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Abstract

Introduction

Apolipoprotein C-1lI (apoC-IIl) regulates triglyceride (TG) metabolism. In plasma, apoC-lll
exists in non-sialylated (apoC-lllp, without glycosylation and apoC-llly, with glycosylation),
monosialylated (apoC-lll;) or disialylated (apoC-lll,) proteoforms. Our aim was to clarify the
relationship between apoC-lll sialylation proteoforms with fasting plasma TG
concentrations.

Methods

In 204 non-diabetic adolescent participants, the relative abundance of apoC-IIl plasma pro-
teoforms was measured using mass spectrometric immunoassay.

Results

Compared with the healthy weight subgroup (n = 16), the ratios of apoC-llly,, apoC-lllgp,
and apoC-lll4 to apoC-lll, were significantly greater in overweight (n = 33) and obese patrtici-
pants (n = 155). These ratios were positively correlated with BMI z-scores and negatively
correlated with measures of insulin sensitivity (S;). The relationship of apoC-lll; / apoC-lll,
with S; persisted after adjusting for BMI (p = 0.02). Fasting TG was correlated with the ratio
of apoC-lllp, / apoC-lll, (r=0.47, p<0.001), apoC-lllg, / apoC-lll, (r = 0.41, p<0.001), apoC-
Iy / apoC-lll, (r = 0.43, p<0.001). By examining apoC-IIl concentrations, the association of
apoC-lll proteoforms with TG was driven by apoC-lllg, (r = 0.57, p<0.001), apoC-lllgy, (r =
0.56. p<0.001) and apoC-lll4 (r=0.67, p<0.001), but not apoC-lll, (r = 0.006, p = 0.9)
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concentrations, indicating that apoC-lll relationship with plasma TG differed in apoC-lil,
compared with the other proteoforms.

Conclusion

We conclude that apoC-lllg,, apoC-lllgy,, and apoC-lil4, but not apoC- lll, appear to be under
metabolic control and associate with fasting plasma TG. Measurement of apoC-Ill proteo-
forms can offer insights into the biology of TG metabolism in obesity.

Introduction

Apolipoprotein C-III (apoC-III) is a protein of 79 amino acids that is synthesized in the liver
and, to a lesser degree in the intestine, and regulates triglyceride (TG) metabolism [1]. It is pri-
marily located on the surface of lipoproteins [2]. In the circulation, apoC-III is a constituent of
both apoB and apoA-I containing lipoproteins. The majority of apoC-III is found on the HDL
fraction in normolipidemic individuals and on triglyceride-rich lipoproteins in patients with
elevated levels of plasma triglyceride [3]. ApoC-III plays a pivotal role in regulating the plasma
metabolism of VLDL, IDL, and LDL, primarily by inhibiting receptor-mediated uptake of
these lipoproteins by the liver [4]. Overexpression of apoC-III in transgenic mice leads to
severely increased plasma TG levels [5]. Mutations that disrupt apoC-III expression and func-
tion in humans are associated with lower plasma TG and apoC-I1I levels, and lower risk of cor-
onary artery disease [6].

Overproduction of apoC-III and of apoB lipoproteins that contain apoC-III is a common
feature of patients with obesity and hypertriglyceridemia [7, 8]. Insulin and glucose regulate
apoC-III expression [9-11]. Treatment of insulin-deficient diabetic mice with insulin resulted
in a 2.5-fold decrease in hepatic apoC-III mRNA levels and a corresponding decrease in apoC--
III gene transcriptional activity [11]. Insulin treatment of HepG2 cells transfected with an
apoC-III luciferase reporter construction caused a dose-dependent two-fold reduction in
apoC-III transcriptional activity [11]. A genetic variant form of the human apoC-III promoter,
containing five single base pair changes that makes it less responsive to insulin, has been
shown to be associated with severe hypertriglyceridemia [10]. Glucose can also induce apoC-III
transcription in primary rat hepatocytes and immortalized human hepatocytes via a mecha-
nism involving the transcription factors carbohydrate response element-binding protein and
hepatocyte nuclear factor-4 [9]. Lowering of apoC-III by antisense oligonucleotides, reduces
fasting and post prandial triglyceride levels [12, 13]. Thus, apoC-III is induced in obesity by
dysregulation of insulin and glucose signaling, and is intricately involved in establishing
hypertriglyceridemia.

ApoC-IIT in plasma exists in multiple proteoforms. The most common proteoforms differ
by their sialic acid content: apoC-III, apoC-III; and apoC-III, containing 0, 1, and 2 molecules
of sialic acid per molecule of protein, respectively [14-16]. In plasma from healthy volunteers,
apoC-IlIy, apoC-III; and apoC-III, comprise approximately 22, 45, and 33% of the total apoC--
IIL, respectively [17, 18]. Sialylation of apoC-III occurs in the Golgi compartment by the activ-
ity of sialyltransferases [19], whereas de-sialylation of this protein is mediated by lysosomal
neuraminidase [20]. ApoC-I1I sialylation appears to be under metabolic control. For example,
reduced apoC-I1I; to apoC-III, ratio was observed following weight loss by caloric restriction
[21] or bariatric surgery [22]. In contrast, increased apoC-III, was demonstrated after
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carbohydrate feeding [23, 24], in familial combined hyperlipidemia [25], and in metabolic syn-
drome [26].

Progress toward understanding the importance of apoC-I1I sialylations in TG metabolism
in vivo has been hindered by the lack of a robust method to measure these sialylated proteo-
forms in plasma. Traditionally, sialylation of apoC-III has been studied using isoelectric focus-
ing, a time sensitive method that is not amenable for use in large studies. In addition,
isoelectric focusing can only resolve three or four apoC-III proteoforms based on mass and
charge [24, 27-29]. Mass spectrometric immunoassay (MSIA) is a high throughput methodol-
ogy that is utilized to identify and quantify molecular variants and posttranslational modifica-
tions of plasma proteins. MSIA is based on the isolation of protein moieties from a biological
milieu by immobilized antibodies, which is followed by mass spectrometry detection. In our
previous work using MSIA, we identified numerous proteoforms originating from apolipopro-
tein A-I, A-II, C and serum amyloid A [30-33]. In this study, our objectives were to isolate and
identify the different apoC-I1I sialylated forms by MSIA, and determine the relationship
between these proteoforms with fasting plasma TG levels.

Materials and Methods
Reagents

Affinity purified polyclonal goat anti-human antibodies to apoC-I (Cat. No. 31A-G1b),
apoC-II (32AG2b), apoC-1III (33A-G2b), and HRP Goat Anti-Human apoC-III (33H-G2a),
apoC-II (32H-G4a) were obtained from Academy Bio-medical Co. (Houston, TX, USA). Pro-
tein calibration standard I (Cat. No. 206355) was purchased from Bruker (Billerica, MA). Phos-
phate buffered saline (PBS) buffer (Cat. No. 28372), MES buffered saline (28390), acetonitrile
solution (ACN; A955-4), hydrochloric acid (HCl; A144-212), N-methylpyrrolidinone (NMP;
BP1172-4), 1,1’ Carbonyldiimidazole (97%) (CDI, 530-62-1), affinity pipettes fitted with
porous micro columns (991CUS01) were obtained from Thermo Scientific (Waltham, MA,
USA). Tween20 (Cat. No. P7949), trifluoracetic acid (TFA, 299537), sinapic acid (85429-5G),
sodium chloride (S7653), HEPES (H3375), ethanolamine (ETA; 398136) were obtained from
Sigma Aldrich (St. Louis, MO, USA). Acetone (Cat. No. 0000017150) was obtained from Avan-
tor Performance Materials (Center Valley, PA, USA).

Mass spectrometric immunoassay

Analysis of apoC-I1II was performed using triplexed mass spectrometric immunoassay (MSIA)
for analysis of apoC-1, apoC-II and apoC-II1, as previously described [33]. In short, affinity
pipettes were derivatized with corresponding antibodies (0.4, 2.25 and 2.5 pg of anti-apoC-1,
anti-apoC-II and anti-apoC-III and 0.8 pg anti-lysozyme per pipette respectively). Following
sample preparation (total of 120 uL of plasma sample, diluted 120-fold in PBS,0.1%Tween),
Multimek 96-channel robot was used to capture apoC-III proteoforms from each analytical
sample by repeated aspirations and dispensing cycles through the pipettes. After rinsing the
non-specific bounded proteins, captured apolipoproteins were eluted directly onto a 96-well
formatted MALDI target using a sinapinic acid matrix. Linear mass spectra were acquired
from each sample spot using an Ultraflex III MALDI-TOF instrument (Bruker, Billerica, MA)
operating in positive ion mode. An average of 5000 laser shots mass spectra was saved for each
sample spot. Mass spectra were internally calibrated using protein calibration standard-I, and
further processed with Flex Analysis 3.0 software (Bruker Daltonics). All peaks representing
apolipoproteins and their proteoforms as well as the signals from lysozyme (used as internal
reference standard and spiked in constant concentration in all samples) were integrated base-
line-to-baseline using Zebra 1.0 software (Intrinsic Bioprobes Inc). All peaks were normalized
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towards the lysozyme signal. Peaks that were not resolved at baseline were integrated manually.
In addition, the peak areas were corrected individually with baseline noise-bin signals. To
assess for the consistency of the ionization efficiency and reproducibility between and within
runs, a control plasma sample was run in triplicate with each analysis. Although ssamples for
these analyses were stored for up to 12 years at -80°C before measurements of apoC proteo-
forms were performed, previous investigation of the effects of storage, time and freeze/thaw
cycles on these assays indicated that the measurements are relatively stable [33].

ELISA

Sandwich ELISA using apoC-III antibodies and apoC-I1I protein standard obtained from
Academy Biomedical was performed as previously described [8]. The inter- and intra-assay
coefficients of variation were less than 10%.

Clinical Samples

Adolescent Hispanic children (8-17 years of age) without type two diabetes (n = 204) were
recruited. Samples were obtained from a variety of studies using essentially identical protocols
and measures conducted by the University of Southern California Childhood Obesity Research
Center over the past 15 years. BMI percentiles and z-scores were calculated as described [34].
The study group was divided by BMI percentiles into three groups: healthy weight (<85 per-
centile, n = 16), overweight (between 85™ and 95™ percentile, n = 33) and obese (>95™ percen-
tile, n = 155). Blood was collected for clinical laboratory measurements (lipid profile, liver
function tests, and insulin-modified frequently sampled intravenous glucose tolerance test for
measuring insulin sensitivity-S; [35] in a subset of these participants, Table 1) after an over-
night fast (10 hours). Additional samples were collected in EDTA tubes, and plasma from
these samples was separated and immediately frozen at -80°C for all other assays. Demographic
information (sex, age, and ethnicity), physical exam measurements (height, weight, and body
mass index-BMI), medication use, and medical history (hypertension, hyperlipidemia, and
smoking) were recorded. Exclusion criteria included the following: (i) met any diagnostic crite-
ria for diabetes; (ii) the use of medications or supplements or the past or present diagnosis of

Table 1. The clinical and biochemical characteristics of the study population by sex.

Males (n = 84) Females (n = 120)
Age (years) 14 (2) 13 (3)
BMI (kg/m?) 32 (7) 30 (8)
BMI z -score 2.1(1.75, 2.42) 2.0 (1.50, 2.33)
Fasting glucose (mg/dL)* 91 (7) 92 (13)
Fasting Insulin (IU) *t 15 (13) 22 (12)
Insulin Sensitivity (S;) [X10* min™/(pmol/l)]* 1.56 (0.94, 2.60) 1.58 (1.1, 2.3)
TG (mg/dL) * 101 (75, 136) 91 (64, 125)
Total Cholesterol (mg/dL)* 140 (27) 139 (29)
HDL Cholesterol (mg/dL)* 36 (7) 38 (10)
LDL Cholesterol (mg/dL)* 81 (26) 88 (30)

Data are presented as means (SD) or median (25", 75" percentile) for non-normally distributed data. The
differences between males and females in age, BMI or lipid measures were not significant.

*Fasting glucose, n = 120, Fasting insulin, n = 119, Si, n = 117, TG, n = 173, cholesterol, n = 132.

T p = 0.005. IU: International Units. TG: Triglycerides.

doi:10.1371/journal.pone.0144138.1001
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other syndromes or diseases known to influence liver function, insulin action, or lipid levels;
(iii) previous diagnosis of any major illness since birth; (iv) smoking (currently smoked, or had
smoked more than 100 cigarettes in their lifetime) or drinking alcohol on a regular basis (in
excess of two drinks per week as determined by a questionnaire; (v) or involvement in any
weight loss/exercise/sports program currently or within 6 months prior to participation.

Study approval

This study was approved by the University of Southern California (USC) Institutional Review
Board. Written informed consent was obtained from parents or legal guardians of minors.
Additionally, child assent was obtained in writing.

Statistical Analysis

Mean (SD) or median (25" and 75" percentiles) for non-normally distributed data were calcu-
lated for continuous variables. The study subgroups were compared using ANOVA. The sialy-
lation ratios between the groups were modeled using logistic regression adjusting for age and
sex. The relation between apoC-III proteoform ratios with BMI z-scores, S;, or TG concentra-
tions was analyzed using Spearman correlation coefficient. To test if apoC-III concentrations
and apoC-III;/apoC-III, ratio were independently associated with TG concentrations, a linear
regression model was used, and apoC-I1II concentrations and ratio were centered to facilitate
interpretation of the results. Centering the regressors allowed the coefficients to represent the
change in TG associated with one SD change in the predictor. Statistical analyses used R pro-
gram version 3.3. p<0.05 was defined as significant.

Results

The study participants were predominantly overweight and obese Hispanic adolescents with a
BMI z-score between- 0.98 and 3.1, and fasting plasma TG levels ranging from 19 to 330 mg/
dL. None of the recruited participants had been diagnosed with diabetes, nor were on diabetes
or lipid-lowering therapies. The mean fasting glucose among the participants was 92 mg/dL.
With the exception of fasting insulin, the characteristics of the study participants did not differ
by sex. Additional clinical and biochemical characteristics are summarized in Table 1.

The relative abundance of apoC-I, C-II and C-III proteoforms in fasting plasma was
assessed by MSIA (Fig 1). A total of 12 apoC-III proteoforms were detected, reflecting varia-
tions in galactose (Gal), N-acteyl galactosamine (GalNAc), fucose, alanine truncations or sialic
acid residues. Because of the higher abundance and potential functional importance of the sia-
lylations, analysis of apoC-III was largely restricted to these proteoforms. In addition, MSIA
was utilized to measure apoC-I and C-II proteins. Characteristics of apoC-I, C-II and C-III
proteoforms by MSIA are summarized in Table 2. In contrast to isoelectric focusing, MSIA can
resolve two asialylated proteoforms based on mass (apoC-IIly,, and apoC-IIly,) with apoC-
111y, having a galactose and GalNAc residues. ApoC-I1I,, is referred here as the native apoC-
III, and corresponds to the full-length sequence of unmodified apoC-III protein (MW = 8765
Da). As shown in Fig 1, the most abundant proteoform of apoC-III is the mono-sialylated
(apoC-III;: 52.5+ 3.6 peak area ratio to total apoC-III peak area), followed by the di-sialylated
protein (apoC-IIL,: 12.4 + 3.8 peak area ratio), with the native proteoform being less in abun-
dance (apoC-IIl,: 6.9 + 3.5 peak area ratio). In this study, apoC-IIly, was relatively greater in
abundance than apoC-IIly, (apoC-IIlgy: 22.3 + 3.3 peak area ratio).

The study group was divided into 3 categories based on BMI percentiles. The three catego-
ries included participants with a healthy weight (n = 16), overweight (n = 33) and obese
(n = 155) adolescents. The participants in the healthy weight group were younger in age with
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Fig 1. Mass spectra of plasma apolipoproteins C-l, C-ll and C-lll and their proteoforms resolved using
MSIA loaded with antibodies for apoC-l, C-ll and C-lll. Two proteoforms of apoC-I (native and TP
truncated), and two proteoforms of apoC-Il (native and TQQPQAQ truncation) can be detected. 12 different
proteoforms of apoC-Ill can be resolved. This study was focused on four proteoforms of apoC-Ill: native
apoC-lIl (apoC-llly,), glycosylated apoC-Ill (apoC-lllg,), monosialylated (apoC-lll4), and disialylated
(apoC-llly).

doi:10.1371/journal.pone.0144138.g001

fewer males compared to the two other subgroups. Obesity was associated with decreases in
both insulin sensitivity (S;) and HDL cholesterol concentrations, and increases in TG concen-
trations. These data are summarized in Table 3. The ratios apoC-IIl,,, apoC-IIly, and apoC-
II1, to apoC-I1I, were significantly greater in the overweight and obese groups compared to the
healthy weight group (Table 3). These ratios were positively correlated with BMI z-scores (Fig
2A, 2B and 2C), and negatively correlated with measures of insulin sensitivity (Fig 3A, 3B and
3C). The relationship between apoC-III, / apoC-III, ratio and insulin sensitivity persisted after
adjusting for BMI, age and sex (R* = 0.19, p = 0.02). Fasting glucose levels did not significantly
correlate with the apoC-III proteoform ratios (p>0.1).

ApoC-III, had a different relationship with fasting TG than the other apoC-III proteoforms.
Representative MSIA mass spectra from two participants in the upper and lower quartiles of
TG levels are presented in Fig 4. Compared to the normotriglyceridemic participant, mass
spectrum from the hypertriglyceridemic individual revealed a greater ratio of apoC-II,,

Table 2. ApoC-l, apoC-ll and apoC-lll proteoforms detected by MSIA.

Theoretical m/z value Observed m/z value Proteoform Label
6432.3 6432.1 ApoC-I lacking N-terminal dipeptide (des-TP) ApoC-| des-TP
6630.6 6630.6 Full length apoC-| form ApoC-I native
8204.2 8204.8 ApoC-Il lacking N-terminal hexapeptide (des-TQQPQQ)—termed mature apoC-ll  ApoC-Il des-TQQPQQ
8764.7 8765.3 Full length apoC-lIl form ApoC-lllp, (native)
8914.9 8914.7 Full length apoC-Il form—termed pro-apoC-I| ApoC-Il native
9135.8 9136.2 Asialylated apoC-lll—apoC-lll+ (Gal){(GalNAc), ApoC-lllgp
9422.2 9422.9 Mono-sialylated apoC-Ill—apoC-IIl + (Gal);(GalNAc);(NeuAc); ApoC-lll4
9712.5 9712.6 Di-sialylated apoC-lll—apoC-lll + (Gal){(GalNAc);(NeuAc), ApoC-lily

Gal—galactose; GalNAc—N-acetylgalactosamine; NeuAc—N-acetyl neuraminic acid (sialic acid)

doi:10.1371/journal.pone.0144138.1002
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Table 3. The clinical and biochemical characteristics of the study population by weight groups.

Healthy Weight (<85™
percentile, n = 16)
Age* 10 (2)
Male/Female (n)** 2/14
Weight (kg)*** 36 (10)
BMI (z-scores)*** 0.73 (0.30,0.86)
Fasting glucose (mg/dL) 83 (12)
Fasting Insulin (IU) **** 5 (5)
Insulin Sensitivity (S;) [X10* min™"/ 6.0 (4.1, 8.0)
(pmol/l)]*
TG (mg/dL)" 58 (50,74)
Total Cholesterol (mg/dL) 118 (17)
HDL Cholesterol (mg/dL)* 48 (13)
LDL Cholesterol (mg/dL) 86 (29)

ApoC-lllps/ apoC-lli*
ApoC-lllgy/ apoC-lll,t
ApoC-lll;/ apoC-lil,T

0.29 (0.24,0.50)
1.41 (1.16,1.72)
3.32 (2.7, 3.6)

Overweight (85-95'™
percentile, n = 33)
14 (3)

12/21

62 (23)

1.32 (1.25, 1.5)

91 (6)

9 (5)

2.5(2.1,3.6)

78 (64, 98)

128 (30)

39 (8)

84 (34)

0.51 (0.39, 0.95)
1.71 (1.24, 2.01)
4.23(3.0,5.1)

Obese (> 95 percentile,
n = 155)

14 (3)

70/85

87 (24)

2.5 (1.92,2.43)

92 (10)

19 (13)

1.4 (0.87,2.2)

111 (76, 146)
143 (27)

36 (8)

85 (27)

0.63 (0.40, 0.96)
1.97 (1.56, 2.53)
4.82 (3.9, 5.8)

p value
(group)
<0.001
0.06
<0.001
<0.001
0.19
0.001
<0.001

<0.001
0.03
<0.001
0.98
<0.001
<0.001
<0.001

BMI percentile categories were based on BMI z-scores. Data are presented as means (SD) or median (251, 75™ percentile) for non-normally distributed
data. The data was analyzed by ANOVA followed by groupwise comparisons. Significance was defined with a p<0.05. The differences of the apoC-ll|
ratios among the three groups were adjusted for age and sex using logistic regression.

* healthy weight group was significantly different from the overweight and obese groups

** less males than females in healthy weight compared to the overweight and obese groups

*** three groups were significantly different
**%* obese group was significantly different from the overweight group

T obese group was significantly different from overweight and healthy groups

doi:10.1371/journal.pone.0144138.1003
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Fig 2. BMI z-scores were associated with greater ratio of apoC-lll, and apoC-lil; proteoforms to
apoC-lll, in plasma (n = 204). BMI z-scores correlated with apoC-lllo, / apoC-lll, ratio (r = 0.30, p<0.001, A),
apoC-lllgy, / apoC-lll, ratio (r = 0.36, p<0.001, B), and apoC-lll4 / apoC-lll, ratio (r = 0.38, p<0.001, C).

doi:10.1371/journal.pone.0144138.9002
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Fig 3. Insulin sensitivity measures (S;) were associated with lower ratios of apoC-lll, and apoC-lil,
proteoforms to apoC-lll, in plasma. S; was measured in a subset of participants (n = 117). S; negatively
correlated with apoC-lllg, / apoC-lll; ratio (r=-0.21, p = 0.02, A), apoC-lllg, / apoC-lll; ratio (r =-0.39,
p<0.001, B), and apoC-lll; / apoC-lll, ratio (r =-0.42, p<0.001, C).

doi:10.1371/journal.pone.0144138.g003

apoC-Iyy, or apoC-II1; to apoC-III, In all the participants, the ratios of apoC-III,, / apoC-
II1,, apoC-IlIg / apoCIII, and apoC-I1I; / apoC-III, were significantly correlated with greater
fasting TG (Fig 5A, 5B and 5C). Although the ratio of apoC-I1I, / apoC-I1I,, was associated
with greater TG concentrations (r = 0.35, p <0.001), the association of apo-CIII; /apoC-IIIg,
ratio and TG concentrations was not significant (r = 0.06, p = 0.38). Total plasma apoC-III
concentration was measured in a subset of samples at the upper (HC-III) and lower (LC-III)
quartiles of the apoC-III, / apoC-III, ratio (n = 72). The individual concentrations of apoC-III
proteoforms were then computed by multiplying the total concentration with the relative
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(A)
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Fig 4. Representative MSIA mass spectra from two participants of the upper and lower quartile of TG
concentrations. Participant 1 (upper panel) is a 15 years old male with a BMI z-score of 1.6, TG of 36 and
HDL of 41 mg/dL. In contrast, participant 2 (lower panel) is a 14 years old male with a BMI z-score of 2.73, TG
of 224 and HDL of 36 mg/dL. Compared to the participant with lower TG concentrations, mass spectrum from

the individual with hypertriglyceridemia reveals a greater ratio of apoC-lllg,, apoC-lllg,, and apoC-lil4 to
apoC-lll,.

doi:10.1371/journal.pone.0144138.g004
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Fig 5. The ratio of apoC-lll, and apoC-lil, proteoforms to apoC-lil, in plasma was positively correlated
with fasting plasma TG concentrations (n = 173). TG concentrations correlated with apoC-llly, / apoC-lll,
ratio in plasma (r = 0.47, p<0.001, A), and apoC-lllo, / apoC-lli, ratio (r = 0.42, p<0.001, B) and C-Ill; /
apoC-lll, ratio (r= 0.43, p<0.001, C) in plasma.

doi:10.1371/journal.pone.0144138.9g005

abundance of each protein. The concentrations of apoC-IIly, and apoC-III; were highly corre-
lated (r = 0.89, p<0.001), suggesting that the glycosylation of apoC-III (C-IIly,) and glycosyla-
tion and sialylation of this protein (apoC-III,) are result of the same process, and explaining
the lack of correlation of the ratio of apoC-III, / apoC-IIIy, with fasting TG. The concentra-
tions of apoC-II1,, were also correlated with the concentrations of apoC-IIly, (r = 0.55,
p<0.001) and apoC-III; (r = 0.6, p<0.001). However, concentrations of apoC-III, did not cor-
relate with any of the other apoC-III proteoforms suggesting that a different mechanism regu-
lates the addition of the second sialic acid to apoC-III.

ApoC-III proteoform concentrations were examined in relation to fasting plasma TG. As
expected, total apoC-III concentrations were strongly correlated with plasma TG
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Fig 6. Relationship of apoC-lll proteoforms concentrations and plasma TG concentrations (n = 72).
This association was driven by apoC-lllg, (r = 0.53, p<0.001, A), apoC-llly, (r = 0.56, p<0.001, B) and
apoC-lil; (r=0.61, p<0.001, C), but not apoC-lll, (r=0.006, p = 0.9, D).

doi:10.1371/journal.pone.0144138.9g006
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concentrations (r = 0.63, p<0.001). The association of apoC-III proteoforms with TG was
driven by apoC-IIl,, apoC-IIly,, and apoC-III; but not apoC-III, concentrations (Fig 6A, 6B,
6C and 6D). These data indicate that apoC-II,,, apoC-IIly, and apoC-III; were better indica-
tors of fasting TG levels than apoC-III,. Using a linear multivariate regression model with
apoC-III concentrations and ratios as predictors of TG concentrations, an independent associ-
ation between apoC-III concentrations and the ratio of the other proteoforms to apoC-III,
with TG concentrations was demonstrated (p<0.001 for all). For example, for one SD increase
in total apoC-III concentrations, there was a 23 unit (standard error 5, p<0.001) increase in
TG concentrations. For one SD increase in apoC-III; / apoC-II1, ratio, there was 17 unit (stan-
dard error 4.8, p = 0.001) increase in TG concentrations.

Discussion

ApoC-III in the plasma circulates predominantly as a sialylated apolipoprotein containing one
or two molecules of sialic acid. ApoC-I1I is a key regulator of TG metabolism; however, the
roles of the individual apoC-III proteoforms are not well understood. In the present study, we
found that overweight and obese individuals had greater ratios of apoC-III, or apoC-III, pro-
teoforms to apoC-III, compared with leaner individuals. These ratios negatively correlated
with insulin sensitivity (S;) and positively correlated with TG concentrations. Concentrations
of apoC-IIly,, apoC-IIly, and apoC-III;, but not apoC-I1I1,, correlated with fasting TG. These
findings indicate that apoC-III, and apoC-III,; are under metabolic control with a potential
role for decreased insulin sensitivity in their formation, independent of changes in obesity. Our
findings indicate that apoC-IIL,’s effects on TG metabolism differ from the other apoC-III
proteoforms.

The majority of apoC-III is sialylated at the Thr-74 residue through a process of O-linked
glycosylation [18]. Sialylation is an intracellular process driven by sialyltransferases, a family of
Golgi-membrane bound enzymes [36]. The exact sialyltransferases or sialidases that modulate
apoC-I1I sialylation remain to be identified, but two candidate sialyltransferases are 0.2,3-sialyl-
transferase, that can add sialic acid to galactose in position 3’ (ST3Gal-I), and 0.2,6-sialyltrans-
ferase that can add sialic acid to GalNAc in position 6" (ST6Gal-I). Human GWAS study
implicated GALNT?2 as an enzyme that regulates HDL and TG metabolism [37], potentially by
modulating apoC-III glycosylation [38]. Carriers of GALNT2 gene variants have altered
apoC-III sialylation patterns [28]. In addition, GALNT?2 expression is under glycemic control
[39]. Neuraminidase, a lysosomal enzyme responsible for removal of sialic acid residues of pro-
teins, has been detected in the circulation. However, desialylation activity via this enzyme in
plasma is unlikely, since the optimal pH for the reaction ranges from 4-5 [20]. Roghani et al
[19] demonstrated that apoC-III sialylation is not essential for its secretion or packaging into
VLDL using a cell line expressing Thr-to-Ala 74 apoC-III mutant. It is thus likely that apoC-III
sialylation is a variable and nonobligatory step for further protein processing and secretion
[20].

Our study is novel for the following reasons: (1) we used a high throughput mass spectrom-
etry-based technique to identify apoC-III proteoforms in plasma; (2) we examined an obese
group not taking any medications that can alter lipid physiology and without the confounding
effects of type 2 diabetes hyperglycemia; (3) our obese study group was assessed for measures
of insulin sensitivity (which is a factor that regulates apoC-III expression); and (4) the study
highlights important changes in lipid metabolism with obesity that appear early in adolescence
with potential implications for diabetes complications later on. Previous studies using different
populations and techniques present conflicting results on the role of apoC-I1I sialylation in TG
metabolism. In particular, lipid therapies (statins, fish oil, fibrates and niacin [26, 40]) and
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metformin [22] have been reported to increase apoC-I1I sialylations confounding the interpre-
tation of these results. In agreement with our findings, Savinova et al [26] found relative
decreases in apoC-III, to apoC-III; in patients with metabolic syndrome compared to controls.
In addition, an earlier study by Falko et al demonstrated that high carbohydrate diet preferen-
tially increases apoC-III, but not the other proteoforms [24]. Dietary weight loss or gastric
bypass reduced the ratio of apoC-I1I; / apoC-III, [21, 22]. In contrast to our findings and those
of others [24, 26, 40], two other studies reported an association between increased apoC-III,
and type IV hypertriglyceridemia [17, 41]. This discrepancy could have resulted from examin-
ing different populations, the use of lipid altering therapies and by the use of different method-
ologies (such as isoelectric focusing) to assess apoC-III sialylations.

Although a minor fraction of apoC-III is carried by LDL, increases in apoC-III on LDL were
observed in diabetes [42]. These changes are considered atherogenic [42], as apoC-III on LDL
associates with small dense LDL formation [18]. We are currently investigating the hypothesis
that more efficient liver uptake of sialylated apoC-III on VLDL enhances TG metabolism and
limits its conversion to LDL, resulting in the appearance of apoC-III on LDL. This is a potential
mechanism that can explain the relation between apoC-III, and plasma TG.

Recruiting healthy controls in pediatric research is challenging, yet we were able to recruit a
small number of normal weight participants. Our control subgroup, however, was small in size,
with younger individuals, and fewer males than the overweight and obese subgroups. The dif-
ferences in apoC-III proteoform patterns persisted after adjusting for age and sex. Our study
was conducted in a younger Hispanic population and generalization to different age groups
and ethnicities requires additional studies. MALDI TOF MS affects the carboxyl groups in gly-
cosylated proteins and causes their loss, therefore it is considered less efficient in analyzing gly-
cans that contain carboxyl groups (i.e. sialic acid contains one carboxyl group). The majority of
studies which report this issue are focused on analyzing isolated glycans, or glycans from glyco-
sylated proteins obtained after enzyme digestion, rather than looking at them in the complex
structure of the protein [43]. In addition, literature confirms that loss of sialic acid in glycans is
common when MS/MS analyses are performed [43] (which was not the case for our sample
set). The benefit of MSIA (used in our study) is that the glycated proteoforms are analyzed
intact, and in a very short time (to complete 5000 mass spectra average takes less than 15s). In
addition, all samples throughout the analysis were treated in the same way (same laser intensity
for ionization). A control plasma sample was analyzed in triplicate with each run and relative
percent ratios for all apoC proteoforms (including the sialylated and asialylated apoC-III) were
compared between the different runs. The variability between the signals from apoC-III pro-
teoforms that contained zero, one and two sialic acids was <10%. Neither apoC-IIIy, nor
apoC-Illyp, have sialic acid in their structure. The low abundance of the native (non-glycosy-
lated apoC-III proteoforms—apoC-I1II,,) as opposed to the glycosylated apoC-III is in accor-
dance to previous literature data [44]. Furthermore, Bondarenko et al [44] demonstrated
similar profiles of the apoC-III sialic acid proteoforms with both MALDI and ESI-TOF (which
is a softer ionization technique), indicating that the MALDI jonization did not induce removal
of sialic acids in intact apoC-III..

We conclude that apoC-I1II proteoforms are associated with obesity and insulin signaling
with apoC-III, showing a different pattern of association. ApoC-III,, unlike the other apoC-III
proteoforms, did not associate with greater fasting plasma TG. Our findings support kinetic
studies to examine how the different proteoforms regulate VLDL clearance. Measuring plasma
apoC-III sialylation ratio (such as the ratio of apoC-III, / apoC-III,) can provide important
insights into the biology of TG metabolism in conditions such as obesity and metabolic
syndrome.

The minimal dataset is included in the supporting documents (S1 Table).
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