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Abstract: Immune cells are indispensable defenders of the
human body, clearing exogenous pathogens and toxicities
or endogenous malignant and aging cells. Immune cell
dysfunction can cause an inability to recognize, react, and
remove these hazards, resulting in cancers, inflammatory
diseases, autoimmune diseases, and infections. Immune
cells regulation has shown great promise in treating dis-
ease, and immune agonists are usually used to treat cancers
and infections caused by immune suppression. In contrast,
immunosuppressants are used to treat inflammatory and
autoimmune diseases. However, the key to maintaining

health is to restore balance to the immune system, as
excessive activation or inhibition of immune cells is a
common complication of immunotherapy. Nanoparticles
are efficient drug delivery systems widely used to deliver
small molecule inhibitors, nucleic acid, and proteins. Using
nanoparticles for the targeted delivery of drugs to immune
cells provides opportunities to regulate immune cell func-
tion. In this review, we summarize the current progress of
nanoparticle-based strategies for regulating immune
function and discuss the prospects of future nanoparticle
design to improve immunotherapy.

Keywords: biomaterial; drug delivery; immune cell; immu-
notherapy; nanoparticle.

Introduction

The immune system consists of immune cells, related
molecules, and tissues that protect the body from external
influences and maintain homeostasis. It maintains a dy-
namic balance between promoting immune or inflamma-
tory processes and regulating or inhibiting functions,
playing a crucial role in tissue homeostasis and disease
progression [1]. Immunomodulatory biomaterials capable
of manipulating innate and adaptive immunity hold great
promise for many preventive and therapeutic purposes [2].
Nanotechnology enables engineered nanomaterials to
target specific organs or tissues and deliver immunomod-
ulators while avoiding adverse immunosuppressive or
immunostimulatory effects. Various nanomaterials are in
clinical trials or have been approved by the US Food and
Drug Administration (FDA) [3, 4].

Nanoparticles can modulate the immune system for
different therapeutic purposes (inflammation, autoimmune
disorders, tumors). For example, when immune cell function
is suppressed by stress, chronic infection or uncontrolled due
to autoimmune disease, allergies, transplants, and hyper-
sensitivity reactions, nanoparticles can be used as immuno-
modulators to modulate immunosuppression or activation.
Immunosuppressive nanoparticles can block the adverse
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immune response (autoimmune or allergic disease). In
contrast, immunoreactive nanoparticles can transport
cytokines and molecules that enhance the immune
response (useful for treatment in immunosuppressed
patients) [5]. Nanoparticles for tumor immunotherapy and
adjuvant nanoparticles for improved vaccines have also
been developed [6]. For example, the innate immune
response can kill tumor cells through macrophages, natu-
ral killer cells, neutrophils, and dendritic cells (DCs).
Tumor-associated antigens stimulate the maturation and
subsequent migration of DCs to the lymph nodes. Once in
the lymph nodes, it stimulates T cell activation (the adap-
tive immune system), then the activated T cells migrate
and recognize tumor cell antigens. Finally, tumor cells are
killed by cytotoxic T cells [7].

To regulate immune cell function, nanocarriers can be
applied via several approaches. (1) Nanoparticle as adjuvants
can be used to alter the response of immune cell subsets. The
adjuvant activity of nanoparticles depends on their physico-
chemical properties, and their ability to be internalized by
different cells can modulate the degree of immune cell acti-
vation. (2) Nanoparticles can deliver drugs into immune cells.
The delivery of immunomodulatory molecules via nano-
particles to stimulate the immune response may limit sys-
temic toxicity. The characteristics of the nanocarriers
(i.e., size, surface charge, or shape) can be optimized to
facilitate binding to immune cells, and specific immune cell
populations preferentially take up different modifications
(e.g., mannose modification). Cell-specific activation and se-
lective identification can only be achieved using actively
targeted ligands. (3) Nanoparticles can be used to deliver
immunomodulators to the surface of immune cells. They can
block or activate signaling pathways mediated by relevant
ligands and enhance the interaction between effector and
target cells to regulate immune cell function.

Herewe discuss the role of immune cells in the initiation
and progression of various diseases, summarize the leading
strategy used to regulate immune cells, and review drug
delivery systems designed to target immune cells. Finally, we
provide a prospectus of the future of immune cell-targeted
drug delivery systems.

Relationship between immune cells
and diseases

Abnormal immune responses, including excess immune
suppression or activation, will inevitably lead to disease
development. Recent studies have shown that the presence
of both inflammatory processes (immune stimulation) and

immune tolerance (no response to autoantigens or harmless
foreign antigens) are influenced by the way antigens are
presented [8]. When the mechanisms that regulate the bal-
ance between pathogen recognition and self-injury avoid-
ance are compromised, inflammation can get out of control,
resulting in sustained immune activation and tissue lesions.

Role of innate immunity in diseases

The innate immune system, consisting of physical mucosal
barriers, proteins, and myeloid cells (including gran-
ulocytes, mast cells, monocytes, macrophages, DCs, and
innate lymphoid cells), is the first line of defense against
infectious agents and other environmental challenges.
These cells initiate adaptive immune responses such as
phagocytosis of macrophages and granulocytes and cyto-
toxicity of NK cells while producing effector responses.
Through the opsonization of antibodies, innate immune
cells also participate in the effect-response after antibody
induction through antibody-dependent cytophagocytosis or
antibody-dependent cytotoxicity and secrete specific cyto-
kines at the reaction site to produce local inflammation [9–11].
For example, autoimmune diseases are chronic inflammatory
diseases caused by immune dysregulation. DCs are directly
involved in systemic autoimmune responses and disease as
antigen-presenting cells and major producers of type 1
interferon [12]. Different subpopulations of DCs regulate
humoral and cellular adaptive immunity [13]. Immunosup-
pressive factors in tumors also inhibit innate immune cells
from maintaining an effective antitumor immune response.
Infiltration of myeloid suppressor cells (MDSCs) or tumor-
associated macrophages (TAMs) into a tumor may create a
tolerant environment that inhibits antitumor immune activ-
ity, thereby protecting the continued growth of tumor cells.
Excess circulating MDSCs and tumor-infiltrating MDSCs or
TAMs have been associated with poor prognosis in various
cancers [14, 15].

Role of adaptive immunity in diseases

The adaptive immune response follows the innate immune
response via the activation of T and B lymphocytes, antigen-
specific cells that target pathogens and immune system ini-
tiators. The two immune responses are interrelated and
highly dependent on immune system activation [16]. T cells
and B cells are the main and central force in mediating the
adaptive immune response, but in some diseases, such as
chronic inflammation and tumors, T cells become dysfunc-
tional due to multiple inhibitory signals in the inflammatory
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microenvironment [17]. Prolonged exposure of T cells to
homologous antigens leads to T cell receptor (TCR) signaling,
resulting in sustained elevated expression of inhibitory
receptors on these cells. In addition, T cells enter a state of
dysfunction characterized by graded loss of effector function
and proliferation and different transcriptional and meta-
bolic changes [18]. Upregulation of immune checkpoints has
been described as a marker of T cell depletion, a secondary
characteristic of which is the progressive loss of effector
function, including secretion of interleukin 2 (IL-2) and
tumor necrosis factor α (TNF-α) [19, 20]. B cells also play a
key role in disease progression. For example, tumor-
infiltrating B cells mediate humoral and cellular immu-
nity in tumor tissue, but their role in antitumor immunity is
still under debate [21]. Some studies have shown that
B cells induce and maintain beneficial antitumor activity.
In contrast, others have found that B cells may perform
tumor-suppressing functions due to their different immu-
nosuppressive subtypes [22].

Strategies and challenges for
regulating immune cell function

For chronic inflammatory diseases, including tumors, the key
is to reverse immune cell inhibition and incapacitating
depletion, reactivate existing immune responses, or generate
new antigen-specific immune responses. For example,
immune checkpoint blockade therapy has yielded unprece-
dented efficacy in a variety of tumor diseases by blocking
immune checkpoints, but immunotherapy (especially
monotherapy) remains ineffective in most patients, a
finding that reflects the heterogeneity of immunobiology
and the complex mechanisms of immune escape in chronic
inflammation [23, 24]. Understanding the interactions be-
tween immune cells and the disease-associated microen-
vironment is crucial for analyzing the mechanisms of
action and an effective strategy for improving the efficacy
of current immunotherapies. We need a multi-pronged
approach to induce an immune response, enhance the
depth and persistence of the immune response, and achieve
complete remission. Methods include (1) eliminating
immunosuppression by weakening immunosuppressive
mediators such as suppressive cells or blocking them via
inhibitory receptors; (2) inducing immunogenic death of
tumor cells (in combination with chemotherapy, radio-
therapy, targeted therapy, and cell therapy); (3) enhancing
antigen-presenting cell function (immune adjuvant); and
(4) promoting the activation, enhancement, and survival of
memory T cells and macrophage function.

Although immunotherapy improves outcomes for many
patients by intervening in the immune system to treat various
diseases, overstimulation can lead to autoimmune toxicity,
also known as immune-related adverse events (irAEs). As a
result, there remains a critical unmet need for alternative
ways to drive the immune system response safely and effec-
tively to targeting various diseases. The main challenge is to
hit these targets safely at the right time and place [25–27].

To enable immune cell regulation, nanoparticles have
emerged as a suitable vehicle to overcome the limitations of
conventional pharmaceutical preparations and their asso-
ciated pharmacokinetics. Various studies have reported that
nanoparticles can regulate immune cell function [28, 29]. The
properties of the nanoparticle (e.g., composition, size, shape,
surface chemical modifications, peptides, or protein modi-
fications) determine the interaction between the nano-
particle and immune cells. Due to the presence of different
cells and molecules in other organs, such as epithelial cells
(e.g., DCs, macrophages) or blood (e.g., granulocytes, mono-
nuclear/macrophages, lymphocytes), the results of immune
stimulation vary. A better understanding of immune re-
sponses and their interactions with nanoparticles is critical to
developing nanoparticle-based immunoregulatory therapies.

Nanoparticle-based strategies for
T cell regulation

T cells are one of the most important immune system lym-
phocytes and play an essential role in various diseases,
including inflammation, cancers, and autoimmune dis-
eases [30]. T cells originate in the bone marrow and mature
in the thymus [31]. After migration to the thymus gland, the
lymphoid precursors differentiate into helper CD4+ T cells,
cytotoxic CD8+ T cells, regulatory CD4+ T cells, or become
memory T cells. Cytotoxic CD8+ T cells can kill infected cells
and cancer cells [32]. CD4+ T cells performdifferent functions
depending on their effector subtypes, including activation of
B lymphocytes, cytotoxic T cells, and the innate immune
system [33]. Here we review nanotechnology applied to
T cells, including nanoparticle-mediated T cell activation, T
cell-targeting strategies for nanoparticle delivery, CAR-T cell
engineering, and nano-bispecific-engagers of T cells.

Nanoparticles for T cell activation

Activation and expansion are important for T cell function.
T cell activation requires three signals: (1) recognition of the
peptide/major histocompatibility complex (MHC) by TCR on
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the T cell surface; (2) co-stimulation signals induced by
interactions between co-signaling molecules expressed on
antigen-presenting cells (APCs) and their paired T cell-
expressed receptors; and (3) cytokines such as IL-2, IL-12, and
Type I IFN. Effective T cell activation remains a challenge in
tumor therapy [34]. Nanotechnology control of T cell acti-
vation offers solutions.

Artificial APC (aAPC) micro- or nanoparticle-based sys-
tems mimic natural APCs, mainly DCs, to activate adaptive
immunity. To generate the three required activation signals,
Cheung et al. developed fluid lipid bilayer-supported meso-
porous silica micro-rods (MSRs) (Figure 1A). The APC-MSRs
contained anti-CD3 antibody for T cell attachment, pMHC for
signal 1, αCD28 antibody for signal 2, and cytokine IL-2 for
signal 3. They induced 2- to 10-fold greater expansion of
T cells than commercial expansion beads (Dynabeads) [35].
Many biomaterials-based nanoscale aAPCs have been
developed. Poly (lactic-co-glycolic acid) (PLGA)-based nano-
particles were functionalized with an MHC Class I-Ig fusion
protein to mimic signal one and an agonistic monoclonal
anti-CD28 antibody (Figure 1B) [36]. Kosmides et al. showed
that combining this polymeric aAPC and anti-PD-1 mono-
clonal antibody induced the greatest CD8+ T cell activation
in vitro and delayed melanoma tumor growth and extended
survival in vivo. Lipid-based and inorganic materials can
also mimic the features of APCs to activate T cells [37, 38].
Compared to micro-aAPCs, nano-aAPCs have a small contact
area with T cells, leading to less efficient activation. To
enhance the area of contact between the T cell and nano-
aAPC, nanoparticle clustering and shape alternation have
been applied to nano-aAPC design. Perica et al. showed that
magnetic-field-induced nanoparticle clustering enhanced
T cell activation [39]. The magnetic field-mediated aggrega-
tion of nano-aAPCs increased TCR cluster size and T cell
expansion in vitro and enhanced adaptive T cell immuno-
therapy (Figure 1C). The cellular fate of nano-aAPCs can also
be altered by changing their shape. Ellipsoid particles reduce
non-targeted uptake and increase specific uptake, thereby
enhancing anticancer efficacy [40, 41]. Meyer et al. used
ellipsoidal PLAG nano-aAPCs functionalized with an MHC
Class I Ig dimer (signal 1) and anti-CD28 (signal 2) to reduce
phagocytosis compared to spherical nano-aAPCs [42]. The
use of large nano-aAPCs is an effective way to increase the
contact area with T cells [43]. Biomimetics such as cell
membrane-based aAPCs provide natural protein structures
that may facilitate conjugation to solid nanoparticles. Jiang
et al. reported a tumor cell-derived membrane-coated aAPC
to directly stimulate T cells without APCs [44]. Wild-type B16
melanoma cells presenting antigen/MHC-I complex were
engineered to co-express cytosolic OVA and costimulatory
protein CD80. The membranes of these engineered tumor

cells were then used to coat polymeric nanoparticles to
generate aAPCs, which efficiently activated T cells ex vivo
and significantly delayed tumor growth after intravenous
injection (Figure 1D). aAPCs can also be used to induce reg-
ulatory T cells. Immune-tolerant aAPCs were developed by
coating nanoparticles with autoimmune disease-related
peptides/MHC complex [45, 46]. These aAPCs do not carry
signal 2 for T cell activation and thus induce antigen-specific
regulatory CD4+ and CD8+ T cells and antigen-specific
immune tolerance for treating autoimmune disease.

Nanoparticles for T cell-targeting delivery

After injection, nanoparticles are easily captured by the
mononuclear phagocyte systemor tissue-resident phagocytes.
Some studies have shown that, without targeting strategies,
T cells may take up fewer nanoparticles than other immune
cells like DCs [47–49]. Therefore, nanoparticles with specific
properties can be used for T cell delivery.

T cell delivery can be accomplished passively, medi-
ated by the physical properties of the nanoparticles. Li et al.
used cationic lipid-assisted polymeric nanoparticles encap-
sulating small interfering RNA (siRNA) targeting cytotoxic
T lymphocyte-associated molecule-4 (CTLA-4) for T cell
immunotherapy [50]. This nanoparticle delivery system
could deliver siRNA into CD4+ and CD8+ T cells in vivo,
enhancing T cell activation and proliferation, enhancing the
antitumor immune response, and significantly inhibiting
B16 melanoma. Huq et al. reported antioxidant carbon
nanoparticles for T cell delivery [51]. Nontoxic poly (ethylene
glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs)
are taken up by T cells over other splenic immune cells after
systemic application in vivo. However, T cells in lymph nodes
did not exhibit this preference. Hewitt et al. demonstrated
that non-functionalized ultrasmall silica nanoparticles
(USSNs, diameter 3.6–5.1 nm) strongly activated T cells but
showed no T cell-specific uptake [52]. USSNs induced dose-
dependent CD4+ and CD8+ T cell activation and INF-γ
secretion but failed to induce secretion of IL-2, IL-10, IL-4, or
T cell proliferation. Thiramanas et al. investigated the use of
silica nanoparticles (SiNPs) of different particle sizes and
physicochemical properties as T cell delivery vectors [53] by
varying size, core hydrophobicity, surface charge, and sur-
face function to modulate CD8+ T cell uptake and toxicity.
Cellular uptake and toxicity are primarily size- and dose-
dependent. SiNPs smaller than 100 nmhad a significant toxic
effect. Another study of nanoparticle size and T cell
delivery [54] used a cationic deblock copolymer modified
with triphenylphosphonium cations and small cationic
nanohydrogel particles and tested them for siRNA delivery
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to T cells. Their nanoparticles achieved efficient complexa-
tion of siRNA and significant internalization into T cells
without reducing cell viability in vitro.

T cell-targeting antibodies can functionalize nano-
particles to enhance T cell uptake. Anti-CD3 antibody-

conjugated gelatin nanoparticles were developed for T cell-
specific targeting [55] by binding biotinylated anti-CD3 an-
tibodies to nanoparticles via NeutrAvidin-biotin-complex
formation. Uptake efficiency by T cell leukemia cells via
endocytosis was about 84% in vitro. Kheirolomoon et al. also

Figure 1: Nano-aAPCs for T cell activation. (A) APC-ms prepared fromMSRs can realize polyclonal T cell expansion and antigen-specific T cell expansion by
binding different antibodies (image source: Li et al. [35] with permission). (B) In vitro tumormicroenvironmentmodel system forMHC IgG dimer and anti-
CD28 antibody-conjugated PLGA nanoparticles [36]. (C) Nano-aAPC synthesis by coupling MHC-Ig dimers and costimulatory anti-CD28 to iron-dextran
nanoparticles [39]. (D) Engineered cancer cell-membrane-coated nanoparticles for direct antigen presentation [44].
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demonstrated that anti-CD3 antibody-conjugated lipid
nanoparticles (αCD3-LNPs) could be used for T cell delivery
in vitro and in vivo [56]. αCD3-LNPs efficiently delivered
mRNA to Jurkat T cells in vitro and, after systemic injection,
αCD3-LNPs encapsulating mCherry mRNA accumulated in
the spleen. The efficiency ofmCherry expressionwas 2%–4%
of all splenic T cells and 2%–7% of all circulating T cells.
Ramishetti et al. described a CD4-targeting strategy to
deliver siRNAs specifically to CD4+ T cells [57]. Anti-CD4
antibody-functionalized LNPs loaded with CD45 siRNA were
taken up by CD4+ T cells in the spleen, inguinal lymph nodes,
blood, and bonemarrow, resulting in significant knockdown
of CD45 expression. Tombacz et al. also reported anti-CD4
antibody-conjugated LNPs to enable specific targeting of
mRNA interventions in CD4+ cells [58]. After systemic injec-
tion in mice, CD4-targeted mRNA-LNPs accumulated in the
spleen and provided a 30-fold higher reporter mRNA signal
in splenic T cells than non-targeted mRNA-LNPs. Intrave-
nous administration of CD4-targeted LNPs loaded with
mRNA encoding Cre recombinase led to highly specific
loxP-mediated genetic recombination in CD4+ T cells
(approximately 60% in the spleen and 40% in lymph nodes).
CD7 and CD8 have also been used for T cell targeting due to
their high expression levels on T cells [59, 60].

Nanoparticles for CAR-T cell engineering

CAR-T cell therapy has achieved a high response rate in
treating hematological malignancies and is an important
cellular immunotherapy for treating tumors. Currently,
most CAR-T cells are engineered by transduction of T cells
collected from patients and then infused back into the
patients. The high cost and complexity of CAR-T cell manu-
facturemake it difficult to achieveworldwide application. To
date, FDA-approved CAR-T cell products are all transfected
with CAR by lentivirus, which cannot be used directly in vivo.
Nawaz et al. showed that an adeno-associated viral vector
(AAV) carrying the CAR gene generates human CD4-targeting
CAR-T cells and reduces human T cell leukemia in a
humanized mouse model [61]. However, the AAV vector can
be taken up by non-T cells in vivo, resulting in non-targeted
toxicity. Therefore, there is a need for in vivo CAR-T-cell
production methods that can target T cells more efficiently.

Nanoparticles are widely used for nucleic acid delivery
and can be used for cell targeting by surface-modified an-
tibodies. Smith et al. developed in-situ engineered CAR-T
cells using polymeric nanoparticles [62]. Anti-CD3e F(ab’)2-
modified nanoparticles encapsulating plasmids encoding
murine anti-CD19 CAR and hyperactive transposase selec-
tively deliver CAR genes into T cells in vivo, resulting in

long-term disease remission (Figure 2A). The same strategy
could be used for CAR mRNA delivery ex vivo and in vivo
(Figure 2B) [63, 64]. Compared to plasmid DNA, therapeutic
mRNA is pharmacologically and immunologically suited
for clinical application. Lipid nanoparticle (LNP)-based
mRNA delivery systems have emerged as a potential
method for T cell engineering. LNP-mRNA technology has
been successfully used in developing COVID-19 vaccines
and has demonstrated potential for treating other
diseases [65–67]. Billingsley et al. designed ionizable LNP
formRNA delivery to human T cells ex vivo [68]. A library of
24 ionizable lipids was formulated into LNPs and screened
for reporter gene mRNA delivery into human Jurkat cells.
The delivery efficiency of the best-performing LNP formu-
lation is greater than the efficiency of lipofectamine and
equivalent to electroporation but with low cytotoxicity.
CAR-T cells were reprogrammed in vivo by CD5-targeting
LNP-carrying CAR mRNA [69]. In a mouse model of heart
failure, fibroblast activation protein (FAP)-targeting CAR
mRNA was encapsulated in anti-CD5 antibody-functional-
ized LNP and then delivered into T cells to generate CAR-T
cells against FAP (Figure 2C). This study also indicated that
in vivo generation of CAR-T cells can be a therapeutic
platform for cancer and other diseases.

Nano-bispecific-engager for enhancing T cell
function

T cell-mediated killing requires recognizing antigens on the
surface of target cells by T cell surface receptors [70].
However, expression of MHC-I/antigen complex and other
tumor cell markers are reduced, resulting in weak inter-
action between T cells and tumor cells [71]. Bispecific
engagers to enhance recognition between T cells and tumor
cells provide a feasible strategy to solve the problem.
Nanoparticles are suitable for bispecific engager design
due to their flexible, controllable surface modification and
long-circulating time [72, 73].

Cheng et al. developed synthetic multivalent antibodies
retargeted exosomes (SMART-Exos) by displaying two
different types of antibodies on the exosomal surface [74]. To
enhance immunotherapy in breast tumors, Expi293F cells
were transfected to express epidermal growth factor
receptor (EGFR, cancer cell targeting) and anti-CD3 antibody
(T cell targeting), derived single-chain variable fragment
(scFv) fusion constructs on the cell surface, then exosomes
from these cells were collected (Figure 3A). The SMART-Exos
induced cross-linking of T cells and EGFR-expressing
breast cancer cells, resulting in potent antitumor immu-
nity both in vitro and in vivo. Kosmides et al. described
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“immunoswitch” iron-dextran nanoparticles coated with
two distinct antibodies to block the inhibitory checkpoint
PD-L1 pathway and stimulate T cells through 4-1BB cos-
timulatory signaling [75]. The antibodies to block PD-L1
and stimulate 4-1BB were also used to dual-target tumor
cells and T cells (Figure 3B). The “immunoswitch” nano-
particles demonstrated tumor growth inhibition and pro-
longed survival in multiple tumor models, including
melanoma and colon tumors. Jiang et al. established a ver-
satile antibody immobilization nanoparticle called immu-
nomodulating nano-adaptors (imNAs) to enhance T cell-,
natural killer cell-, and macrophage-mediated antitumor
immune responses [76]. In this strategy, two types of
antibodies were immobilized onto single nanoparticles

functionalized with anti-Fc antibodies, one for binding
T cells (or other immune cells) and the other for tumor cell
targeting (Figure 3C). Jiang et al. selected the immune
checkpoint inhibitors anti-PD1 antibody and anti-PD-L1
antibody to construct imNAs to enhance T cell-mediated
antitumor immunity.

Nanoparticle-based strategies for
macrophage regulation

As an essential innate immune subgroup for maintaining
homeostasis and defending against exogenous pathogens,

Figure 2: Nanoparticles for CAR-T cell engineering. (A) Poly (β-amino ester) (PBAE) nanoparticles functionalized with anti-CD3e F(ab’)2 to deliver plasmid
DNA for CAR-T cell generation in vivo [62]. (B) Anti-CD8 antibody-modified PBAE nanoparticles to deliver mRNA for specific TCR-T or CAR-T cell generation
in vivo [64]. (C) CD5-targeted LNPs delivering mRNA to FAP for CAR-T cell generation in vivo [69].
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macrophages were the first phagocytes discovered. Macro-
phages play a crucial regulatory role in development, dis-
ease (including cancer, inflammation, and autoimmune
diseases), and tissue regeneration. Macrophages can circu-
late in the blood or exist in a stable state in tissues (resident
macrophages).

Macrophages express specific proteins dynamically
and reversibly, depending on their environment and de-
gree of activation, resulting in different phenotypes. Acti-
vated macrophages are occasionally divided into two
simple phenotypes, M1 andM2, representing polarized pro-
inflammatory or anti-inflammatory phenotypes. In some
diseases, however, macrophages can express markers for
the cells’M1 and M2 subtypes to varying degrees, reflecting
that they are in an intermediate activation state. Normally,

M1 macrophages have pro-inflammatory effects, charac-
terized by the secretion of pro-inflammatory cytokines
(such as IFN-1β, IL-12, and TNF-α), reactive nitrogen
intermediates, and reactive oxygen species (ROS), which
can clear pathogens and stimulate angiogenesis. In addi-
tion, excessive production of pro-inflammatory cytokines
by M1 macrophages may cause damage to normal tissue.

In contrast, M2 macrophages have anti-inflammatory
effects, characterized by increased secretion of anti-
inflammatory cytokines (including IL-4, IL-10, and IL-13),
which promote tissue remodeling and healing, extracellular
matrix (ECM) deposition, etc. Excessive M2 behavior pro-
motes tissue fibrosis. The balance of pro-inflammatory and
anti-inflammatory responses is often key to the outcome of
inflammatory diseases. For example, TAMs, M2 phenotype

Figure 3: Nano-bispecific-engager for enhancing T cell function. (A) Design and generation of anti-CD3/anti-EGFR synthetic multivalent antibodies
retargeted exosomes (SMART-Exos) [74]. (B) Immunoswitch particles link PD-L1 checkpoint blockade with 4-1BB costimulation [75]. (C) Nano-adaptors
promote T cell-mediated cancer therapy [76].
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can promote tumor cell proliferation and metastasis. They
promote angiogenesis via vascular endothelial growth factor
(VEGF) signaling and inhibit immune function through
PD-L1 and other immune checkpoints. Therefore, the
development of tumor immunotherapies targeting TAMshas
received much attention. The options are to remove it from
the tumor and block its tumor-promoting function or restore
its immune activation and tumor cytotoxicity functions.

Strategies for regulating macrophage function include
(1) regulating the number of macrophages at the disease site
and (2) local or systemic delivery of bioactive molecules to
polarize macrophages. The macrophage-targeting accuracy
of these immunomodulatory strategies can be optimized by
exploiting the properties of the nano-delivery system.

Nanoparticles for regulating the number of
macrophages

By targeting chemokines and receptors (such as colony-
stimulating factor-1 (CSF-1)/CSF-1 receptor (CSF1R), C-C motif
chemokine ligand 2 (CCL2)/C-C chemokine receptor 2(CCR2),
VEGF/VEGFR), the aggregation ofmacrophages at the disease
site can be controlled. For example, CCL2 is a potent che-
mokine and an essential mediator in the recruitment of
myeloid cells. Majumdar et al. used nanoparticle-facilitated
silencing of CCR2 to reduce the number of inflammatory
(Ly6Chi) mononuclear cells and improved the healing of
myocardial infarction in apolipoprotein E-deficient (apoE−/−)
mice [77]. Macrophage cell membranes are generally nega-
tively charged. Positively charged (cationic) particles are
more likely to trigger inflammatory responses than nega-
tively charged (anion) and neutral particles. Shen et al.
used cationic nanoparticles to deliver CCR2 siRNA [78].
This delivery strategy effectively inhibits the recruitment
of monocytes in the peripheral blood, bone marrow, and
spleen and reduces TAM invasion in the tumor, thus
reversing the immunosuppressive tumor microenviron-
ment (Figure 4A).

Furthermore, since the small molecule drug does not
target TAMs, modifying macrophage-associated ligands on
the nanoparticle’s surface can improve the specificity of
targeting macrophages. Conde et al. designed potent and
selective biohybrid RNA interference–M2 peptide nano-
particles to induce specific and long-lasting gene therapy in
inflammatory TAMs. Qian et al. developed double-targeted
nanoparticles modified with α-peptide (SR-B1 targeting
peptide) and M2pep (M2 macrophage binding peptide),
when loaded with anti-colony-stimulating factor 1 receptor
(anti-CSF-1R) siRNA, it can specifically block the survival

signals of M2-like TAMs and clear them from melanoma
(Figure 4B) [79]. This strategy can inhibit tumor growth and
prolong survival. Such systems reduce TAM infiltration at
disease sites by inhibiting macrophage recruitment. Drugs
can also be specifically delivered to TAMs via environ-
mentally responsive nanoparticle release. Shen et al.
designed acid-responsive clusters of nanoparticles (SCNs)
loaded with BLZ-945 (a small molecule inhibitor of CSF-1)
and platinum (IV) prodrugs (Figure 4C) [80], andWang et al.
designed light-sensitive BLZ@S-NP/Pt to achieve accurate
delivery of BLZ-945 to TAMs and eliminate them [83]. Conde
et al. present highly potent and selective biohybrid RNA
interference (RNAi)-peptide nanoparticles (NPs) to induce
specific and long-lasting gene therapy for regulating
inflammatory TAMs (Figure 4D), which can reduce the
recruitment of inflammatory TAMs in lung tumor tissue,
reduces tumor size (about 95%), and increases animal
survival (about 75%) in mice [81].

Nanoparticles for reprogramming
macrophage phenotype

Regulating macrophage phenotypes may be more impor-
tant than regulating the overall number of macrophages at
the disease site. Small molecule inhibitors, cytokines, CpG
oligonucleotides, and Toll-Like-Receptor (TLR) agonists can
be used to reprogram TAMs. Polylysine, polyethylenimine
(PEI), cationic gelatin, and glucan can activate M1 macro-
phages through the toll-like receptor pathway and specif-
ically induce IL-12 secretion. Strong stimulation of the Th1
response results in the reversal of the M1 phenotype from
M2 TAMs. Li et al. synthesized porous hollow iron oxide
nanoparticles (PHNPs) loaded with P13 Kγ small molecule
inhibitors (3-MA) and targeted TAMs by adding a mannitol
modification. PHNPs combined with 3-MA was used for
macrophage-activating inflammatory factor NF-κB p65 [84].
The synergistic conversion of TAMs intopro-inflammatoryM1
macrophages activates the immune response and inhibits
tumor growth in vivo. Huang et al. designed a pH-sensitive
galactose-modified polymer nanoparticle to co-deliver CpG
oligonucleotides and anti-IL-10 antibodies to repolarize M2
TAMs into M1 macrophages. CpG oligonucleotides enhance
secretion of the tumor suppressor IL-12, and anti-IL-10 anti-
bodies inhibit the IL-10 signaling axis, reversing the polari-
zation of the anti-inflammatory TAMs. Notably, Awojoodu
et al. found that the release of S1P3 receptor agonist FTY720
in PLGA scaffold in mice at the site of ischemic muscle
injury preferred the local mobilization of monocyte sub-
populations that were polarized into M2-like macrophages
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Figure 4: Nanoparticle-based strategies for macrophage regulation. (A) CNP/siCCR2-mediated tumor microenvironment modification and cancer
therapy [78]. (B) Design of theM2NP forM2-like TAM-specificmolecular-targeted immunotherapy [79]. (C) Tumor pH triggered release of BLZ-945 and Pt-
prodrug conjugated small particles for spatial delivery to TAMs and tumor cells [80]. (D) Nanoparticle-based strategy to deliver RNAi for VEGF silencing in
both TAMs and lung cancer cells [81], (E) S-BsNA improves the antitumor response of macrophage [82].
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(as measured by CD206 expression), leading to increased
arteriogenesis [85]. ROS are critical regulators of macrophage
polarization and activation. Iron oxide- or photosensitizer-
bearing nanoparticles can produce ROS and repolarize TAMs
intoM1macrophages. Zanganeh et al. demonstrated that ROS
from the Fenton reaction mediated by FDA-approved glucan-
coated iron oxide nanoparticles (Ferumoxytol) inhibited
breast cancer progression and lung and liver metastasis by
inducing the repolarization of TAMs into M1 macrophages.

Nanoparticles can also be functionalized to serve as
contrast agents in imaging modalities, enabling a dual-
functional or diagnostic approach. For example, Harel-
Adar et al. designed liposomes loaded with iron oxide and
decorated with phosphatidylserine (PS). This apoptotic
cell surface ligand triggers macrophage uptake and sub-
sequent phenotypic transformation to an M2-like pheno-
type, enabling manipulation of macrophage phenotypes
and imaging and tracking via magnetic resonance
imaging [86].

The interaction between CD47 and SIRP-α inhibits
phagocytosis of red blood cells and other normal cells.
However, CD47 also protects cancer cells from phagocy-
tosis, and excess expression of CD47 has been associated
with poor prognosis in various solid tumors. Blocking the
CD47/SIRP-α pathway is expected to restore the antitumor
efficacy of TAMs and promote phagocytosis of tumor cells,
which may also trigger macrophage repolarization. Chen
et al. developed core–shell albumin nanoparticles loaded
with anti-CD47 and anti-PD1 (aPD1@αCD47 complex) [87].
The nanoparticles first released αCD47 from the particle
surface to block the tumor’s “don’t eat me” signal and then
released aPD1 from the nuclear layer to increase lympho-
cyte infiltration of the tumor. The group also developed in-
situ fibrin gels containing calcium carbonate nanoparticles
loaded with anti-CD47 antibodies that repolarize TAMs
into M1 macrophages and promote phagocytosis. Kulkarni
et al. developed a supramolecular assembly consisting of
amphiphilic molecules that inhibit colony-stimulating fac-
tor 1 receptor (CSF-1R) and contain SiRP-α-blocking anti-
bodies [88]. This assembly enhances M2-M1 repolarization
in the tumormicroenvironment and significantly improves
antitumor and anti-metastatic efficacy. Chen et al. describe
dual-functional super bispecific nano-antibodies (S-BsNA)
(Figure 4E) constructed by immobilizing two types of
traditional monoclonal antibodies (αCSF1R and αCD47)
onto a universal antibody-immobilization platform. The
S-BsNA simultaneously reprogram the phenotype of
TAMs and establish a close physical connection between
effector cells and tumor cells, which can efficiently
augment innate antitumor immunity both in vitro and
in vivo [82].

Engineering macrophage for drug delivery

Macrophage-based drug carriers are also versatile. They
circulate in the blood like red blood cells and neutrophils
and specifically target tumor tissues by binding to the
vascular cell adhesion molecule-1 (VCAM-1) via α4 and β1
integrins of macrophages. As a result, researchers are
trying to use macrophages, macrophage-derived exosomes,
or nanoparticles coated with macrophage cell membranes
as drug-delivery vehicles to target and kill tumor cells. Guo
et al. found that DOX-loaded M1-type macrophages inhibit
tumor invasion and can transfer drugs to ovarian cancer
cells via tunneling nanotubes. The liposome dox has no
such effect [89]. Choi et al. developed peritoneal macro-
phages loaded with DOX-liposome (macrophages extracted
from the inflamed intestinal abdominal cavity), which
had a stronger inhibitory effect on tumor metastasis than
DOX-liposome [90]. Macrophages can be further modified
to enhance the targeting of these vectors or endow them
with multiple functions. Cao et al. developed a transferable
legume protein-reactingmacrophage LD-MDS. In the tumor
microenvironment, LD-MDS treated with legume protease
can be transformed into exosome-like nanovesicles loaded
with solanine (DM4), which is then internalized bymetastatic
4T1 cancer cells and inhibits metastasis [91]. Macrophage-
derived exosomes have surface membrane properties like
those of macrophages. Therefore, M1-macrophage-derived
exosomes (M1-exos) can be used to deliver various anticancer
drugs for tumor therapy. Nie et al. used click chemistry to
modifyM1-exoswith anti-CD47 and anti-SiRP-α antibodies via
pH-sensitive linkers [92]. They demonstrated that M1-exo
blocks CD47 and SiRP-α and transformsM2-typemacrophages
into M1-type macrophages, thereby enhancing tumor cell
removal by phagocytosis.

Modulating TAMs alone is commonly not sufficient to
inhibit disease progression completely and needs to com-
bined with other treatment options such as immunotherapy
or chemotherapy. In addition, nanoparticle design is vital in
the use of engineered macrophages (CAR macrophages, etc.)
for cancer immunotherapy. The size, shape, targeting, and
drug-delivery behavior of nanocarriers must be carefully
considered.

Nanoparticle-based strategies for
DC regulation

DCs are the most efficient, potent, professional APCs. They
are derived from the hematopoietic stem cells of the bone
marrow, and play a vital role in modulating lymphocyte and
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inflammation [93]. DCs located in lymphoid organs are ideal
for inducing T cell priming and amplification, since these
DCs are close to T cells [94]. Besides activation, DCs also
induce tolerance to self-antigens to avoid autoimmune
reactions. Thus, DCs provide a connection between innate
and adaptive immunity [95]. The potential of DCs as immu-
notherapy targets has been addressed in clinical studies,
particularly as a target for vaccination [96]. The delivery of
these drugs to DCs remains a challenge. Nanoparticles can be
designed to encapsulate drugs and interfere with DC func-
tion, even as vaccine adjuvants, making this a promising
strategy for pathogenic infection, cancer, and immune dis-
ease therapy. For instance, our group created a DC-targeting
cancer vaccine [97], as well as two types of nanomedicine-
delivered nucleic acids and peptides to ameliorate autoim-
mune diseases and induce transplant tolerance [98, 99].

Whether to activate the immune system or induce
tolerance, DC-targeting nanoparticles are mainly used as
vaccines to modulate DC function to achieve disease pre-
vention and treatment. Here we describe the application of
nanoparticles to induce immune activation and immune
tolerance, focusing on research progress with nanotech-
nology to prepare DC-targeting vaccines, and summarize
various models, including their mechanism of action,
therapeutic strategies and results, and future prospects.

DC-targeting peptide/protein nanoparticles

DC-targeting vaccines can induce both cellular and humoral
immune responses. In recent years, different strategies have
been explored for efficient vaccine development [100].
Nanoparticle-based peptide or protein-delivery provides a
flexible and effective platform for vaccine development by
coating the particles with antigens via various methods. The
primary methods for antigen presentation on nanoparticles
are chemical conjugation, genetic fusion, and tag coupling.
Shimp et al. reported that recombinant Pfs25H conjugated
to a Pseudomonas aeruginosa exoprotein A (EPA) was able
to overcome the poor immunogenicity of Pfs25H [101].
Pfs25-EPA provided a 75–110-fold increase in specific anti-
body generation compared to Psf25 alone and was used in a
phase 1 human trial. The antigen was lysine-treated, and
then conjugated to the cysteine of EPA [102]. Another com-
mon example is virus-like-particles (VLPs), which are virus
capsid protein platforms with which stable nanoparticles
are built [103]. We discuss applications of VLP vaccines later.
Tag coupling typically involves binding of two proteins that
are engineering with a tag or partner protein, such as
the popular biotin-avidin, Halo Tag, and SpyTag/Spy-
Catcher [104]. Biotin-Avidin is one of the strongest non-

covalent interactions known and enhances antibody pro-
duction [105]. Decorating the surface of DCs with nanotech-
nology is also a promising strategy for vaccine development.
Irvine et al. designed a series of amphiphile ligands (amph-
ligands) carrying peptides that bind albumin after injection,
are trafficked to lymph nodes, and inserted into the DC
membrane to prime CAR-T cells (Figure 5A) [106].

Proteins can also self-assemble into nanoparticles or be
conjugated to other molecules. Irvine et al. developed two
vaccines with heavily glycosylated human immunodefi-
ciency virus (HIV) antigens that are shuttled to DCs in
germinal centers via complement, mannose-binding lectin
(MBL), and immunogen glycan, all of which were more
effective than monomeric antigens. Follicular DC targeting
was lost in MBL-deficient mice or after immunogen degly-
cosylation [108, 109]. In a subsequent study, they developed
pharmacokinetically tuned, high-potency antitumor vac-
cines by fusing the peptide epitopes to albumin [110]. The
new formulations of these vaccines exhibited more effi-
cient antigen uptake, reduced proteolytic degradation, less
antigen presentation in uninflamed distal lymphoid or-
gans, and increased vaccine immunogenicity. Dye-binding
endogenous albumin can be used to identify sentinel lymph
nodes in cancer patients [111]. Given that albumin-bound
compounds can avoid elimination by phagocytes and travel
to lymph nodes by “albumin hitchhiking”, Irvine et al.
developed safe and potent molecular vaccines by synthe-
sizing amphiphiles (amph-vaccines) composed of the anti-
gens or adjuvants and lipophilic albumin-binding
tails [112]. Immunization of mice with these optimized
CpG-DNA/peptide amph-vaccines resulted in marked vac-
cine accumulation in lymph nodes accompanied by high
levels of T cell priming and enhanced antitumor efficacy.

DC targeting with polymeric nanoparticles

Polymeric nanoparticles have been exploited in vaccine
development due to their biocompatibility, biodegradability,
and reduced cytotoxicity. Polymer-based nanoparticles can
protect nucleic acids from extracellular ribonucleases and
mediate efficient antigen uptake and expression by DCs.
Antigens can be encoded as RNA, so nanoparticle delivery of
RNA targeting DCs can be used as a vaccine system [113]. Fan
et al. used cationic lipid-assisted PEG-b-PLGA nanoparticles
encapsulating mRNA to create a cancer vaccine [97]. They
demonstrated that nanoparticles loaded with OVA mRNA
enter and stimulate the maturation of DCs, promoting
activation of OVA-specific T cells (Figure 5B). In an effort
to reprogram DCs to induce strong antitumor immunity,
they created a co-delivery immunotherapeutic strategy by
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encapsulating siRNA targeting phagocytosis checkpoint
signal regulatory protein α (SIRPα) and stimulator of
interferon genes (STING) (NPsiSIRPα/cGAMP) to induce DCs
to actively capture tumor antigens and produce type I
interferons (IFNs). Intravenous injection of NPsiSIRPα/cGAMP

activated DCs and T cells to eradicate tumors [114].
PLGA nanoparticles have also been used to deliver

hepatitis-B virus antigen [115], tetanus toxoid [116], hydro-
phobic antigen [117], and other antigens using PLA, PCL, and
other copolymers as vaccine carriers. Kanchan et al. reported
that immunization with PLA particles loaded with antigen
and alum generated a memory antibody response [118]. With
a single immunization, a PLA nanoparticle-based vaccine
entrapping tetanus or diphtheria toxin induced high levels of
memory antibody compared to soluble antigen. Continuous
and slow-release of antigen fromnanoparticles are important
features of a single immunization-induced memory antibody

response. PCL-based nanoparticles have been tested for vac-
cine delivery of Schistosoma mansoni antigen [119]. Natural
polymers are also used as adjuvants in vaccine. Li et al.
developed a bioreducible alginate-PEI nanogel for antigen
delivery and found that it exhibited great antigen-loading
capacity without causing cytotoxicity (Figure 5C) [107].

DC targeting with inorganic nanoparticles

Inorganic nanoparticles such carbon, gold, and silica have
been used for vaccine studies. Wang et al. reported a novel
carbon nanoparticle adjuvant for oral vaccines [120]. Their
optimized 470-nm carbon nanoparticle contained large
mesopores and macropores for antigen loading. After oral
immunization with the BSA-loaded carbon nanoparticle, the
IgG titer reached levels commensurate to conventional

Figure 5: Nanoparticles for targetingDCs. (A) DC-targeting peptide-amph-ligand vaccine to boost CAR-T cells [106]. (B) The schemeof CLANmRNA vaccines
induce anti-tumor immune response [97]. (C) The scheme of bioreducible nanogels for vaccination [107].
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immunization using Freund’s complete adjuvant through
parenteral administration. Xu et al. developed gold nano-
rods engineered with cetyltrimethylammonium bromide
(CTAB), poly (diallydimethylammonium chloride) (PDDAC),
and polyethyleneimine (PEI) carrying plasmid as a DNA
vaccine for HIV-1 [121]. Their plasmid-loaded gold nanorods
activated APCs, resulting in significant T cell proliferation.
Interestingly, different surface modifications induced vari-
able immune activation. Tao et al. also used gold nano-
particles with M2 membrane protein to induce a strong
antibody response to influenza A [122]. Silica-based nano-
particles are convenient for surface functionalization and
vaccine delivery. An et al. developed a toll-like receptor 9
(TLR-9) agonist and antigen loaded, amine modified silica
nanoparticle as tumor vaccine [123]. These silica nano-
particles accumulated in draining lymph nodes, and deliv-
ered antigen to APCs. More importantly, surface-modified
silica nanoparticles reduced the systemic toxicity of TLR-9
and provided an effective vaccine platform.

DC targeting by lipid nanoparticles

In recent years, lipid nanoparticles (LNPs) have seen exciting
development as part of the COVID-19 mRNA vaccine initia-
tive. LNPs protect and transport mRNA, can be used to
transport hydrophobic or hydrophilic molecules, and are
suitable for antigen delivery. Moon et al. reported using
antigen-loadedmultilamellar lipid nanoparticles as vaccines
to induce T and B cell responses [124]. The interbilayer-
crosslinked multilamellar lipid vesicles entrapped protein
antigens in the vesicle, and adjuvant in the vesicle wall.
Ichihashi et al. reported phosphatidylserine (PS)-liposomes
as vaccines [125]. Antigens conjugated to PS-liposomes were
effectively taken up by APCs and induced an antigen-specific
CD8+ T cell response and a T helper cell-mediated immune
response. Sahin et al. developed RNA-lipoplexes (RNA-LPX)
to deliver vaccine antigens to DCs [126]. They developed a
strategy for precisely and effectively targeting DCs in vivo by
preparing lipid carries with an optimized net charge,
without modifying particles with molecular ligands. The
RNA-LPX led to the release of interferon-α (IFNα) by plas-
macytoid DCs (pDCs) and the activation of inflammatory
immune mechanisms in the early systemic phase of viral
infection. Intravenous injection of RNA-LPX induced strong
effector and memory T cell responses and triggered potent
IFNα-dependent rejection of progressive tumors. They pro-
vided a universal vaccine strategy for systemic targeting of
DCs and induction of adaptive aswell as type-I-IFN-mediated
innate immune responses for cancer immunotherapy. Tür-
eci et al. developed individualized mutanome vaccines by

implementing an RNA-based poly-neo-epitope against a
spectrum of cancer mutations to solve the inefficient
spontaneous immune recognition of mutations. This
concept was applied in patients with melanoma and the
results showed that individual mutations can be exploited
as personalized immunotherapy in this patient popula-
tion [127]. DCs also play a vital role in immune tolerance,
preventing autoimmune disease [128]. Sahin et al. designed
a safe and efficient method for noninflammatory delivery
of mRNA-encoded antigens to control autoreactive T cells
without disturbing normal immune reactions to treat
autoimmune diseases. Systemic delivery of nanoparticle-
formulated one methylpseudouridine-modified messenger
RNA (m1Ψ mRNA) coding for disease-related autoantigens
promotes antigen presentation on DCs in the spleen
without costimulatory signals. The vaccines ameliorated
disease in several multiple sclerosis mouse models with a
reduction of effector T cells and the development of regu-
latory T cells (Figure 6A) [129, 130]. In addition to protein
and mRNA, LNPs can also be used to deliver DNA vaccines.
Mucker et al. reported lipid nanoparticles formulated using
Andes virus or Zika virus DNA vaccines to promote immune
responses in non-rodent laboratory animals [131].

VLP nanoparticles for targeting DCs

VLPs are virus-mimic but are not infectious. VLPs are
composed of several proteins, including viral capsids,
cores or envelopes [133]. VLPs are effective vaccines
because of their size and structural similarity to natural
viruses [134]. VLPs also provide a platform to display
additional fused proteins. Lusso et al. developed a VLPwith
a membrane-anchored HIV-1 envelope (Env) and SIV Gag
proteins to prevent HIV infection. Immunization with
these mRNA-carrying Env-Gag VLPs induced production of
neutralized antibodies and triggered robust CD4+ T cell
responses. The VLP mRNA platform thus provides a
promising strategy for HIV-1 vaccine development [135].
Stephen et al. designed Tandem-HBc VLPs and expressed
them in bacterial, yeast, and plant systems [136]. Chemical
techniques can be used for VLP surface modifications. Lysine
residues are a common target for conjugation, because free
lysine forms stable amide bonds with N-hydroxysuccinimide
esters [137]. Stefanetti et al. developed a glycoconjugate vac-
cine through click chemistry [138]. Different types of VLPs are
classified by their structure. Enveloped VLPs consist of a cell
membrane from the host cell and present viral protein on the
surface [139]. Yao et al. produced enveloped VLPs containing
SIV Gag protein and HIV Env protein [140]. The enveloped
VLPs have been used in vaccines against retroviruses,
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influenza A, and hepatitis C virus [141]. Compared to lipid
nanoparticles or other nanoparticle-based vaccines, envel-
oped VLPs have a larger size (>100 nm), which will limit their
migration to lymph nodes [142]. Non-enveloped VLPs have a
simple composition in comparison to enveloped VLPs, as they
do not contain host cell membrane and are preferable for
vaccines [143]. They are smaller than enveloped VLPs, and
easily migrate to lymph nodes [137].

DC targeting by other nanoparticles

There are several versatile novel vaccine designs. Moon et al.
developed personalized vaccines for immunotherapy to

stimulate strong T cell responses. They co-delivered high-
density lipoprotein-mimicking nanodiscs with antigen pep-
tides and adjuvants to lymphoid organs to promote antigen
presentation on DCs. This multi-epitope vaccination trig-
gered broad-spectrum T cell responses and inhibited tumor
growth when combined with immune checkpoint blocking
antibodies [144]. Ding et al. developed a tubular DNA nano-
device vaccine composed of two molecular adjuvants with
antigen peptide in the inner cavity to trigger long-term T cell
activation and cancer cytotoxicity [145]. Liu et al. described a
genetically engineered cell membrane nanovesicle that in-
tegrates antigen self-presentation and immunosuppression
reversal (ASPIRE) for cancer immunotherapy. ASPIRE pro-
motes antigen delivery to lymphoid organs and eliminates

Figure 6: Nanotechnology for regulating DCs. (A) The scheme of anti-inflammatory mRNA vaccine to induce tolerance [130]. (B) Genetically engineered
outer-membrane vesicles (OMVs), and (C) Hybrid membrane vesicles containing bacterial cytoplasmic membrane [132].
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tumors by activating both native T cells and exhausted
T cells [146]. Inspired by natural immune defenses against
bacterial invasion, Nie et al. developed cancer vaccines
based on bacterial membrane materials, including geneti-
cally engineered outer-membrane vesicles (OMVs) and
hybrid membrane vesicles containing bacterial cyto-
plasmic membrane to induce strong tumor regression
(Figure 6B–C) [132]. Li et al. developed potent vesicular
cancer nanovaccines (BTs) by fusing bacterial OMVs and
tumor cell membranes. The bacteria-derived pathogenic
adjuvants in BTs can target DCs and confer an excellent
tumor prophylactic effect [147].

DC-targeting nanoparticles can also be used for tracking
and imaging. Pham et al. developed superparamagnetic
iron oxide nanoparticle (SPIOs) for DC tracking without
compromising cell function and investigated the migration
of SPIO-labeled DCs in a syngeneic mouse model using
magnetic resonance imaging. With polylysine, dextran-
coated SPIOs can be taken up by DCs within 1 h of incuba-
tion, and injection of the SPIO-labeled DCs in the footpad
showed migration from the injection site to the corre-
sponding popliteal lymph node. Thus, SPIO-enhanced MR
imaging can be used to track DC migration in vivo [148].

Nanoparticle-based strategies for
granulocyte regulation

Granulocytes comprise the largest proportion of white
blood cells. They survive a few hours after entering the
bloodstream, then leave and die [149]. Granulocytes include
eosinophils, neutrophils, and basophils, which are differ-
entiated by granule staining. Neutrophils are most abun-
dant in the peripheral circulation and are the main defense
effector cells of antibody and complement-mediated im-
mune responses [150]. They can be rapidly recruited to sites
of tissue injury to perform antibacterial and inflammatory
functions through phagocytosis, degranulation, release
of neutrophil extracellular traps (NETs) and antigen
presentation [151, 152].

Neutrophils participate in the pathogenesis of wide-
spread human diseases and abnormal physiological func-
tions of neutrophils, such as underactivity or overactivation,
are likely to develop into disease [153]. Therefore, targeting
or intervening with neutrophils and their related pathways
in the treatment of inflammatory diseases and cancer is a
new therapeutic approach. Nanoparticle-based strategies
for neutrophil regulation include in vivo hijacking of
neutrophils by multifunctional nanoparticles across the
vascular barrier for targeted therapy. The goal is to

control disease progression by regulating neutrophil
infiltration.

Nanoparticles for hijacking neutrophils to
across the vascular barrier

Neutrophils release cytotoxic substrates involving ROS and
hydrogen peroxide (H2O2) to mediate the elimination of
tumor cells, but also secrete factors that inhibit prolifera-
tion. Therefore, if neutrophils can be precisely targeted and
manipulated in vivo, they could be used for tumor treat-
ment and theragnostic [154, 155]. Li et al. constructed a
nano-pathogen (NPN) mimic by coating nanoparticles with
vesicles secreted by bacteria along with homogeneous
pathological functions, thus hitchhiking neutrophil circu-
lation [156]. In a mouse model, tumors were completely
eradicated by a combined application of PTT and NPNs. In
another study, Li et al. achieved active and precise regu-
lation of the surface protein corona by changing the char-
acteristics of the carrier, enabling hijacking of endogenous
neutrophils and delivery of nanomedicine to the lung by
taking advantage of the natural delivery of neutrophils for
the precise treatment of pneumonia [157].

Tang et al. modified 5-HT on nanoparticles loaded with
photosensitizer and Zileuton (a leukotriene inhibitor) for tar-
geting MPO and neutrophils in a similar way [154]. Noninva-
sive positron emission tomography studies confirmed the
MPO-targeting properties of 5-HT-modified NPs, then photo-
dynamic therapy was used to launch an inflammatory
response, which mediated the accumulation and retention of
targeted neutrophils in breast cancer models.

Nanoparticles for restraining neutrophil
infiltration and migration

The process of neutrophils entering inflammatory tissues
through the vascular endothelium is an important innate
immune defense mechanism against infections as well as
acute and chronic inflammatory diseases involving sepsis,
trauma, ischemia, and reperfusion. Therefore, targeting
neutrophil infiltrationmay be an effectivemeans to improve
the treatment of inflammation-related diseases [158]. For
instance, Liu and Cao et al. screened specific cationic lipid-
assisted nanoparticles (CLANs) for optimized neutrophil
targeting in high-fat diet (HFD)-induced type 2 diabetes (T2D)
mice with chronic inflammation [159]. A CRISPR-Cas9
plasmid with guide RNA targeting neutrophil elastase (NE)
was packaged into the optimized CLAN (CLANpCas9/gNE).
In epididymal white adipose tissue (eWAT) and liver,
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CLANpCas9/gNEwas expeditiously internalized by neutrophils,
at which point the NE gene was knocked down, significantly
decreasing neutrophil infiltration and insulin resistance,
and disturbing inflammation (Figure 7A).

In addition, Cruz et al. constructed an innovative nano-
platform with α1-antitrypsin-derived peptide to bind NE on
activated neutrophils [161]. This modification specifically
anchors activated neutrophils and platelet-neutrophil
aggregates to nanoparticles. Neutrophils play an important
role in chemically-mediated inflammatory responses via
myeloperoxidase (MPO) and inflammation triggered by

traumatic brain injury (TBI). Yao et al. obtained nanodrugs
targeting MPO and neutrophils (T-Hes) by modifying
5-hydroxytryptamine (5-HT) on nanoparticles carrying hes-
peridin. They confirmed that T-Hes targeted by neutrophils
rapidly accumulate in the brain tissue, reducing the pro-
duction of inflammatory factors, microglia, and astrocytes.
T-Hes significantly enhanced drug retention and release,
improving TBI treatment [162].

Neutrophils prolifically infiltrate into ischemic areas of
the brain and release ROS after acute ischemic stroke.
Therefore, reducing neutrophil infiltration after acute

Figure 7: Nanoparticles for restraining the infiltration and migration of neutrophils. (A) Neutrophil NE gene was knocked down by the optimized
CLANpCas9/gNE for the treatment of HFD-induced T2D, significantly decreasing neutrophil infiltration and insulin resistance [159]. (B) Platelet-mimetic
nanoparticles were recognized by neutrophils through platelet membrane coating, and piceatannol delivered by nanoparticles could detach adherent
neutrophils, thereby restraining the migration of neutrophils and reducing infiltration [160].
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ischemic stroke may be an effective treatment. Tang et al.
constructed platelet-mimicking nanoparticles co-loaded
with the spleen tyrosine kinase inhibitor piceatannol and
the T2 contrast agent superparamagnetic iron oxide
(SPIO) [160]. The particles were recognized by neutrophils
due to their platelet membrane coating, and the picea-
tannol caused adherent neutrophils to detach, thereby
reducing infiltration and infarct size (Figure 7B).

Nano-engineered neutrophils or neutrophil
derivatives

Live cells or derivatives, such as exosomes, have become
attractive as pharmaceutical carriers because of their
biocompatibility, low clearance rate, natural ability to
penetrate physiological barriers, and specific biological
characteristics of the source cells [163]. For example, Wang
et al. used neutrophil-exosomes (NEs-Exos) to carry doxo-
rubicin (DOX) to glioma by taking advantage of their blood-
brain barrier permeability, the inflammatory chemotaxis
properties of neutrophils, and glioma-killing efficacy [164].
To endow the exosomeswithmore functionality, Zhang et al.
modified SPIO nanoparticles (SPIONs) with neutrophil exo-
somes (SPION-Ex) to achieve better tumor targeting efficacy
than conventional NEs-Exos [165].

Although endogenous living cells or exosomes inherit
the native functions and features of the original cells, they
typically do not meet the diverse needs of disease treatment
and large-scale drug preparation due to their low levels of
production and singular function. It may be possible to
develop new multifunctional cellular drugs through nano-
engineering strategies, which may provide new ideas for
treating multiple diseases. Zhang et al. proposed the notion
of cytopharmaceuticals, and physicallymodified neutrophils
to carry out non-destructive loading of nanodrugs and to
prepare neutrophil-based drugs that did not affect the
physiological function and vitality of the neutrophils. This
method has made breakthroughs in the therapy of ortho-
topic brain glioma in mice, postoperative chemotherapy,
hyperthermia combined with chemotherapy for liver
cancer, and radiotherapy combined with chemotherapy
for gastric cancer. Compared with traditional targeted
delivery systems, cyto-pharmaceuticals provide advan-
tages in long circulation, targeting, and biocompatibility
in vivo [68]. Xue et al. constructed a novel autologous cell-
mediated drug-delivery system utilizing neutrophils to
pre-ingest paclitaxel (PTX)-loaded cationic liposomes
(PTX-CL) with a positive surface charge in vitro (PTX-CL/
NEs). PTX-CL/NEs were intravenously injected into mice
with surgically resected gliomas. Inflammatory factors

produced by the surgical site induced neutrophils to cross
the BBB into the brain and infiltrate into the surrounding
tumor cells. The PTX-CL/NEs were over-activated, releasing
NETs while releasing the liposome PTX-CL. Then, the lipo-
some PTX-CL effectively delivered the PTX to the tumor
interior, thereby killing brain tumor cells and limiting
tumor recurrence [163].

Zhang et al. also developed a neutrophil membrane-
coated polymer nanoparticle to treat rheumatoid
arthritis [166, 167]. These nanoparticles neutralize pro-
inflammatory cytokines, alleviating synovial inflamma-
tion and providing robust cartilage protection against joint
damage. There has been a lot of work based on neutrophil-
derived membranes in cancer. For instance, Li et al.
designed a pseudoneutrophil cytokine sponge (pCSs) by
coating the outer surface of degradable polymer nano-
particles with activated neutrophil cell membranes [168].
Receptors on the membrane surface adsorb and capture
immunosuppressive cytokines, significantly inhibiting the
expansion, recruitment, and activation of myelosup-
pressive cells, thus alleviating the immunosuppressive
tumormicroenvironment and enhancing the tumor-killing
effect of T cells.

Nanoparticles for regulating other
granulocytes

When stimulated by allergens, mast cells, a type of gran-
ulocyte, activate ROS production, degranulation to release
allergic mediators, and pathological responses, leading to
the development of allergic diseases. Based on the narrow
therapeutic time window of regulating mast cells, Lin et al.
developed a novel mast cell nano-stabilizer based on ceria
nanoparticles to achieve long-term prevention of allergic
diseases [169]. The nano-stabilizer continuously regulates
degranulation-related phosphate signal cascades in allergen-
stimulated mast cells to inhibit release of inflammatory
mediators, thereby inhibiting the occurrence of an allergic
response.

Eosinophils mediate the development of asthma by
secreting a large number of inflammatory cytokines or
programmed necrosis, which aggravates the condition. Sun
et al. developed a ROS-responsive nanoparticle carrying
Fedratinib (JAK2 inhibitor) with a modified Fc fragment of
immunoglobulin G on the surface [170]. By targeting the
FcRn of lung airway epithelial cells, the cargo was delivered
across the airway barrier through Fc/FcRn-mediated recep-
tor transport to achieve lysosomal escape. Fedratinib was
released after being cleaved by ROS in the inflammatory
microenvironment, relieving eosinophilic asthma.

Fan et al.: Nanoparticle-based regulation of immune cells 169



Nanoparticle-based strategies for
B cell regulation

As a type of lymphocyte, B cells also develop in the bone
marrow, which are involved in humoral immunity. After
encountering the foreign substance, B cells can differen-
tiate into plasma cells, with the ability of producing
antigen-specific antibodies to fight infection and regulate
inflammation, or directly secreting cytokines to support or
modulate effector immune functions. At the same time,
B cells generate memory B cells to protect against pathogen
re-exposure. B cells can also serve as APCs leading to
optimal antigen-specific T cell expansion [171]. Regulating
B cell function in vivo may have a profound impact on
disease research, prevention, and treatment [172].

Nanoparticles for disrupting B cell function

B cells also have important functions in the pathogenesis
of autoimmune diseases. B cells promote autoimmunity
by producing autoantibodies, acting as APCs, producing
cytokines, and other mechanisms. Therefore, B cells are a
promising therapeutic target for autoimmune diseases [173].

Our group developed PEG-b-PLA or PEG-b-PLGA-based
CLANs to deliver nucleic acids (Figure 8A). To optimize CLAN
delivery efficiency to B cells, we created a library of CLANs
and compared them with different PEG-b-PLGA and cationic
lipid formulations. By flow cytometry, we compared the
uptake of CLAN by B cells in bone marrow, spleen, and
lymph nodes, and screened for the best CLAN-40.30%NPB2.0
(40.30% PEG/PLGA and 2.0 mg BHEM-Chol). The obtained
CLAN can effectively deliver CRISPR-Cas9 plasmids to B cells
in vivo, and was used to successfully treat rheumatoid
arthritis in mice by knocking out BAFFR in B cells [174]. We
also delivered BTK siRNA via CLAN to treat rheumatoid
arthritis in a CIA model and found that systemic adminis-
tration of CLANsiBTK significantly reduced the expression of
inflammatory cytokines and relieved symptoms of arthritis
(Figure 8B) [175].

Nanoparticles for activating or enhancing
B cell function

Vaccines are an important means to fight infectious dis-
eases. During antigen exposure resulting from vaccination,
B cells rapidly proliferate and undergo somatic hyper-
mutation to select better andmore antigenically responsive
B cell clones to produce high-affinity immunoglobulin-α

(IgA) and immunoglobulin-γ (IgG) antibodies. Activated
B cells leave the germinal centers as plasma cells and
memory B cells, protecting against reinfection for months
to years. Therefore, efficient eliciting of B cell responses is
of great importance for the development of vaccines
against viruses [177].

Temchura et al. developed biodegradable calcium
phosphate nanoparticles displaying protein antigens on
their surface and explored the efficacy of B cell activation
after exposure to these nanoparticles [178]. First, they stud-
ied calcium phosphate nanoparticles modified with model
antigen Hen Egg Lysozyme (CaP-HEL). When CaP-HEL was
co-incubated with mouse SW-HEL B cells, nearly 49% of the
B cells bound to CaP-HEL and surface expression of CD69 and
CD86 increased approximately 100-fold compared to free
HEL. In order to increase the immunogenicity of CaP-HEL
nanoparticles, they also modified TLR ligands on the surface
of CaP-HEL [179]. After injecting the nanoparticles into mice,
they found that IgG levels were significantly elevated.

For highly variable influenza viruses, Kanekiyo et al.
developed a mosaic array by co-localizing heterotypic
influenza hemagglutinin antigens on a single nano-
particle [180]. They linked different hemagglutinin RBD
sequences to engineered ferritin sequences, and then
transfected the RBD-ferritin plasmids into 293F cells. Four
days after transfection, they collected the supernatant to
obtain self-assembled RBD nanoparticles (RBD-np). This
ferritin-based modular self-assembling nanoparticle sys-
tem has been applied in many studies for influenza vac-
cines [181, 182]. RBD-np carries different strains of influenza
virus hemagglutinin antigens on its surface, effectively
reducing the activation of strain-specific B cells and allowing
selective engagement of B cells resistant to antigenic
variation.

For HIV, which still has no effective drug, Wyatt et al.
designed LNPs displaying well-ordered HIV Env spike tri-
mers on their surface to serve as an HIV vaccine immu-
nogen (Figure 8C) [176]. The liposomes were composed of
DGPC, cholesterol, and DGS-NTA(Ni), and incubation with
trimeric proteins yielded Env-trimer-conjugated lipo-
somes. After incubation with Env-trimer-conjugated lipo-
somes, CD69 expression increased, and more TNF-α and
IL-6 secretion was observed, indicating that Env-trimer-
conjugated liposomes activated the B cells. When Env-
trimer-conjugated liposomes was injected into C57BL/6
mice for 14 days, germinal center B cells were also acti-
vated. In the HIV pseudovirus neutralization test, rabbits
were immunized with soluble or Env-trimer-conjugated
liposomes. Serum measurements showed that, compared
with soluble trimers, the neutralization titer caused by Env-
trimer-conjugated liposomes tended to increase.
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Nanoparticle-based strategies for
innate lymphocyte regulation

Natural killer cells, also known as NK cells or large granular
lymphocytes, are a type of innate immune cell and perform a
cytotoxic role in cellular immunity. NK cells develop and
mature in bone marrow and secondary lymphoid tissues,
including spleen, lymph nodes, and tonsils. NK cells are
analogous to cytotoxic T cells and kill aberrant cells, but they
do so without receptors for antigen recognition. In the

absence of antigen specificity, NK cells have the ability to
selectively recognize and kill stressed cells and cancer cells,
allowing for a fast immune reaction [183]. NK cells can also
produce a variety of cytokines and chemokines [184]. NK
cells can be classified as CD56bright or CD56dim. CD56bright NK
cells are the largest proportion of NK cells and mainly
release cytokines, like T helper cells [185]. CD56dim NK cells
are characterized by their killing ability [186]. Here we re-
view direct NK cell targeting nanotechnology applications,
including nanoparticle-mediated NK cell activation and a
nano-engager for NK cells.

Figure 8: Nanoparticle for regulating B cell function. (A) CLANs deliver CRISPR-Cas9 plasmid to B cells [174]. (B) CLANs deliver BTK siRNA to B cells [175].
(C) Env-trimer-conjugated liposomes activate B cell. The composition of the nanoparticles is shown in the figure [176].
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Nanoparticle-mediated NK cell activation

NK cells play important roles in cancer therapy, but poor
infiltration and inhibition remain barriers to clinical
translation that may be overcome by using nanoparticles.
To direct NK cells to infiltrate tumors, Jang et al. used
Cy5.5-conjugated Fe3O4/SiO2 nanoparticles to control hu-
man NK cells by an external magnetic field [187]. NK-92MI
cells were incubated with Fe3O4/SiO2 nanoparticles to allow
uptake, then the nanoparticle-loaded NK cells were injected
into a mouse model of B cell lymphoma. Under an external
magnetic field, this strategy increased NK-92MI cell infil-
tration of the tumor by more than 17-fold (Figure 9A).
Similarly, polydopamine-coated magnetic nanoparticles
directed NK cells to the tumor site to strengthen NK cell-
mediated cancer therapy [188]. To activate NK cells and
enhance NK cell-mediated cancer therapy, Wu et al.
developed cell membrane-encapsulated magnetic nano-
particles [189]. Fe3O4@SiO2 nanoparticles were coated with
cancer cell membrane and used to stimulate NK cells with
cancer-specific antigens, resulting in release of cytotoxic
cytokines such as perforin and granzyme B to enhance
antitumor efficacy in hepatoma tumor cells. Kim et al.
reported a facile and efficient method to activate NK cells
through cationic magnetic nanoparticles [190]. Primary NK
and NK-92MI cells were treated with cationic magnetic

nanoparticles, and upregulated CCR4 and CXCR4 chemo-
kine receptor expression (Figure 9B). In a model of triple-
negative breast cancer, nanoparticle-activated NK cells
inhibited tumor growth.

Other nanoparticles can also be used for NK cells acti-
vation. Loftus et al. developed a strategy to generate soluble
nanoclusters of NK cell-activating antibodies using antibody-
conjugated nanoscale graphene oxide as template [191].
These nanoclusters mimicked a number of natural cell sur-
face proteins, successfully stimulated NK cells, and induced
cellular activation via the CD16 receptor. Nakamura et al.
used a multifunctional envelope-type nanodevice (MEND)
containing YSK12-C4 (YSK12-MEND) to transfect human
immune cell lines with siRNA [192]. In this work, Jurkat,
THP-1, KG-1, and NK92 were transfected and showed 96, 96,
91, and 75% mRNA knockdown efficiencies, respectively.
These results indicated that YSK12-MEND was suitable for
delivering siRNA into immune cells, including NK cells.
However, NK-92 cell transfection yielded significant cyto-
toxicity. Nakamura et al. decreased the total amount of
lipids in YSK12-C4, which was the cause of cytotoxicity in
NK-92 [193]. This improved YSK12-MEND and demonstrated
more potential ways to regulate NK cells.

Extracellular vesicles contain different proteins
with natural structures. Oyer et al. developed a cancer
cell membrane-derived particle for cytotoxic NK cell

Figure 9: Nanoparticle-mediated NK cell activation. (A) The Fe3O4/SiO2 nanoparticles modified with PET-silane and fluorescent dyes directed NK cells
under an external magnetic field [187]. (B) Cationic nanoparticle-mediated NK cell activation via regulation of CCR4 and CXCR4 [190].
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expansion [194]. K562-mb21-4-1BBL cells, which express
membrane-bound IL-21 and 4-1BB ligand, were prepared
to generate PM21 particles, which showed highly efficient
activation to produce 66-fold more human NK cells
ex vivo, and 360-fold more in vivo.

Nano-engager for regulating NK cells

Like cytotoxic T cells, NK cell-mediated cell killing depends
on recognition of aberrant cells by NK cells. Bispecific or
trispecific antibody have been used as engagers between NK
cells and tumor cells [195]. Nanotechnology provides a more
flexible approach to direct NK cell interactions with target

cells and enhance NK cell-mediated cytotoxicity. Au et al.
reported a nanoparticle-based trispecific NK cell engager
(nano-TriNKE) platform to promote NK cell-mediated cancer
therapy [196]. In this work, PEG-PLGA nanoparticles were
functionalized with three types of antibodies including
antibody targeting activating receptors, CD16 and 4-1BB,
on NK cells and EGFR on tumor cells. The nano-TriNKE
enhanced the interaction between NK cells and tumor cells
by targeting their specific surface proteins and promoted
NK cell activation through CD16 and 4-1BB receptors
(Figure 10A). The results revealed that nano-TriNKE acti-
vated NK cells more effectively than free antibodies, and
improved tumor therapy in multiple tumor models. Jiang
et al. developed a versatile imNAmodel that could be applied

Figure 10: Nano-engager for NK cells. (A) EGFR-targeted nanoparticle-based trispecific NK cell engagers (nano-TriNKEs) (αEGFR/αCD16/α4-1BB NPs)
against EGFR-overexpressed cancer after systemic administration [196]. (B) Nano-adaptor in NK cell-mediated cancer therapy [76].
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as a nano-engager for NK cells [76]. To construct NK cell-
targeting imNAs, antibodies targeting KLRG1 (killer-cell
lectin-like receptor G1) and PD-L1 were immobilized onto
anti-Fc antibody-functionalized nanoparticles (Figure 10B).
Anti-KLRG1 antibody served to block cadherin/KLRG1
signaling to enhance NK cell functions, and anti-PD-L1 anti-
bodywas used to bind tumor cells. This strategy significantly
reduced metastatic melanoma formation in lung compared
to free antibodies.

Conclusions and future
perspectives

In summary, nanotechnology can improve the safety and
efficacy of immunomodulatory compounds by altering their
temporal and spatial release. Concentration and targeting of
the dose to the appropriate site or cell type can improve
therapeutic efficacy. Extended, controlled, localized drug
release enables continuous reprogramming of the TME or
post-surgery environment [197]. Although nanoparticle-
based regulation strategies are promising, especially for
disease treatment, the current perception of their role in
disease is not comprehensive, including the fate and state of
nanoparticles in vivo, the potential influence in immune cell
subtypes with different functions, and the transformation
between subtypes. The activation and abundance of immune
cells change dynamically through disease development and
inflammation. Accurate immune intervention often depends
on updating technology to achieve real-time dynamic
exploration of cellular function or behavior. Targeting of
immune cells in vivo requires appropriate and rational
design of nanomedicines and increased targeting specificity
to mitigate nonspecific targeting, and the selection of drugs
and carriers that do not affect cellular function should also
be considered. Researchers can control the targeting func-
tions of nanoparticles to different tissues or immune cells by
adjusting the characteristics of nanoparticles, such as the
types and proportions of lipids, which can bemanipulated to
target different tissues [198]. In addition, specific nucleic acid
barcodes can be encapsulated into nanoparticles for high-
throughput screening by deep sequencing of the barcodes,
thereby finding the optimal nanoparticle for predicting the
therapeutic potency of anticancer medicines in a personal-
ized manner [199]. According to the location and charac-
teristics of the diseases, it is promising to achieve the
purpose of treating different diseases by more precisely
targeting nanoparticles.

For in vitro engineered immune cells, the yield, activity,
and safety of functional proteins require further attention.

Manufacturing of clinical grade materials remains a key
consideration that cannot be ignored. The formulation should
be designed with a view to conversion to GMP standards.
Particles, devices, and cells require reproducible and scalable
chemistry, manufacturing, and control, so simplicity is
extremely valuable [28]. The convergence of cancer immu-
notherapy, nanotechnology, and bioengineering is coming of
age and could affect patient lives soon. To accelerate the
clinical translation of nanocarriers that regulate immune
cells, it is essential to engage researchers across the fields of
materials science, engineering, pharmacology, and immu-
nology. In order to rapidly screen nanomedicine with clinical
application value, organoid technology platform can be used
to achieve fast, accurate and high-throughput screening [200].
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