,	2012;	Koestler	et	al.,	2013),	to	predict	biological	
(Hannum	et	al.,	2013;	Horvath,	2013)	and	immunological	age	(Alpert	
et	al.,	2019).	Epigenetic	qPCR	assays	for	analysis	of	human	immune	
cell	populations,	 including	CD4+	 and	CD8+	T-	cells,	 correlated	well	
with	flow	cytometry	and	could	also	be	applied	to	dried	blood	spots	
(Baron	 et	 al.,	 2018).	We	 here	 used	 bisulfite	 amplicon	 sequencing,	
which	can	be	considered	as	the	gold	standard	for	measuring	DNA	
methylation	because	of	the	single-	nucleotide	resolution,	flexibility,	
and	low	input	of	genomic	DNA.	The	CpG	methylation	analysis	with	
deep-	amplicon	bisulfite	sequencing	showed	the	best	all-	round	per-
formance	in	multicenter	benchmarking	study	evaluating	DNA	meth-
ylation	assays	for	clinical	use	(BLUEPRINT-	Consortium,	2016).

In	summary,	our	results	support	the	idea	that	not	the	chronolog-
ical	 but	 rather	 the	molecular	 changes	or	 chronic	 infections	occur-
ring	during	the	aging	drive	the	 immune	senescence.	 In	this	regard,	
CD8+	TEMRA	cells	can	be	used	as	a	biomarker	to	follow	the	changes	
associated	 with	 immunosenescence.	 In	 contrast	 to	 flow	 cytome-
try,	the	epigenetic	quantification	of	CD8+	TEMRA	cells	from	whole	
blood	DNA	is	less	costly	and	time-	consuming	and	can	enable	a	high	

throughput	screening	of	a	large	number	of	samples	for	better	strati-
fication	of	immunosenescence	in	old	individuals.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Study subjects

The	study	was	approved	by	the	Ethics	Review	Committee	of	Human	
Research	 of	 the	 University	 of	 Tartu	 according	 to	 permissions	 no	
272/T-	12,	 275/M-	17,	 163/T-	6,	 and	 242/M-	8.	 Altogether	 we	 used	
samples	 from	165	 individuals	 (123	 females	 and	42	males)	with	 an	
age	range	between	4	and	96	years.	Of	those,	140	(105	females	and	
35	males)	were	over	65	years	old	and	formed	the	main	study	group,	
described in Table 1.	From	these	old	individuals	of	the	main	cohort,	
we	collected	data	of	flow	cytometry	results	of	26	CD4+	and	CD8+ 
T-	cell	 subpopulations,	 methylation	 levels	 of	 191	 CpG	 sites,	 clini-
cal	 information,	 levels	of	92	 inflammation	associated	proteins,	and	
levels	of	CMV	specific	antibodies.	The	disease	information	was	ob-
tained	from	the	Estonian	eHealth	system.	The	disease	diagnosis	was	
confirmed	by	the	specialty	doctor	and	marked	by	the	corresponding	
international	classification	of	diseases	code	(ICD-	10)	in	the	patient's	
eHealth	records.	The	remaining	25	individuals,	mostly	younger	peo-
ple,	were	studied	for	DNA	methylation	(145	CpG	sites,	a	subset	of	
191	CpG	sites)	and	the	proportions	of	neutrophils,	monocytes,	NK	
cells,	 lymphocytes,	 T-	cells,	 CD4+	 T-	cells,	 CD8+	 T-	cells,	 and	 CD8+ 
TEMRA	cells.	The	main	cohort	(old	individuals)	was	used	throughout	
the	study	while	the	analysis	of	the	younger	group	of	additional	25	
people	was	included	in	the	analysis	of	age-	related	changes	over	the	
entire	life	span	(Figure	S1),	in	calculating	the	Pearson's	correlations	
between	 flow	 cytometry	 and	 DNA	 methylation	 (Figures	 S7)	 and	
modeling	T-	cell,	CD8+	T-	cell,	and	CD8+	TEMRA	cell	proportions	in	
respect	to	WBC	(Figure 5	and	Figure	S9).

4.2  |  PBMC extraction and flow cytometry

The	blood	 samples	were	collected	as	a	 routine	 sample	 collection	at	
the	admission	 to	 the	hospital	 in	 the	morning;	however,	without	 the	
requirement	to	fast.	The	blood	samples	were	kept	at	room	tempera-
ture	 and	processed	within	3–	5	h	 after	 the	 collection	 time.	 In	 a	 few	
cases,	the	samples	were	kept	at	room	temperature	overnight	and	then	
processed	the	next	morning.	We	have	not	found	this	to	affect	T-	cell	vi-
ability	or	their	subset	distribution.	Peripheral	blood	mononuclear	cells	
(PBMC)	were	extracted	using	Ficoll-	Paque	 (GE	Healthcare,	Chicago,	
IL,	USA)	gradient	centrifugation.	Plasma	was	collected	before	the	ex-
traction	and	isolated	cells	were	stored	using	CTL-	Cryo	ABC	Media	Kit	
(CTL)	 in	 a	 −150°C	 freezer.	 Immune	 cell	 subtypes	were	 analyzed	 by	
flow	cytometry	(Cossarizza	et	al.,	2019)	as	reported	previously	(Oras	
et	 al.,	2019)	 using	FITC	anti-	human	CD25	 (cat	 no	303604),	 PerCP/
Cyanine5.5	 anti-	human	 HLA-	DR	 (cat	 no	 307629),	 APC	 anti-	human	
CD31	 (cat	 no	 303115),	 Alexa	 Fluor	 700	 anti-	human	 CD4	 (cat	 no	
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317425),	Biotin	anti-	human	CD127	(cat	no	351346)	+	Brilliant	Violet	
421	 Streptavidin	 (cat	 no	 405225),	 Brilliant	 Violet	 510	 anti-	human	
CD27	 (cat	 no	 302836),	 Brilliant	Violet	 605	 anti-	human	CD279	 (cat	
no	 329924),	 Brilliant	Violet	 650	 anti-	human	 CD3	 (cat	 no	 317324),	
PE	 anti-	human	 CD57	 (cat	 no	 359612),	 PE/Dazzle	 594	 anti-	human	
CD197	 (cat	 no	 353236),	 PE/Cyanine5	 anti-	human	 CD28	 (cat	 no	
302910),	PE/Cyanine7	anti-	human	CD45RA	(cat	no	304126,	all	from	
Biolegend),	and	BUV395	Mouse	Anti-	Human	CD8	(cat	no	563795,	BD	
Biosciences).	Cells	were	acquired	with	LSR	Fortessa	 flow	cytometer	
(BD	Biosciences).	Data	were	analyzed	using	FCS	Express	7	(DeNovo	
Software).	The	cells	were	gated	to	exclude	debris,	dead	cells,	and	dou-
blets.	The	gating	strategies	are	shown	in	Figure	S10.

4.3  |  DNA methylation analyses

Whole	 blood	 was	 collected	 to	 K2E	 (EDTA)	 vacutainers	 (Becton	
Dickinson)	and	donors’	genomic	DNA	was	extracted	from	1	ml	of	whole	
blood	by	the	salting-	out	method.	The	DNA	sample	purity	and	concen-
trations	were	measured	 by	NanoDrop	ND-	1000	 spectrophotometry.	
Genomic	DNA	(500	ng)	was	treated	with	sodium	bisulfite	using	the	EZ	
DNA	Methylation	Kit	 (Zymo	Research	Corporation)	 according	 to	 the	
manufacturer's	 instructions.	 Bisulfite	 treated	 DNA	 was	 amplified	 in	
10	ul	reaction	containing	0.72	ng	of	DNA,	1X	Yellow	PCR	Buffer	with	
(NH4)2SO4	 (Naxo),	 1.5mM	MgCl2	 (Solis	 BioDyne),	 2	mM	dNTP	mix	
(Solis	BioDyne),	0.2	µM	of	each	primer,	and	0.06	U	HOT	FIREPol	DNA	
Polymerase	 (Solis	 BioDyne).	 Cycle	 conditions	were	 as	 follows:	 95°C	
for	15	min,	1	cycle;	40	cycles	(95°C	for	20	s,	56°C	for	30	s,	72°C	for	
1	min);	and	72°C	for	3	min,	1	cycle.	Primer	sequences	used	in	PCR	reac-
tions	can	be	delivered	on	request	by	the	authors.	Amplicons	from	each	
individual	were	combined	 in	equal	amounts,	purified	with	Agencourt	
AMPure	XP	beads	(Beckman	Coulter)	and	labeled	with	Nextera	XT	v2	
(Illumina)	indexes.	Paired-	end	sequencing	of	bisulfite-	treated	DNA	with	
read	length	of	250	bp	was	done	with	Illumina	MiSeq	at	the	Core	Facility	
of	the	Institute	of	Genomics	of	the	University	of	Tartu.

4.4  |  CMV antibody analysis with ELISA and LIPS

ELISA	kits	SmartEIA	CMV	IgG	and	EIA	CMV	IgM	(both	from	TestLine	
Clinical	Diagnostics	s.r.o.)	were	used	to	measure	the	IgG	and	IgM	anti-
bodies	to	CMV	with	the	plasma	dilution	of	1:101.	LIPS	profiling	of	CMV	
antibodies	with	 pp150	 protein	 fragments	 has	 been	 reported	 earlier	
(Burbelo	et	al.,	2009).	Two	fragments	of	immunodominant	regions	of	
CMV	antigen	pp150	were	cloned	into	pNanoLuc	vector,	and	LIPS	was	
performed	as	reported	earlier	(Haljasmägi	et	al.,	2020).	The	HEK293	
cell	lysates	containing	NanoLuc-	fusion	proteins	(0.5–	1	× 106 lumines-
cence	units;	LU)	were	incubated	with	plasma	samples	and	Protein	G	
Sepharose	beads	(Creative	BioMart)	to	capture	antibodies	(in	1:40	di-
lution).	After	washing,	the	substrate	was	added	(Nano-	Glo™	Luciferase	
Substrate,	Promega),	 and	 luminescence	was	measured	 in	VICTOR	X	
Reader	(PerkinElmer	Life	Sciences).

4.5  |  Olink proximity extension profiling

The	 plasma	 samples	 of	 old	 individuals	 were	 studied	 using	 Proseek	
Multiplex	 Inflammation	 panel	 by	 Olink	 Proteomics	 analyzing	 92	
inflammation-	related	protein	biomarkers	 in	 total.	The	assay	uses	two	
oligonucleotide-	conjugated	antibodies	that	bind	to	protein	targets	and	
the	 paired	 oligonucleotide	 sequences	 are	 amplified	 by	 quantitative	
real-	time	PCR	reaction.	Data	are	given	as	normalized	protein	expres-
sion	(NPX)	values	on	a	log2	scale.	Proteins	containing	NPX	values	>50%	
below	the	assay's	limit	of	detection	were	excluded	from	the	analysis.

4.6  |  Data analysis

Firstly,	we	assessed	the	quality	of	the	obtained	paired-	end	reads	with	
FastQC	 (version	 0.11.5)	 and	MultiQC	 (version	 1.4).	 Subsequently,	
we	removed	adapters	and	trimmed	low-	quality	sequences	(at	qual-
ity	 threshold	 Phred	 score	 35)	 with	 Cutadapt	 (version	 1.18)	 and	
TrimGalore	 (version	 0.5.0)	 correspondingly.	 The	 parameters	 for	
TrimGalore	were	the	following:	-	-	paired	-	-	quality	35.	We	aligned	the	
reads	to	the	reference	genome	(GRCh37/hg19)	and	extracted	site-	
specific	methylation	 levels	with	Bismark	 (version	0.18.1)	 in	combi-
nation	with	Bowtie	2	aligner	(version	2.3.4.1).	More	precisely,	after	
building	the	indexed	genome	with	Bismark	via	using	default	param-
eters,	we	aligned	reads	again	with	Bismark	now	using	arguments	-	n	
1	-	X	1000	which	was	followed	by	methylation	levels	extraction	with	
arguments	-	p	-	-	no_overlap	-	-	bedGraph	-	-	counts	-	-	buffer_size	10G.

Subsequently,	we	aggregated	coverage	files	into	a	single	dataset,	
where	we	filtered	out	methylation	values	that	had	read	depth	<300 
to	 be	 confident	 in	 the	 obtained	 methylation	 levels.	 Overall	 read	
depth	was	in	the	range	of	1000–	5000.	After	filtering,	we	excluded	
CpG	sites	that	had	missing	values	for	many	 individuals,	which	was	
done	to	such	an	extent	that	the	resulting	dataset	contained	less	than	
5%	of	missing	values	overall.	Then,	we	imputed	those	missing	values	
with	R	package	missForest	(version	1.4)	with	default	parameters.	We	
also	 visualized	 the	 imputation	 accuracy	 via	 plotting	 low	 coverage	
values	against	imputed	counterparts	that	is	shown	in	Figure	S11.	As	
expected,	there	was	a	good	agreement	between	imputed	and	actual	
methylation levels (r =	0.96)	with	methylation	levels	that	came	from	
smaller	read	depth	deviating	further	from	the	predicted	values.

We	used	R	(version	4.0.2)	for	data	analysis.	More	precisely,	for	
data	 pre-	processing,	 we	 used	 packages	 dplyr	 (version	 1.0.5)	 and	
reshape2	 (version	 1.4.4).	 For	 visualization,	 we	 used	 ggplot2	 (ver-
sion	 3.3.3),	 ggpubr	 (0.4.0),	 scales	 (version	 1.1.1),	 rstatix	 (version	
0.7.0),	 and	 ComplexHeatmap	 (2.7.1).	 Eventually,	 we	 combined	 in-
dividual	 plots	 with	 patchwork	 (version	 1.1.1).	 Overall	 in	 the	 anal-
ysis,	 we	 determined	 the	 statistical	 significance	 for	 group-	wise	
comparisons	 using	 either	 two-	sample	 Wilcoxon	 test	 (also	 known	
as	Mann-	Whitney	 test)	or	 linear	 regression	where	age	and	gender	
were	 controlled.	 The	 methods	 used	 for	 each	 particular	 compari-
son	is	specified	in	the	corresponding	figure	legend.	We	used	either	
Pearson's	or	Spearman's	correlation	coefficients	depending	on	the	
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distribution	of	the	measurements	and	the	nature	of	the	relationship.	
In	addition,	where	suitable,	partial	correlations	were	calculated	with	
package	ppcor	(version	1.1),	in	order	to	control	for	the	age	effect.	All	
p-	values	shown	on	the	figures	are	adjusted	with	FDR	method.

To	model	flow	cytometry	measurements	based	on	DNA	methyl-
ation,	we	relied	mostly	on	Pearson's	correlations	and	linear	models	
since	 a	 linear	 relationship	 could	 be	 assumed.	 Specifically,	 we	 se-
lected	the	CpG	sites	so	that	they	would	be	specific	to	a	certain	cel-
lular	population	and	therefore	the	studied	sites’	methylation	levels	
should	be	proportional	with	the	fraction	of	the	cell's	subset.	Since	
the	number	of	CpG	sites	was	significantly	greater	than	sample	size	
/	10,	we	applied	multiple	feature	selection	methods	in	a	sequence	
to	keep	only	a	small	number	of	relevant	CpG	sites	for	the	modeling	
task.	Firstly,	we	split	the	dataset	into	training	and	test	set	via	R	pack-
age	Caret	 that	we	 also	 used	 for	 parameter	 tuning	 and	 training	 all	
the	models.	In	addition,	since	many	flow	cytometry	measurements	
that	we	used	as	dependent	variables	were	deviating	from	a	normal	
distribution	 (based	 on	 visual	 inspection	 on	 quantile-	quantile	 plots	
and	those	whose	Shapiro-	Wilk	test	p-	value	<0.05),	we	transformed	
those measurements so that their distributions came closer to nor-
mal	distribution.	We	used	square	root	and	cube	root	 to	 transform	
measurements	“CD8+	T-	cells/WBC”	and	“CD8+	TEMRA	cells/WBC”	
correspondingly.	 In	 those	 cases,	 the	 predictions	 of	 those	 models	
were	 inverse	 transformed	 for	 further	 analysis	 and	 visualization.	
After	transformation,	we	obtained	a	set	of	relevant	features	for	each	
dependent	 variable	 via	Boruta	 feature	 selection	method	 (Kursa	&	
Rudnicki,	2010)	on	 training	data.	We	then	 reduced	 the	number	of	
CpG-	s	further	via	lasso	regression	on	previously	obtained	features.	
Subsequently,	we	evaluated	the	models	with	a	nested	5-	fold	cross-	
validation	scheme,	using	the	inner	folds	for	hyperparameter	tuning	
(in	the	case	of	the	random	forest	the	hyper	parameter	was	the	num-
ber	of	trees	and	in	the	case	of	ridge	regression	it	was	lambda).	We	
used	RMSE	to	evaluate	the	model's	performance.	Finally,	we	tested	
all	 models	 on	 the	 test	 dataset	 and	 visualized	 their	 predictions	 in	
comparison with their actual values.
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