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ABSTRACT

Cell segmentation is a fundamental task in analyzing biomedical images. Many computational methods have been developed

for cell segmentation, but their performances are not well understood in various scenarios. We systematically evaluated

the performance of 18 segmentation methods to perform cell nuclei and whole cell segmentation using light microscopy

and fluorescence staining images. We found that general-purpose methods incorporating the attention mechanism exhibit

the best overall performance. We identified various factors influencing segmentation performances, including training data

and cell morphology, and evaluated the generalizability of methods across image modalities. We also provide guidelines for

choosing the optimal segmentation methods in various real application scenarios. We developed Seggal, an online resource

for downloading segmentation models already pre-trained with various tissue and cell types, which substantially reduces the

time and effort for training cell segmentation models.

INTRODUCTION

Cell morphology, which describes the shape, size, and structure of cells, is crucial for understanding the types and states of

cells and how cells respond to their microenvironments1–7. The study of cell morphology is enabled by biomedical imaging

technologies such as phase-contrast microscopy8 and multiplexed fluorescence imaging9. However, these technologies do

not directly provide the boundaries of cells, and the cell boundaries must be defined either manually or by computational

methods. While manually identifying cell boundaries is infeasible for a large number of images, computational methods for

cell segmentation become indispensable for delineating cell boundaries in most settings. Many downstream analysis tasks,

such as modeling sub-cellular patterns10, 11, screening genetic or chemical perturbations12, 13, tracking the cell migration and
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development14, 15, and deciphering cell physiological status16, 17, depend on the computationally identified cell boundaries. Thus,

an accurate computational method for cell segmentation is of paramount importance for appropriately handling biomedical

images and extracting insights from the data.

The advancement of deep learning in the past decade has inspired numerous cell and image segmentation methods that

significantly outperform traditional approaches, such as the watershed method18. These methods can be categorized into

two classes. The first class includes methods developed and tested specifically for biomedical images, such as Cellpose19,

StarDist20, RetinaMask21, Mesmer22, and FeatureNet23. The second class comprises methods like Centermask224, Mask

RCNN25, ResNeSt26, MS RCNN27, Mask2former28, Cascade Mask RCNN seesaw29, Swin Transformer30, SOLOv231, RF-

Next32, HRNet33, Res2Net34, and Segment Anything35, developed for more general purposes of instance segmentation. In

principle, these general-purpose methods are applicable to biomedical images for cell segmentation, as it is a form of instance

segmentation. However, they were primarily tested on generic datasets such as ImageNet36, and their effectiveness in cell

segmentation remains largely unexplored.

The performances of cell segmentation methods were compared in previous studies, including the Cell Tracking Challenge37,

the 2018 Data Science Bowl challenge38, and a recent grand challenge organized by NeurIPS39. However, these studies have

several limitations. First, the volumn of data included in these studies is limited. For instance, the 2018 Data Science Bowl

provides 37,333 annotated nuclei, and the NeurIPS challenge provides 168,491 annotated cells. These numbers are substantially

smaller than those of recently published datasets like LIVECell8, 40 and TissueNet9, 41, each containing more than a million

annotated cells or nuclei. Since these large datasets are publicly available for training cell segmentation methods, the results of

previous challenges no longer reflect the state-of-the-art performance of cell segmentation methods. Second, the performance

of cell segmentation methods can vary dramatically across tissue types and imaging technologies. Previous benchmark studies

focus only on the overall performance, averaged across various scenarios, and lack detailed evaluations for each tissue type

and imaging technology. Since most segmentation tasks involve one tissue type using one imaging technology, the value of

previous benchmark studies is limited in real-world practice for selecting the most appropriate segmentation method. Third,

studies like the NeurIPS and Data Science Bowl challenges focus on evaluating methods submitted by challenge participants.

These methods often lack open-source software packages with well-documented vignettes, making them difficult to apply to

new datasets, especially for users without extensive training in computer programming and machine learning. In summary, a

more systematic evaluation of cell segmentation methods is still needed to guide the practice of cell segmentation in real-world

applications.

To address these limitations, we conducted a systematic evaluation of computational methods for cell segmentation, aiming

to provide guidelines for applying and developing these methods in practical applications. The importance of this study is

threefold. For researchers who are designing experiments, this study can help to decide a cost-effective strategy for generating

imaging data. For researchers who have collected imaging data, this study can help identify the best-performing method and

associated training data, depending on the available computational resources. For machine learning researchers, this study

sheds light on potential opportunities that could lead to the development of more powerful cell segmentation methods in the

future. In addition, we have also provided the pre-trained models for each cell segmentation method, tissue type, and imaging

technology as a publicly available and freely accessible resource, significantly reducing the effort and computational resources

required for training cell segmentation methods.

2/25

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.28.577670doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.28.577670
http://creativecommons.org/licenses/by-nc/4.0/


RESULTS

Overview

In this study, we evaluated the performance of 18 instance segmentation methods for both light microscopy and fluorescence

staining images. These 18 methods can be divided into two categories. The first category comprises methods designed

for biomedical images, including Cellpose19, Mesmer22, StarDist20, RetinaMask21, and FeatureNet23. The second category

comprises methods designed for generic instance segmentation tasks, including Centermask224, Mask RCNN25, ResNeSt26, MS

RCNN27, Mask2former28, Cascade Mask RCNN Seesaw29, Swin Transformer (Swin-S and Swin-T)30, SOLOv231, RF-Next32,

HRNet33, Res2Net34, and Segment Anything35. We include both Swin-S and Swin-T, two versions of the Swin Transformer

with different model sizes, to explore how model complexity impacts segmentation performance. Segment Anything is based

on a foundation model that does not require additional training or fine-tuning.

The entire evaluation dataset comprises more than 12,400 images and approximately 3 million cells, representing ten

different tissue types and eight different cell types. We collected 7,022 images generated by multiplexed fluorescence imaging

platforms from TissueNet9, 41. Each image includes a nuclear channel (such as DAPI) and a membrane or cytoplasm channel

(such as E-cadherin or Pan-Keratin). These images feature 1.3 million whole cells and 1.2 million cell nuclei from ten tissue

types (Figure 1a). Additionally, we collected 5,387 images generated by phase-contrast microscopy from LIVECell8, 40. These

images are single-channel and contain 1,686,352 cells from eight cell types (Figure 1b). Both TissueNet and LIVECell provide

annotated cell or nuclei masks for each image, which were used as training labels and as gold standards for evaluations.

Five types of segmentation tasks were evaluated (Figure 1c). In TissueNet, segmentation methods were trained either with

nuclear channel images or dual-channel images for cell nuclei segmentation. Similarly, methods were trained either with whole

cell channel images or dual-channel images for whole cell segmentation. For LIVECell, both model training and whole cell

segmentation were performed using whole cell channel images. We assessed the performance of segmentation methods trained

by aggregating images from all tissue types or cell types, as well as those trained with images from a single tissue type or cell

type. The performance of each method was evaluated by comparing the predicted cell boundaries to the gold standard cell

masks (Figure 1d, Methods). In accordance with the COCO evaluation metrics22, 42, 43, we employed multiple quantitative

metrics, including average precision (AP), mean average precision (mAP), and average recall (AR).

In addition to segmentation accuracy, we also assessed the scalability and usability of these methods. Scalability, measured

by the running time of a method (Methods), reflects its time efficiency and the computational resources required. Usability,

gauged by factors such as code maintenance, ease of use, and hardware support (Methods), indicates the ease with which

the method can be implemented and executed in a new computing environment. These metrics provide valuable insights for

practical application.

General-purpose methods with attention mechanism have the best performance

We systematically evaluated the accuracy, scalability, and usability of 18 cell segmentation methods and ranked them based on

overall performance (Figure 2a, Supplementary Figure 1, Methods). Figure 2b shows examples of cell nuclei segmentation

with dual-channel images for each method. While the top-performing methods produce results highly consistent with the gold

standard, underperforming methods exhibit various issues. These include oversegmentation, undersegmentation, and incorrectly

identifying non-cellular structures as cells. MS RCNN fails to generate reasonable cell boundaries due to the vanishing gradient
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problem encountered during the training process.

Methods designed for general purposes outperform those developed specifically for biomedical images. Swin-S and Swin-T,

both variants of the Swin Transformer30 and intended for general purposes, demonstrate the best overall performance. In each

of the five accuracy metrics, both Swin-S and Swin-T consistently rank among the top 5 or 6 methods, evidencing their reliable

performance across various scenarios. The two models exhibit almost identical performances, indicating that model complexity

has minimal impact on the results for the Swin Transformer. Centermask2 and ResNeSt, also designed for general purposes,

achieve the highest accuracy in segmenting both nuclei and whole cells using dual-channel images in the TissueNet dataset,

and in segmenting whole cells in the LIVECell dataset. However, their overall performance is negatively impacted by their

lower scalability and usability. Among methods specifically designed for biomedical imaging, Cellpose has the best overall

performance. It shows the highest accuracy in segmenting nuclei with single-channel images in the TissueNet dataset and

performs strongly whenever nuclei images are available. However, its performance significantly declines when nuclei images

are absent. Other methods tailored for biomedical images do not exhibit strong performance.

Methods exhibiting the highest overall accuracy, such as Centermask2, ResNeSt, Swin-S, and Swin-T, all incorporate the

attention mechanism44. While Mask2former and Segment Anything also use the attention mechanism, they underperform in this

study. Notably, Segment Anything, a pre-trained foundation model not fine-tuned on our training images, may underperform

due to this reason. Other methods employing different architectures, like Cellpose with U-Net45 and Cascade Mask RCNN

seesaw with ResNet46 and FPN47, also demonstrate competitive performance.

Dual-channel images greatly enhance whole cell segmentation over single-channel images

Figure 2a compares the performance of segmentation methods trained with dual-channel versus single-channel images. Dual-

channel images significantly enhance whole cell segmentation for most methods. For instance, Cellpose and Centermask2’s

accuracy rose from 0.17 to 0.7 (312% improvement) and 0.3 to 0.79 (163% improvement), respectively. In contrast, the

performance boost from dual-channel images is minimal for cell nuclei segmentation. Only a few methods like Centermask2,

ResNeSt, and StarDist see substantial gains with over 0.1 accuracy increase. Methods such as Swin-S, SOLOv2, and Res2Net

show similar performance with both image types. However, for some, including Mask2former and Segment Anything,

performance notably declines with dual-channel images. These findings indicate varying capabilities among methods in

integrating and utilizing multi-channel images. Additionally, while cell nuclei images alone suffice for nuclei segmentation,

whole cell segmentation benefits from additional data in dual-channel images.

The performance gain from using dual-channel over single-channel images for each segmentation method varies across

different tissues (Supplementary Figure 2). For instance, in lung tissue, Centermask2’s accuracy for cell nuclei segmentation

jumps from 0.308 to 0.655 (113% improvement), while in esophagus, the increase is more modest, from 0.691 to 0.759 (9.8%

improvement). These findings are crucial for experimental design. In tissues like the esophagus, using single-channel images

for cell nuclei segmentation yields results comparable to dual-channel images, potentially reducing experiment costs. However,

for whole cell segmentation and for cell nuclei segmentation in tissues like the lung, employing dual-channel images is advised

for significantly better segmentation outcomes.
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Segmentation performance is influenced by training sample size and cell morphology

We explored the influence of various factors on cell segmentation performance across five tasks, using training images from all

tissue or cell types. Figure 3a shows the mAP of different methods when tested on various tissue or cell types. Generally, there is

a consistent trend in method performance across these tissues or cell types. For instance, lymph node metastasis, pancreas, and

esophagus consistently yield reliable segmentation results with most methods. In contrast, lung and spleen are often associated

with poor segmentation, primarily due to the extremely limited number of images in the training data (Supplementary Figure

3). These observations suggest that there are some common factors influencing segmentation performance across different

methods.

To identify common factors influencing cell segmentation, we excluded lung and spleen from the TissueNet dataset and

focused on tissue and cell types with sufficiently large numbers of training images. We employed a multiple linear regression

model, considering the method’s mAP as the dependent variable, and the number of training images, cell elongation, and cell

size as independent variables (Methods). Cell convexity was excluded due to its minimal variation across tissues (Supplementary

Figure 4). For most methods and segmentation tasks, there is a positive correlation between segmentation performance and cell

elongation, cell size, and the number of tissue-specific training images (Figure 3b). The correlation with the number of training

images is expected, as images from the same tissue typically bear more resemblance to each other than to those from different

tissues. The positive association with cell elongation and size indicates that segmentation algorithms are most effective for

larger or rounder cells, such as those in lymph node metastasis. Conversely, smaller or irregularly shaped cells, like those in

lymph nodes and the colon (Figure 3c, Supplementary Figure 5), pose challenges. This could be because smaller cells lack

distinctive features for differentiation from the background, and irregularly shaped cells are less represented in the training data.

Enhancing segmentation for such cells might be achieved by increasing their representation in the training set or integrating a

model specifically trained on these cell types into the full model using an ensemble approach.

Choice of training data impacts cell segmentation performance

We subsequently assessed how the performance of Swin-S, the top-performing method, is affected when trained with different

tissue or cell types. Figures 4a-b and Supplementary Figures 6-9 illustrate Swin-S’s performance in the TissueNet dataset,

trained individually with different tissue types or with all tissues combined. Notably, the segmentation performance is poorest

when Swin-S is trained solely with lung or spleen images, likely due to their very limited number of training images. For

tissues with adequate image quantities, segmentation performance varies with the training tissue. The best results are typically

achieved when the same tissue is used for both training and segmentation. When training and segmentation tissues differ, some

tissues demonstrate better transferability. For instance, Swin-S trained on breast tissue images consistently shows reliable

nuclei segmentation across various tissues, whereas training with tonsil images results in subpar performance in tissues like the

esophagus. Furthermore, Swin-S trained on all tissues generally outperforms its counterpart trained on a single tissue, although

the performance improvement is slight when the training and segmentation are on the same tissue. Figure 4c and Supplementary

Figure 10 illustrate Swin-S’s performance when trained with individual versus all cell types in LIVECell, leading to conclusions

similar to those from the TissueNet analysis. For instance, cell types like MCF-7 and BT-474 demonstrate relatively high

transferability across different cell types.

These results indicate that including images from diverse tissues and cell types in the training dataset is advantageous when

5/25

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.28.577670doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.28.577670
http://creativecommons.org/licenses/by-nc/4.0/


sufficient computational resources are available. In scenarios with limited computational resources, it’s essential to determine

the availability of training images from the same tissue or cell type as the target tissue for segmentation. Using such specific

images for training often yields performance nearly equivalent to that achieved with a large, varied dataset. If not available,

training should utilize images from tissues and cell types with high transferability, like breast tissue and MCF-7 cells. Figure 4d

summarizes this practical strategy for selecting training data.

Generalization of segmentation models across image modalities

In real applications, the images employed for model training and segmentation often come from different modalities. For

instance, in situ spatial transcriptomics data from platforms like Xenium typically provide only cell nuclei images, yet whole

cell segmentation is necessary to fully capture a cell’s gene expression profile. Similarly, there are scenarios where only cell

nuclei images are available for training, but segmentation must be conducted on whole cell images. These situations necessitate

a segmentation method’s ability to generalize across multiple image modalities.

Figure 5a and Supplementary Figure 11a illustrate the performance of segmentation methods when training and segmentation

use the same or different image modalities. The performance of most methods drops significantly when trained on whole cell

images and applied to cell nuclei images, compared to training and segmenting on cell nuclei images. However, Cascade Mask

RCNN seesaw and RF-Next maintain nearly identical performance in both scenarios, demonstrating strong generalizability

across image modalities. By contrast, all methods completely fail when trained on cell nuclei images and tested on whole

cell images. These findings indicate that most segmentation methods struggle with generalizability across different image

modalities.

We then explored a strategy of segmenting images using the same modality as the training data, followed by morphologically

dilating cell nuclei segmentation to approximate whole cell segmentation, or eroding whole cell segmentation for cell nuclei

segmentation (Methods). This approach is currently used by 10x Xenium to provide an approximate whole cell segmentation,

where the cell nuclei mask is expanded by 15 µm or until reaching another cell boundary. Figure 5b and Supplementary Figure

11b demonstrate that expanding cell nuclei segmentation by varying pixel counts generally enhances whole cell segmentation

performance. For example, in epidermis tissue, Swin-S shows a dramatic increase from 0.341 to 0.598 (75% improvement) with

expansion. However, the optimal expansion degree varies across tissues. In ResNeSt, tonsil segmentation peaks at a 6-pixel

expansion, whereas colon segmentation deteriorates with any nuclei boundary expansion. Therefore, a fixed-pixel expansion, as

implemented by 10x Xenium, may not be optimal for all tissues. Figure 5c and Supplementary Figure 11c present the results

of eroding whole cell segmentation for cell nuclei segmentation. The performance gains are more modest, with most cases

showing optimal results with a one-pixel erosion.

SegGal: a gallery of pre-trained cell segmentation models

As shown in this study (Figure 4) and in our previous work7, cell segmentation performance is significantly influenced by

the training data. Pre-trained models, developed using a vast array of images from various tissues and cell types, can greatly

enhance cell segmentation. However, training these models demands considerable computational resources and the effort to

collect a large number of images. Despite their potential benefits, such comprehensive pre-trained models are often not readily

available. While generic segmentation methods typically lack pre-trained models specialized for cell images, biomedical image

segmentation methods like Cellpose only offer pre-trained models trained on a small numer of images.

6/25

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.28.577670doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.28.577670
http://creativecommons.org/licenses/by-nc/4.0/


To address this challenge, we have developed SegGal, a gallery of pre-trained cell segmentation models, leveraging the

numerous models trained in this study. SegGal includes 138 pre-trained models across 18 segmentation methods, catering

to five different segmentation tasks. The training process utilized 450 GPUs and required 18,000GB of memory, spanning

approximately 60 days on the computing clusters of three universities. This effort is equivalent to over 70 years of training with

a single GPU. These pre-trained models are readily available for download from the SegGal website, allowing users to apply

them directly to segmentation tasks. This not only significantly reduces the computational load for model training but also

streamlines the cell segmentation process.

DISCUSSION

In this study, we systematically evaluated 18 segmentation methods for their effectiveness in segmenting cell nuclei and whole

cells using multiplexed fluorescence and phase-contrast microscopy images from the TissueNet and LIVECell databases. These

methods, encompassing both general-purpose and biomedical image-focused approaches, were assessed based on accuracy,

usability, and scalability. We investigated various factors influencing segmentation performance, such as the use of single

or dual-channel images, training sample size, choice of training data, and cell morphology. Additionally, we evaluated the

methods’ ability to generalize across different image modalities. Lastly, we developed Seggal, an online resource providing

access to a vast collection of pre-trained cell segmentation models.

Our findings contribute to the study of cell segmentation in three key areas. For researchers planning to generate imaging

data, our study indicates that cell nuclei images are crucial for both cell nuclei and whole cell segmentation, with whole cell

images proving beneficial in certain scenarios. For those developing cell segmentation methods, our findings highlight the

attention mechanism, utilized by several top-performing methods, as a promising architecture worthy of further exploration.

Additionally, our study offers a systematic guideline for researchers seeking to apply these methods in cell segmentation.

Figure 6 provides a comprehensive list of cell segmentation methods suitable for various scenarios. Through the Seggal online

resource, users gain direct access to a vast array of pre-trained models, significantly easing the burden of model training across

different scenarios.

As indicated by this study, segmentation performance improves when training data includes a large variety of images

from different tissues and cell types. Although ’Segment Anything,’ the sole foundation model evaluated in our study, did not

perform well, we hypothesize that such a model could have significant potential if trained with massive, diverse datasets of cell

images. TissueNet’s adoption of a human-in-the-loop approach demonstrates a viable method for generating extensive training

datasets at a relatively low cost. Such datasets could pave the way for developing a foundational model broadly applicable to

cell segmentation and potentially other biomedical image segmentation tasks.

METHODS

Datasets

TissueNet22 dataset V1.1, available on the TissueNet website41, comprises 7,022 staining images. These are distributed as

2,580 images in the training set, 3,118 in the validation set, and 1,324 in the testing set. The images span ten tissue types of

breast, colon, epidermis, esophagus, lung, lymph node, pancreas, spleen, tonsil, and lymph node metastasis, and originate from

three species of human, mouse, and macaque. Each image features a nuclear staining channel and a membrane or cytoplasm
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whole-cell staining channel, along with annotations for both nuclei and whole cells, derived from an iterative human-in-the-loop

process22. The training set images have a resolution of 512× 512 pixels, while those in the validation and testing sets are

256×256 pixels each.

LIVECell48 dataset was obtained from the LIVECell website40. It encompasses 5,387 microscopy images, divided into 3,253

for training, 570 for validation, and 1,564 for testing. These images represent eight distinct cell types with unique morphological

features, including A172, BT-474, BV-2, Huh7, MCF7, SH-SY5Y, SkBr3, and SK-OV-3. Each image, with a resolution of

704×520 pixels, includes manually labeled and expert-validated cell annotations.

Image preprocessing

All images in TissueNet and LIVECell datasets were preprocessed following a common practice in the field19, 22. Specifically,

each image along with the corresponding annotations were cropped to sliding windows. The size of each window is 256 × 256

and the step size is 75% of window size (192 pixels). The sliding windows scan across the image, from left to right and top

to bottom, at each step making a local crop. After reaching the end of a row, the window moves down by the step size and

continues scanning until the entire image has been covered, ensuring comprehensive coverage and increasing the likelihood

of accurate detection. Pixel values were then normalized to account for exceptionally bright, isolated pixels, variations in

staining intensity, and signal-to-noise ratios across tissue types and imaging platforms49. Specifically, we first compute the

0.1% (Minp) and 99.9% (Maxp) intensity percentiles of an image (V ) using numpy.percentile and then the normalized image

(V̂ ) is obtained by applying Max-Min normalization, expressed as V̂ = (V −Minp)/(Maxp −Minp), thereby ensuring effective

outlier exclusion in the process. Furthermore, we employed Contrast Limited Adaptive Histogram Equalization (CLAHE)50 to

balance the dynamic range within each image.

Segmentation methods

Unless otherwise specified in the following, all methods were trained and applied with the default parameters. Each method

was adjusted to fit the input image dimensions, including height, width, and channel number. These methods, including Swin-S,

Swin-T, Cascade Mask RCNN seesaw, SOLOv2, Res2Net, RF-Next, HRNet, Mask2former, Mask RCNN, and MS RCNN,

were performed on MMDetection platform (version 2.28.2), an open-source object detection toolbox.

Cellpose19 employs the general U-Net45 architecture, which involves multiple downsampling steps of convolutional fea-

tures, followed by a symmetrical upsampling process. Instead of feature concatenation, Cellpose uses direct summation

between the upsampling and downsampling phases to reduce the number of parameters. Additionally, its standard U-Net

building blocks are replaced with residual blocks46 to enhance performance. Cellpose (version 1.0.2) was downloaded from

https://github.com/MouseLand/cellpose and trained on a single GPU.

Mesmer22 utilizes a ResNet-5046 backbone model for feature pyramid extraction in image analysis. These extracted features

are subsequently transformed into pyramid structures via a Feature Pyramid Network (FPN)47. The pyramid features are then

employed to generate predicted cell instance masks, matching the size of the input image, through semantic segmentation heads.

Mesmer (version 0.12.9) was downloaded from https://github.com/vanvalenlab/deepcell-tf. For training,
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Mesmer was configured on 4 GPUs with a learning rate of 0.0004, a batch size of 8, and a total of 200 epochs.

StarDist20 employs star-convex polygons for cell instance localization, offering superior shape representation compared to

bounding boxes without the need for further shape refinement. It is built upon the U-Net45 architecture. To prevent feature com-

petition between the two subsequent output layers, StarDist integrates an additional 3 × 3 convolutional layer with 128 channels,

accompanied by ReLU activations. Specifically, it utilizes a single-channel convolutional layer with sigmoid activation for object

probability output, and for polygon distance estimation, the number of output layers aligns with the radial directions without an

extra activation function. StarDist (version 0.8.3) was downloaded from https://github.com/stardist/stardist.

StarDist was trained on a single GPU for 100 epochs.

RetinaMask21, an advanced version of RetinaNet51, serves as a unified, one-stage object detection system. It utilizes a ResNet-

50 backbone network to compute a comprehensive convolutional feature map. This backbone connects to two subnetworks:

one for convolutional object classification and another for bounding box regression, based on the extracted feature map. The

key advancement of RetinaMask over RetinaNet is the introduction of instance mask prediction during training. As a result,

RetinaMask outputs not only bounding boxes and classifications but also precise cell instance masks. RetinaMask (version 0.1.1)

was downloaded from https://github.com/vanvalenlab/deepcell-retinamask. For training, RetinaMask

was configured on 4 GPUs with a learning rate of 0.0005 over 100 epochs.

FeatureNet23 consists of an encoder for generating a low-dimensional feature representation of the input image, utiliz-

ing convolutional filters, activation functions, and max-pooling operations. These features are then input into a classifier,

based on a fully connected network, which assigns probability scores to three classes: boundary, interior, and background.

These probabilities are used to create the final cell instance masks. FeatureNet (version 0.12.9) was downloaded from

https://github.com/vanvalenlab/deepcell-tf. For training, FeatureNet was configured on 4 GPUs with a

learning rate of 0.001, a batch size of 16, and 25 epochs.

Centermask224 comprises three key components. The first is the VoVNetV2, an efficient backbone network for feature

extraction. The second, FCOS52, is an anchor-free, proposal-free object detection network that directly predicts bounding

box coordinates through per-pixel analysis. The final component, the Spatial Attention-Guided Mask (SAG-Mask), uti-

lizes outputs from the first two components for precise cell instance mask prediction. Centermask2 was downloaded from

https://github.com/youngwanLEE/centermask2. Centermask2 was configured on 4 GPUs with 100,000 itera-

tions and a batch size of 32.

Mask RCNN25 follows the spirit of Faster R-CNN architecture53 with the same two-stage procedure. The first stage generates

proposals about the regions where there is an object (Region Proposal Network, RPN53), which is identical first stage with

Faster R-CNN. In the second stage, in parallel to the branch predicting the class and bounding box, Mask RCNN adds an

additional segmentation branch to output a binary mask for each Region of Interest (ROI). Mask RCNN was performed on 4

GPUs with 100 epochs and 24 batch sizes.
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MS RCNN (Mask Scoring R-CNN)27 improves upon the instance segmentation capabilities of Mask RCNN. Unlike Mask

RCNN, which uses the segmentation branch’s output as the final mask prediction, MS RCNN adds a mask scoring branch.

This branch calculates a mask IoU (Intersection over Union) score, assessing the overlap between the predicted and ground

truth binary masks. This score provides a more accurate evaluation of instance segmentation quality without adding significant

complexity or computational burden. MS RCNN was trained on 4 GPUs with a configuration of 50 epochs and a batch size of 48.

ResNeSt26 introduces a multi-branch architecture that employs channel-wise attention across its branches, combining the

strengths of feature-map attention and multi-path representation. Its key innovation, the Split-Attention (SA) module, acts as a

modular, versatile block, easily substituting the conventional residual block. This module fosters more diverse representations

through cross-feature interactions. Such diversity enhances segmentation performance without increasing model complexity

or reducing computational efficiency, thereby offering a scalable solution for various tasks. ResNeSt (version 0.1.1) was

downloaded from https://github.com/chongruo/detectron2-ResNeSt. ResNeSt was configured on 4 GPUs

with a ResNet FPN backbone, performing 50,000 iterations and using a batch size of 4.

Mask2former28, a universal image segmentation architecture, evolves from the Maskformer meta-architecture54 and includes a

ResNet-50 backbone for feature extraction, a pixel decoder, and a Transformer decoder. Its key advancement is the adoption

of a Transformer decoder that applies masked attention, focusing on localized features around predicted segments, rather

than using conventional cross-attention. These segments, derived from the pixel decoder, enable the refined output of object

instances. Mask2former was configured on 4 GPUs for 50 epochs and a batch size of 36.

Cascade Mask RCNN seesaw29 enhances Cascade Mask RCNN by introducing an innovative seesaw loss function to address

the class imbalance issue common in object detection and instance segmentation tasks. While traditional methods like Focal

Loss51 provide some relief, they may fall short in extreme class imbalance situations. Seesaw loss dynamically adjusts loss

weights for each class, based on the class sample size in each mini-batch. It employs a seesaw mechanism that increases

the weight for minority classes and decreases it for majority classes, ensuring more balanced learning. Additionally, it gives

more weight to harder samples within each class to further equalize the learning process. Cascade Mask RCNN seesaw was

configured on 4 GPUs for 50 epochs and a batch size of 8.

Swin Transformer30 merges the strengths of convolutional neural networks (CNNs) and transformers, offering a scalable

and efficient approach for various visual tasks. Its hierarchical structure is a key innovation, utilizing shifted window-based

self-attention mechanisms to process local information within small, discrete windows. These windows are progressively

merged and resized across stages, enabling the model to effectively capture both local and global contexts. The primary

distinction between Swin-T and Swin-S lies in their size and computational complexity, with Swin-S being twice as large as

Swin-T. Both variants were trained on 4 GPUs for 50 epochs and a batch size of 8.

SOLOv231, an evolution of the original SOLO55, adopts a refined approach that focuses on direct per-pixel predictions instead
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of conventional bounding-box techniques. At its core, SOLOv2 features a fully convolutional network structure, category-

specific kernel predictions, and the innovative Matrix Non-Maximum Suppression (Matrix NMS) for refining overlapping

instances. Initially, it utilizes the same ResNet-50 backbone and FPN as SOLO for feature extraction, then integrates a category-

specific kernel prediction network to infer all instance masks. Matrix NMS, notably faster and more accurate than traditional

NMS56, enhances the accuracy and efficiency of the model. SOLOv2 was trained on 4 GPUs for 60 epochs with a batch size of 8.

RF-Next32 primarily follows the Multi-Stage Temporal Convolutional Network (MS-TCN)57 approach, introducing a global-

to-local search method that includes two innovative components: a genetic-based global search algorithm for generating

competitive receptive field combinations, and an expectation-guided iterative local search for fine-tuning these combinations.

Specifically, RF-Next uses Mask RCNN as its instance segmentation foundation and integrates these components into convolu-

tional layers with kernels larger than one, optimizing segmentation results. RF-Next was configured on 4 GPUs for 200 epochs

with a batch size of 8.

HRNet33 introduces an architecture that features parallel multi-resolution convolutions (PMRC), repeated multi-resolution

fusions (RMRF), and a representation head maintaining high-resolution representations throughout. Diverging from traditional

models that downsample and then upsample, HRNet starts with a high-resolution subnetwork and progressively integrates

additional high-to-low resolution subnetworks in stages. It continuously fuses these multi-resolution subnetworks in parallel,

enabling dynamic feature interplay. HRNet’s core design focuses on iterative multi-resolution fusions, constantly exchanging

and integrating information across these parallel subnetworks to capture both fine and coarse features in the input data compre-

hensively. HRNet was configured on 4 GPUs for 200 epochs with a batch size of 24.

Res2Net34 introduces a modification to the ResNet architecture with a granular multi-scale design. Unlike traditional ResNet

models, Res2Net splits input features in each residual block into subsets. Each subset processes different scales using varying

dilation rates, functioning similarly to parallel sub-ResNets. These multi-scale feature maps are then efficiently integrated

through convolution, enabling effective information sharing between scales. The key strength of Res2Net lies in its hierarchical

block structure, which facilitates enhanced feature propagation and efficient exploitation of multi-scale features. Res2Net was

configured on 4 GPUs for 20 epochs with a batch size of 8.

Segment Anything35 introduces the Segment Anything Model (SAM) for promptable segmentation, incorporating three key

components: a Masked AutoEncoders (MAE)58-based image encoder adapted for high-resolution inputs, a flexible prompt

encoder (PE) capable of processing various prompts, and a fast mask decoder (ME). SAM utilizes a pre-trained Vision

Transformer (ViT59) as its image encoder. The prompt encoder can handle both sparse prompts (interpreted via positional

encodings60 and combined with specialized embeddings) and dense prompts (integrated with the encoded image). The mask

decoder then amalgamates the embeddings from both components to generate segmentation masks using a modified Transformer

decoder block44, followed by a dynamic mask prediction head, which outputs the mask foreground probability for each

pixel. Segment Anything, downloaded from https://github.com/facebookresearch/segment-anything,

was employed for segmentation, utilizing its default settings and the pre-trained ViT-H SAM model. Consequently, the process
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did not involve any GPU-based training.

Execution and Parameter settings

Each method was independently executed on a dataset for a specific segmentation task. For each task, we allocated 200G of

memory and either a single GPU or multiple GPUs of the same type, depending on the method’s support for multi-GPU training.

To ensure fair comparison across all methods, we adhered to the parameter settings specified in their original publications.

Segmentation benchmarks

We assessed segmentation performance in this study using the COCO evaluation metrics22, 42, 43 from pycocotools package

(version 2.0.6), a standard evaluation method in instance segmentation. To ensure all cell instances per image were considered,

we increased the parameter for maximum detections per image to 3000, from the default value of 100. The details of the

evaluation metrics are described below:

Intersection over Union (IoU)

For the oth image in the test set with resolution of H ×W pixels, let {Sp
k,o ∈ {0,1}H×W}K

k=1 be the predicted instances of K

cells, and let {Sg
k′,o ∈ {0,1}H×W}K′

k′=1 be the ground truth annotations of K′ cells. The Intersection over Union (IoU) score of

the kth predicted cell instance is computed by:

IoU p
k,o = max

{
Sp

k,o ∩Sg
k′,o

Sp
k,o ∪Sg

k′,o

}K′

k′=1

 . (1)

Likewise, the IoU score of the k′th ground truth cell annotation is computed by:

IoUg
k′,o = max

{
Sp

k,o ∩Sg
k′,o

Sp
k,o ∪Sg

k′,o

}K

k=1

 . (2)

Precision and Recall

Let t be a threshold taking values from {t | t = 0.5+ 0.05i,0 ≤ i ≤ 9}. For a given threshold t, a predicted cell instance k

is considered a true positive (TP) if IoU p
k,o ≥ t, and a false positive (FP) if IoU p

k,o < t. A ground truth cell annotation k′ is

considered a false negative (FN) if IoUg
k′,o < t.

For the oth image and with threshold t, let T Pt,o, FPt,o, and FNt,o be the total number of true positive, false positives and

false negatives, respectively. The precision Pt,o is defined as Pt,o =
T Pt,o

T Pt,o+FPt,o
. The recall Rt,o is defined as Rt,o =

T Pt,o
T Pt,o+FNt,o

.

Average Precision and Average Recall

Across all O images in the testing set, given precision {Pt,o}O
o=1 and the recall {Rt,o}O

o=1, a step-wise precision-recall curve is

built, expressed as Pt,o =Ψ(Rt,o) and then to ensure the curve is monotonically decreasing, an interpolated curve P̂t,o = Ψ̂(Rt,o)

is obtained by calculating the P̂t,o−1 = max
Rt,o≥Rt,o−1

(Ψ(Rt,o),Ψ(Rt,o−1)). Finally, the average precision with threshold t (APt) is

computed by:

APt =
O

∑
o=2

(Rt,o −Rt,o−1)Ψ̂(Rt,o). (3)
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The average recall with threshold t (ARt ) is computed by:

ARt =
1
O

O

∑
o=1

Rt,o. (4)

Mean averaged precision (mAP) is calculated as the average of APt across all possible values of t.

Cell morphology

Cell convexity. Let rcell be the perimeter of a cell’s boundary, and let rconvex be the perimeter of the cell’s convex hull, the

smallest possible convex shape that completely contains the cell region. The cell convexity of the cell is defined as rconvex/rcell.

Cell elongation. Let B be a set of two-dimensional points representing the boundary of a cell. We compute ea and eb, the two

eigenvalues of the covariance matrix of B, where ea > eb. Cell elongation is computed as eb/ea.

Cell size. The size of a cell instance is defined as the number of pixels contained within the boundary of the cell.

Morphological Operations

The binary_dilation and binary_erosion functions from the scipy (version 1.9.2) multidimensional image

processing (ndimage) package were used for cell nuclei mask dilation and whole cell mask erosion, respectively.

Scalability

For each dataset evaluated in this study, we recorded the running time T of a segmentation method as the time taken to finish

model training after all packages were loaded. Different segmentation methods have different choices of batch size and number

of epochs or iterations, which may affect their running time. To ensure a fair comparison across methods, we calculated

standardized running time as Ts = T × B
8 × 50

E for methods using epochs as a parameter, and Ts = T × B
8 × 50N

I×B for methods

using iteration as a parameter. Here B, E, I, and N represent the batch size, number of epochs, number of iterations, and number

of images training samples, respectively.

Usability

We evaluated the usability of each method using three metrics, each manually scored on a scale from 1 to 10, with higher scores

indicating better performance. The scores for these three metrics are shown in Supplementary Table 1.

Code Maintenance assesses the ease of updating and maintaining a method’s programming code. This metric takes into

account the clarity and readability of the code, adherence to good software engineering practices (such as modular design,

encapsulation, version control system usage, and comprehensive commenting), and the availability of supporting documentation.

Ease of Use assesses the simplicity with which end users and developers can utilize and interact with the method. Key

considerations include the ease of training the model, adjusting parameters, interpreting outputs, and resolving any encountered

issues.
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Hardware Support assesses a method’s compatibility with various GPU architectures and its ability to fully leverage specific

hardware features, such as GPUs’ parallel processing capabilities. Additionally, this criterion considers the method’s adaptability

to different hardware configurations and its capacity to efficiently scale according to available resources.

Ranking Scheme

The methods are ranked by their overall performance. The overall performance is calculated as the average of seven metrics:

the accuracy in TissueNet nuclei segmentation with dual-channel images, the accuracy in TissueNet nuclei segmentation with

nuclei images, the accuracy in TissueNet whole cell segmentation with dual-channel images, the accuracy in TissueNet whole

cell segmentation with whole cell images, the accuracy in LIVECell whole cell segmentation, averaged usability score, and

averaged scalability score.

Each of the five segmentation accuracy is calculated as the average of five metrics of that task: mAP, AP0.5, AP0.75, AR0.5,

and AR0.75.

The averaged usability score is calculated as the average of normalized scores of code maintenance, ease of use, and

hardware support. To obtain the normalized score of code maintenance, the raw scores of code maintenance across 18

segmentation methods were first scaled to have a mean of 0 and a standard deviation of 1. The normalized score was then

obtained by mapping the scaled scores to a range between 0 and 1 using the cumulative density function of a standard normal

distribution. Normalized scores of ease of use and hardware support were obtained similarly.

The averaged scalability score is calculated as one minus the average of normalized running time of TissueNet nuclei

segmentation, TissueNet whole cell segmentation, and LIVECell segmentation. Running time of TissueNet nuclei segmentation

is calculated as the average running time of TissueNet nuclei segmentation with nuclei and dual-channel images. Similarly,

running time of TissueNet whole cell segmentation is calculated as the average running time of TissueNet whole cell

segmentation with whole cell and dual-channel images. The three raw running time were converted to scaled and then

normalized running time using the same normalization method for calculating normalized usability scores.

DATA and CODE AVAILABILITY

The TissueNet dataset41 is available on the website: https://datasets.deepcell.org/data.

The LIVECell dataset40 is available on the website: https://sartorius-research.github.io/LIVECell/.

The preprocessing TissueNet datasets are available on Google Drive: https://drive.google.com/drive/folders/1dUtqhvkF-

M7nSwtxUpY0QmgHIgA4pinc?usp=drive_link.

The preprocessing LIVECell datasets are available on Google Drive: https://drive.google.com/drive/folders/1mJayXI2W9DLL17

fsD3j2AcFySebnsoza?usp=drive_link.

SegGal website is available on the website: https://boomstarcuc.github.io/SegGal/.

All methods used in this study are integrated into the GitHub: https://github.com/BoomStarcuc/Cell-Segmentation-Benchmark

with License MIT.
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Figure 1. a, TissueNet dataset with ten tissue types. The image channel marked in green represents the nuclei channel, and the channel
marked in blue represents the whole cell channel. b, LIVECell dataset with eight cell types. Only whole cell images are provided. c, The
benchmarking overview for cell segmentation. This benchmarking study is conducted on two datasets, TissueNet and LIVECell, with two
training strategies. TissueNet employs two input configurations due to nuclei and whole cell available while LIVECell only involves one
input configuration due to only whole cell provided. d, Cell segmentation benchmarks with mAP, APt , and ARt . The segmentation
benchmarks strictly follow the COCO evaluation metrics22, 42, 43, which is the standard method of evaluation in the field of instance
segmentation, to comprehensively evaluate cell segmentation accuracy.
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Figure 2. a, A comprehensive evaluation of methods involving segmentation accuracy, usability, and scalability. Segmentation accuracy is
assessed on two datasets encompassing five segmentation tasks: nuclei segmentation with dual-channel images, nuclei segmentation with
nuclei images, whole cell segmentation with dual-channel images, whole cell segmentation with whole cell images in TissueNet and whole
cell segmentation with whole cell images in LIVECell. Usability and scalability metrics shed light on the practicality and training time
efficiency of each method, respectively. Overall performance and overall accuracy are obtained by computing the arithmetic mean of the
seven experiments and five experiments, respectively. Each row is a method, and each column is an experiment. All methods are sorted in
descending order based on the overall performance. b, Visual results of lymph node metastasis in nuclei segmentation with dual-channel
images.
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Figure 3. a, Evaluation results from training on all tissue or cell types and testing either on All types or on each tissue type or cell type.
These results do not consider usability and scalability. Each row is a method, and each column is a type. All methods are ranked in
descending order based on the arithmetic mean of the All scores across five segmentation tasks. Within per task, the tissue or cell types are
ranked in descending order based on the arithmetic mean for each type across all methods. b, Correlation between segmentation performance
and the number of training images, cell elongation, and cell sizes. c, Visual results of all tissue types for Centermask2 in nuclei segmentation
with dual-channel images.
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Figure 4. a, Evaluation results of Swin-S in TissueNet (First row from left to right: nuclei segmentation with dual-channel images and nuclei
segmentation with nuclei images; Second row from left to right: whole cell segmentation with dual-channel images and whole cell
segmentation with whole cell images) and c, Evaluation results from Swin-S in LIVECell (whole cell segmentation with whole cell images).
They present the performance impact of cell segmentation when trained on a single tissue or cell type and tested on each tissue or cell type
and all tissue or cell types denoted as Overall. The performance across all tissue or cell types is ranked in descending order for both rows and
columns. Here, All Tissue Types or All Cell Types present the results trained on all tissue or cell types to facilitate an intuitive comparison
against specialized training on one type. b, Visual results of Swin-S in nuclei segmentation with dual-channel images in TissueNet. The rows
indicate the tissue types used for training, while the columns represent the tissue types used for testing. Only the first three rows are presented.
d, The strategy for choosing training data in real practices.

19/25

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.28.577670doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.28.577670
http://creativecommons.org/licenses/by-nc/4.0/


Figure 5. a, Generalization evaluation of segmentation models trained on one image modality and tested on a different image modality. b,
Generalization evaluation of segmentation models when dilating cell nuclei segmentation to obtain whole cell segmentation. c,
Generalization evaluation of segmentation models when eroding whole cell segmentation to obtain cell nuclei segmentation. The x-axis in b
and c represents the number of pixels expanded or shrunk, ranging from 0 to 10, where 0 represents the original segmentation results, while
the y-axis shows the average IoU scores between the expanded nuclei segmentation and the ground truth whole cell segmentation, and the
shrunk whole cell segmentation and the ground truth nuclei segmentation, respectively.
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Figure 6. Practical guidelines for method users. The methods on the right are selected based on a union of the top three in overall
performance and accuracy across respective experiments and then are ranked according to their overall performance considering accuracy,
usability, and scalability. Further to the right shows accuracy (Blue : ≥ 0.5, Yellow : ≥ 0.25, Red : ≥ 0.0), usability (Blue : ≥ 0.5, Yellow :
≥ 0.25, Red : ≥ 0.0), scalability (Blue : ≤ 24, Yellow : ≤ 48, Red : > 48).
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