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A complicated clinical course for critically ill patients admitted to the intensive care

unit (ICU) usually includes multiorgan dysfunction and subsequent death. Owing to the

heterogeneity, complexity, and unpredictability of the disease progression, ICU patient

care is challenging. Identifying the predictors of complicated courses and subsequent

mortality at the early stages of the disease and recognizing the trajectory of the disease

from the vast array of longitudinal quantitative clinical data is difficult. Therefore, we

attempted to perform a meta-analysis of previously published gene expression datasets

to identify novel early biomarkers and train the artificial intelligence systems to recognize

the disease trajectories and subsequent clinical outcomes. Using the gene expression

profile of peripheral blood cells obtained within 24 h of pediatric ICU (PICU) admission

and numerous clinical data from 228 septic patients from pediatric ICU, we identified 20

differentially expressed genes predictive of complicated course outcomes and developed

a new machine learning model. After 5-fold cross-validation with 10 iterations, the

overall mean area under the curve reached 0.82. Using a subset of the same set

of genes, we further achieved an overall area under the curve of 0.72, 0.96, 0.83,

and 0.82, respectively, on four independent external validation sets. This model was

highly effective in identifying the clinical trajectories of the patients and mortality. Artificial

intelligence systems identified eight out of twenty novel genetic markers (SDC4,CLEC5A,

TCN1, MS4A3, HCAR3, OLAH, PLCB1, and NLRP1) that help predict sepsis severity or

mortality. While these genes have been previously associated with sepsis mortality, in

this work, we show that these genes are also implicated in complex disease courses,

even among survivors. The discovery of eight novel genetic biomarkers related to the

overactive innate immune system, including neutrophil function, and a new predictive

machine learning method provides options to effectively recognize sepsis trajectories,

modify real-time treatment options, improve prognosis, and patient survival.
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INTRODUCTION

Critically ill patients are admitted to the Intensive Care
Unit (ICU) for complex and dynamic care, preserving organ
function and improving outcomes in otherwise dire situations.
Among patients with complicated disease courses, septic patients
represent a significant component (1). Sepsis is a life-threatening
organ dysfunction caused by the overactive immune response
to bacterial infection, often of pulmonary origin (2). Sepsis
may have contributed to 20% of all global deaths in 2019 (3).
Sepsis consists of a heterogeneous mix of phenotypes (4, 5),
various degrees of disease complexities, and trajectories leading
to recovery or death (6, 7). Different strategies have been pursued
predicting deterioration (8–10) and managing patients with
sepsis in critical care units (11) using physiological, clinical,
and biomarker parameters. However, due to the heterogeneous
nature of patients presenting to the ICU and the diverse disease
course that follows, it has been difficult to identify generalized
models of disease (12).

Statistical andmachine learningmethods have been developed
to successfully utilize the multi-omics data for biomarker
discovery for predicting survival from sepsis (13). Wong et al.
(14) identified 12 biomarkers collectively called the Pediatric
Sepsis Biomarker Risk Model (PERSEVERE) class genes. Further
analyses resulted in the identification of 18 additional genes
consisting of the PERSEVERE XP set (15). Mohammed et al. (16)
identified 53 differentially expressed genes, involved mostly in
immune response and chemokine activity, from expression data
collected from patients admitted to the pediatric ICU (PICU)
within 24 h of admission. Sweeney et al. (17) analyzed the results
obtained from three independent scientific groups that developed
mortality prediction models and identified additional subgroups
of genes. While much has been studied about the risk for
mortality, there is a dearth of machine learning approaches to
predict disease trajectory, including complicated disease courses
and poor clinical outcomes (18). Early identification of disease
trajectory, including complicated disease courses, defined as
persistence of 2 or more organ failures by day 7 or death by
day 28, can aid in clinical management and targeted therapies to
manage severe outcomes. Hence, there is a need to identify these
biomarkers and build novel machine learning models to identify
complex disease courses from plasma samples collected close to
the time of ICU admission.

In this work, we performed a meta-analysis of previously
published peripheral blood cell gene expression data (sampled
within 24 h of sepsis onset; 228 pediatric ICU patients) and

Abbreviations: AUROC, Area Under the Receiver Operating Characteristic

Curve; APACHE II, Acute Physiology And Chronic Health Evaluation II;

BRF, Balanced Random Forests; CCN, Cluster Centroids; DEGs, Differentially

Expressed Genes; ET, Extra Trees Classifier; EE, Easy Ensemble; GB, Gradient

Boosting; IHT, Instance Hardness Threshold; KEGG, Kyoto Encyclopedia of Genes

and Genomes; KS, Kolmogorov-Smirnov; LASSO, Least Absolute Shrinkage and

Selection Operator; LOGIT, Logistic Regression; MCC, Matthew’s Correlation

Coefficient; PERSEVERE, Pediatric Sepsis Biomarker Risk Model; PRISM,

Pediatric Risk of Mortality Score; RFE, Recursive Feature Elimination; REDN,

Repeated Edited Nearest Neighbors; SIRS, Systemic Inflammatory Response

Syndrome; SMOTE, Synthetic Minority Over-sampling Technique; XGBoost,

eXtreme Gradient Boosting.

analyzed them using multiple statistical and machine learning
methods to identify novel markers of sepsis disease trajectory.We
found 20 highly stable genes that predict disease complexity with
an average derivation AUROC of 0.82 and validation AUROCs
of 0.72, 0.96, 0.83, and 0.82 within critically ill children, using
peripheral blood collected within 24 h of ICU admission. We
validated these variables by calculating their overlap with the
well-established sepsis mortality predicting genes, conducting
the functional gene-set enrichment and pathway analyses,
and testing them on four external validation datasets. Earlier
identification of disease complexity can inform care management
and targeted therapy. Therefore, the 20 gene candidates identified
by our rigorous approach can be used to identify, early in their
ICU stay, patients who may ultimately develop significant organ
dysfunction and complex care management.

MATERIALS AND METHODS

Data Collection
The pediatric sepsis dataset GSE66099 (19) downloaded from
the NCBI Gene Expression Omnibus (GEO) repository, contains
the gene expression profiles extracted from the peripheral blood
samples of patients who were admitted to the PICU during the
first 24 h of admission. Themicroarray dataset was obtained from
the Affymetrix GPL570 platform, which was submitted by Wong
et al. on February 19, 2015, and last updated on March 25, 2019.
We considered a complicated course as the primary outcome
variable. This was defined as death by 28 days or persistence ≥2
organ failures at day 7 of septic shock (20). This dataset was used
to train our model and derive the top gene variables.

Due to the lack of available external data that encodes for
complicated courses as defined in our derivation cohort, we used
a collection of four microarray gene expression datasets as the
closest surrogate to validate our list of biomarkers. The first
dataset, GSE54514 (21), based on an adult cohort, providedwhole
blood samples collected up to 5 days after ICU admission. In
this cohort, we defined the complicated presentation as patients
with APACHE II scores ≥25 observed within 24 h of admission
to the ICU. The second dataset, E-MEXP-3850 (22) was used
to study the temporal evolution of sepsis by collecting whole
blood samples at six different time points from five critically ill
children admitted to the PICU with meningococcal sepsis and
sepsis-induced multiple organ failure. Barring one sample from
patient four that was degraded and not used for microarray
analysis, there were a total of 29 distinct time-course based gene
expression measurements included in this study. We considered
28-day mortality as the primary outcome variable for this cohort.
The third dataset, E-MEXP-3567 (23) was used to discover
biomarkers of severe bacterial infection using transcriptomic
data collected from whole blood samples of children suffering
from either bacterial meningitis or bacterial pneumonia. The
outcome variable that was chosen for this dataset was in-hospital
mortality. The fourth dataset, GSE40586 (24), was used to study
the pathways activated at the transcriptional level by extracting
RNA from the whole blood samples of patients (infants, children,
and adults) suffering from bacterial meningitis and following a
complicated clinical course. The outcome variables used in our
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analysis included the complications observed by a neurologist
during a patient’s discharge from the hospital. The processed
expression data, probe to gene identifiers, and the outcome labels
for the datasets GSE54514, E-MEXP-3850, E-MEXP-3567, and
GSE40586 were downloaded from (17). The gene expression
data were extracted from whole blood samples and thus contain
a mixture of red blood cells, white blood cells and platelets.
However, RNA from these sources do not contribute to the
expression of the immune-related genes expressed in the white
blood cells.

All procedures performed in studies involving human
participants were in accordance with the ethical standards of the
institutional review boards of all participating institutions, and
with the Declaration of Helsinki and its later amendments or
comparable ethical standards.

Normalization and Background Correction
Technical variations in the gene expression data were eliminated
using the Affy package (25) from R. This also helped remove the
background noise. The Robust Multi-Average parameter method
using “gcrma” package (26) from R was used to normalize data
and perform background correction. Surrogate Variable Analysis
was performed to infer batch effects and other unwanted sources
of variation in the data. The “sva” package (27) in R was used
for this purpose. The results of the surrogate variable analysis or
the inferred batch effects were regressed with the actual batch
variable (or year of measurements in this case) using the lm ()
function (28). The resulting variation was removed using the
Combat () from the same package, and the cleaned expression
set object was used for further analysis. Boxplots displaying
the expression values before and after normalization and the
relationship between inferred and observed batch effects were
plotted using the boxplot () from R (28).

Probe to Gene Mapping, Identification of
Differentially Expressed Genes
For the microarray datasets GSE66099, GSE54514, E-MEXP-
3850, E-MEXP-3567, GSE40586, the Affymetrix probes were
matched to gene symbols using the Affymetrix Human Genome
U133 Plus 2.0 (hgu133plus2.db), Illumina Human HT12v4
annotation database (illuminaHumanv4.db), Affymetrix Human
Gene 1.0 ST Array (HuGene-1_0-st), Affymetrix Human
GenomeHG-U133A (hgu133a.db), and Affymetrix HumanGene
1.0 ST Array (HuGene-1_0-st), respectively. In order to detect
the expression values of genes with multiple probes, we averaged
the expression for multiple probes that matched to the same
gene. The limma package (29) from R was used to perform the
differential gene expression analysis with a Benjamini-Hochberg
correction (FDR cutoff= 0.1).

Functional Enrichment Analysis
We used the clusterProfiler package (30) in R to find enriched
biological processes (BP), cellular components (CC), and
molecular function (MF) terms. A plot displaying the enriched
terms was drawn using the enrichplot package (31) in R. The
STRING analysis online tool (32) was used to find significantly
enriched Reactome and KEGG pathways.

Statistical Analysis
Affymetrix data download and gene mapping were done using
the “affy” and the annotation package “hgu133plus2.db” package
in R, respectively. A Fisher exact test was performed to determine
the statistical significance among the functional enrichment
terms. Benjamini Hochberg’s multiple test correction methods
were used to calculate the differentially expressed genes (DEGs).
Heatmap for the DEGs was generated using the Heatmap ()
from the “complexHeatmap” package (33) in R. Since there
was no explicit argument in the Heatmap () to scale the
rows/columns, we scaled our expression matrix using the scale
() (28) and then constructed the heatmap of the resulting scaled
matrix. The Volcano plot and the MA plot were generated
using the volcanoplot () and plotMA () of the limma package
(29), respectively.

Variable Selection Methods
The processedmicroarray derivation dataset had 20,174 genes for
228 samples. Our next objective was to reduce the dimensionality
of the dataset by removing redundant variables. To do that,
we used three commonly used variable selection techniques,
including random forest-based variable importance, LASSO, and
Minimum Redundancy and Maximum Relevance. The variables
generated by each of the above three methods were pooled
together into one aggregated variable set, and the list of 17
differentially expressed genes were also added to that list. The
Pediatric Risk of Mortality Score (PRISM) for each patient
was computed and included in the model (34). For external
validation, we used both LASSO based and tree-based variable
selection techniques (using the extra trees classifier with 250
estimators) to select the top variables for further analysis.

Classification Models
Imbalanced data can negatively affect learning algorithms.
Hence, in this study, we experimented with both oversampling
and undersampling techniques to balance the training data.
Among the undersampling techniques, we implemented Cluster
centroids (CCN), Repeated Edited Nearest Neighbors (REDN),
Edited Nearest Neighbors (EDN), Instance Hardness Threshold
(IHT), and Random Undersampling (RUS). Cluster centroids
(35) undersamples the majority class by first calculating the
centroid of the majority class and then finding all the instances
nearest to this centroid in the input variable space. Consequently,
instances far away from the centroid are discarded. The
scikit-learn implementation of this method uses the KMeans
algorithm to find the cluster centroids. In case of the Edited
Nearest Neighbor resampling technique (36), all instances
whose class label differs from that of half of its k-nearest
neighbors are discarded. In Repeated Edited Nearest Neighbors,
the EDN technique is successively applied until no further
instances can be removed from the majority class. The
Instance Hardness Threshold undersampling technique (37)
works by successively applying a set of n learning algorithms
on the training set followed by removing those instances that
are frequently misclassified. Random Undersampling involves
randomly selecting instances from the majority class to remove
from the training set. SMOTE (Synthetic Minority Oversampling
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Technique) (38) is a frequently used oversampling technique that
works by synthesizing new instances of the minority class from
existing data. Specifically, a data point (say a) from the minority
class is first chosen at random and its k-nearest neighbors are
identified. A randomly selected neighbor (say b) is then chosen
and a synthetic example is created at a randomly selected point
between a and b.

We then developed machine learning algorithms using several
tree-based classifiers and logistic regression. The two tree-based
classifiers were the Balanced Random Forest (BRF) and Extra
Trees (ET) classifier. A random forest classifier combines the
predictions from hundreds of decision trees built on random
bootstrapped samples of the dataset using a random subset
of variables when splitting the nodes. In case of imbalanced
classification, a balanced random forest classifier balances data by
randomly undersampling each bootstrapped sample. The extra
trees classifier is a meta estimator that fits a user-defined number
of randomized trees (base models) on different sub-samples
of the data and then combines the predictive power of these
models into one optimal model. In case of binary classification,
a Logistic Regression (LOGIT) classifier works by calculating
a linear combination of the log-transformed gene expression
values across samples and generating a linear decision boundary
to separate the two classes from one another. For the external
validation analysis, in addition to the above classifiers, we also
used three ensemble techniques, namely the Gradient Boosting
classifier (GB), Easy Ensemble (EE), and XGBoost classifier. All
three classifiers work by combining several base learning models
into a strong predictive model. Gradient Boosting (39) aims to
reduce the loss of the model by iteratively adding weak learners
in a stagewise fashion using a gradient descent approach and
XGBoost (Extreme Gradient Boosting) (40) is a fast and highly
efficient implementation of the Gradient Boosting method that
uses L1 and L2 regularization to generate more generalizable
models. The Easy Ensemble classifier (41) is essentially a
collection of AdaBoost learners trained on different random
bootstrap samples of the training set. A general framework
explaining how tree-based classifiers and logistic regression
models work is available in the Supplementary Document.

Model Selection and Tuning
The learning process that was adopted in the manuscript is
illustrated in Figures 1A–C. First, the dataset was randomly
partitioned in a stratified fashion into five equal subsets
(Figure 1A). Four of the five subsets were combined into one
training set. In each training phase, we performed (1) variable
selection (Figure 1B): The pooled list of variables using the
three variable reduction approaches (described in the previous
section), along with statistical filtering by DEG, were obtained.
Finally, Recursive Feature Elimination (RFE) (43) was performed
on the pooled variables to remove redundancies and arrive
at a subset of the most important genes. (2) Hyperparameter
tuning was performed using a cross-validated grid search
technique over a parameter grid using the AUROC metric as
the scoring function. (3) A classifier was trained using the
hyperparameters, and the corresponding prediction scores were
obtained on the hold-out test set (Figure 1C). We repeated

the entire process 10 times, resulting in 50 unique train and
test splits. The classification performances obtained during each
run were averaged, and the mean scores were reported. We
assessed the performance of our classifiers using four widely
used performance metrics: Sensitivity, Specificity, Mathews
correlation coefficient, andArea under the ROC curve. They were
defined as follows:

Condition Positive (P): The number of complicated course
patients in the dataset
Condition Negative (N): The number of uncomplicated course
patients in the dataset
True Positives (TP): The generated model has correctly
predicted the positive class or the complicated course patients.
True Negatives (TN): The generated model has correctly
predicted the negative class or the uncomplicated
course patients.
False Positives (FP): The generated model has incorrectly
predicted the positive class or the complicated course patients.
False Negatives (FN): The generated model has incorrectly
predicted the negative class or the uncomplicated
course patients.
Sensitivity (or True Positive Rate): A quantity that measures
the proportion of the complicated course patients that are
correctly identified. Mathematically, this can be expressed as:

Sensitivity =
TP

TP + FN

Specificity: A quantity that measures the proportion of the
uncomplicated course patients that are correctly identified.
Mathematically, this can be expressed as:

Specificity =
TN

TN + FP

False Positive Rate: A quantity that is defined as the ratio
between the number of uncomplicated patients incorrectly
categorized as complicated (false positives) and the actual
number of uncomplicated patients (before classification).

False Positive Rate =
FP

FP + TN

Mathews correlation coefficient: A quantity that measures the
quality of binary classification models. Mathematically, this
can be expressed as:

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

The value of MCC ranges from −1 to 1 where −1 signifies
a perfect misclassification and vice versa. Accuracy and F1
score are widely used performance metrics that can show
overoptimistic inflated results for imbalanced data and hence
were not included in our study.
Area under the ROC curve: A probabilistic binary classifier
outputs the probability of a particular data point belonging
to a class. To map these probabilities to a binary category,
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FIGURE 1 | The overall methodology design for biomarker discovery from the derivation dataset GSE66099 containing 228 samples is illustrated in this figure. (A) The

initial data is aggregated, normalized, corrected for batch normalization, and separated into even chunks using k-fold cross-validation (CV). In our pipeline, we used k

= 5. (B) The training chunks of the CV are used for model development; the data analysis pipeline follows the Complete Cross-Validation (CCC) approach defined by

Alder et al. (42). In addition to DEG, we apply three other variable selection methods to generate a pool of candidate genes. We then apply a wrapper method, namely

the RFE to arrive on the most predictive genes. (C) The genes selected by the RFE method are then used to develop a predictive model. The model is then evaluated

on the test fold of the CV. This process is repeated for the remaining training and test folds. Finally, the entire 5-fold CV is repeated 10 times to generate a total of 50

iterations, and the top predictors from (B) are saved and analyzed to generate a normalization score, which is a measure of how often a gene appears as a top

predictor across each of the 50 iterations.

a classification threshold is usually defined. A value above
that threshold will be classified as “positive” and vice versa.
An ROC curve plots True Positive Rate vs. False Positive
Rate and displays the performance of a binary classifier at
different classification thresholds. Area under the ROC curve
(or AUROC) measures the entire two-dimensional area under
the ROC curve. Basically, it gives an aggregate measure of
the performance of a binary classifier at various classification
thresholds. Another way of interpreting AUROC is as the
probability that a classifier ranks a random positive instance
more highly than a random negative instance. AUROC ranges
from 0 to 1 where 0 signifies a perfectly inaccurate classifier
and vice versa. The ROC plots displaying the performance
of the binary classifiers were generated using the matplotlib
(44) plotting library in Python. A detailed discussion on each
step of the workflow outlined in Figure 1 is available in the
Supplementary Document.

To study the predictive power of our top 20 gene variables from
the stability analysis, we performed validation on independent
test sets. In the first step, we applied different undersampling
and oversampling techniques on the derivation dataset. Then

we performed a LASSO based variable selection to remove
redundant variables. The hyperparameters of the classifier were
tuned using the 5-fold cross-validation grid search technique
over a parameter grid using the AUROC metric as the scoring
function. The tuned classifier was then trained on the derivation
set, and the corresponding prediction scores were obtained
on the hold-out validation sets (GSE54514, E-MEXP-3850, E-
MEXP-3567, and GSE40586). The predicted probabilities from
a classification model are converted to discrete class labels
using a parameter called “classification threshold.” Consequently,
if “x” was the reported classification threshold for a given
classifier, then all instances with predicted probabilities greater
than “x” were classified as having a complicated course
outcome and vice versa. To further fine-tune the classifiers,
instead of using the default classification threshold of 0.5,
we experimented with different thresholds between 0 and 1
with step sizes of 0.001. This is particularly important for an
imbalanced classification problem like ours and must be taken
into account to make sure that the minority class examples are
predicted correctly.

The same set of performance metrics were used to assess the
validation classifier’s quality, as stated in the previous section.
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Distribution of Variables
To study the class-wise distributional differences between the
variables (or genes), we conducted the two-sample Kolmogorov-
Smirnov (KS) test using scipy stats module. The distplot function
from the seaborn package (45) was used to visualize the class-wise
Gaussian kernel density estimate of each of the variables. In case
of the E-MEXP-3567 dataset, owing to the small sample size (only
12 samples), we adopted a repeated resampling with replacement
(or bootstrapping) technique to estimate the KS statistic values.
The formulation of the KS test and an extended discussion on
KDE plots is available in the Supplementary Document.

RESULTS

Clinical Characteristics of the Patients
Included in the Derivation Dataset
Out of the 229 pediatric septic patients present in the derivation
dataset (GSE66099), 52 had a complicated course outcome.
One patient was excluded due to missing the outcome variable.
The age of the cohort was 3.81 ± 3.42 (mean ± SD) years.
Out of the 228 patients in the cohort, 18 patients met the
criteria for sepsis, 30 for Systemic Inflammatory Response
Syndrome (SIRS), and 180 for septic shock. Males constitute
the majority of the dataset (139; 61%; P = 0.00093). In the 52
complicated course cohort, 31 (59.6%; P = 0.16) were male;
whereas in the non-complicated course group, 108 (61.36 %;
P = 0.0026) were male. Of the 52 with complicated courses,

28 (53.8%; P = 0.58) died. The clinical characteristics of all
patients with a complicated or uncomplicated course outcome
are provided in Supplementary Table 1A. Microbiologic results
are shown in Supplementary Table 3. The most frequently
identified organisms were Staphylococcus aureus (in 22 patients;
9.65%), Pneumococcus (in 18 patients; 7.9%), Group A Strep (in
14 patients; 6.14%), and Klebsiella (in 11 patients; 4.82%).

Normalization and Subsequent Batch
Correction Removed Unwanted Variations
From the Derivation Dataset
Figures 2A,B shows the boxplots of the average gene expression
of samples derived from the derivation dataset GSE66099 before
and after normalization. Before normalization, the expression
values had inconsistent distributions. After normalization all the
samples were aligned at the overall mean and variance. The
output of the SVA consisted of two surrogate variables and only
one of them had a significant association with the actual batch
variable. The boxplot drawn in Figure 2C shows that there is a
relationship between the inferred batch effect and the observed
batch effect. This is similar to performing an ANOVA test and
checking if the values of the SVs calculated for each sample is
different between the batches or whether there is a difference
in the means between the boxplots. An expanded discussion on
the normalization process and identification of batch effects is
available in the Supplementary Document.

FIGURE 2 | Preprocessing of derivation dataset GSE66099 containing 228 samples. (A,B) Average gene expression values before normalization and after

normalization. The x-axis represents the samples, and the y-axis represents the gene expression values. According to the figures, the average expression values of the

samples were more stable and consistent after normalization and suitable for analysis. (C) One of the most well-known sources of variation in gene expression studies

is batch effects when samples are processed during different time points or by different groups of people. We removed the batch effects from the data due to the

microarray experiments being conducted over multiple years using the Combat() in the “sva” package. In the given figure, the first SVA component ordered by date

before batch effect correction shows that one of the inferred batch effects (or the surrogate variable) is associated with the actual batch variable.
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FIGURE 3 | Differential gene expression analysis results of the patients included in the derivation dataset GSE66099 containing 228 samples. (A) Heatmap

representing differentially expressed genes between complicated and uncomplicated course groups with annotations. The color and intensity of the boxes represent

changes in gene expression. Red represents upregulated genes and green represents downregulated genes. The horizontal bars show annotations for complicated

course outcomes and mortality and are useful for interpreting the sample-wise clusters formed using the expression measurements. (B) Volcano plot of differentially

expressed genes in complicated and uncomplicated course outcomes. A volcano plot helps us to assess the adjusted p-values (significance), and the log fold

changes (biological difference) of differential expression for the given list of genes at the same time. (C) An MA plot is a 2D scatter plot (each dot representing a gene)

that represents log fold change vs. mean expression across two different conditions. All the significantly differentially expressed genes (FDR cutoff = 0.1) are colored in

red and the genes without significant gene expression differences are colored in black.

Expression Levels of the DEGs Generated
Prominent Clusters Separating the
Complicated and Uncomplicated Course
Patients
Based on an adjusted p-value cutoff <0.1, a total of 1,269
differentially expressed genes (DEGs) from 20,174 were found
between the complicated and uncomplicated group of patients,
including 808 upregulated genes and 461 downregulated genes.
The DEGs with an absolute log2 fold change of at least one
(n= 17) are shown in Supplementary Table 2. For the complete
list, refer to Supplementary Table 4. Figure 3A illustrates the
heatmap of 17 DEGs (absolute log2 fold change >1 and adjusted
p < 0.1) across the complicated vs. uncomplicated groups
derived using the derivation dataset GSE66099. The samples
are represented on the vertical axis and the genes are on the
horizontal axis. The normalized gene expression values of the
DEGs were used to construct the heatmap. Red and green
represent the upregulated and downregulated genes, respectively.
Both the samples and genes were clustered to give a better idea of
the groups formed using the expression values. Two horizontal
bars show annotations for the complicated course outcomes
and mortality.

Three prominent sample clusters were observed from the
heatmap. The first cluster contained none of the 52 complicated
course patients, while the second cluster contained nine (17%)
of the 52 complicated course patients and the third contained
43 (83%) of the complicated course patients. A similar cluster
trend is noticed among survivors/non-survivors. None of the
non-survivors were in the first cluster, four (14%) out of 28 non-
survivors were in the second cluster and the remaining 24 (86%)
were in the third cluster.

Genes were also clustered into two distinct groups of
upregulated and downregulated genes. MME, TGFBI, and

HCAR3 together formed one cluster of downregulated genes
while the rest were in the upregulated category. LTF and
IL1R2 were the most highly expressed genes, whereas CEP55,
and MS4A3 were the least expressed genes. MMP8 was
the most upregulated gene while HCAR3 was the most
downregulated gene.

Figure 3B shows the volcano plot of significantly different
genes. Only genes having absolute log2 fold change >1 and
adjusted p < 0.1 were considered differentially expressed.
Excluding the above-mentioned downregulated genes, green dots
represent log2 fold change >1 and adjusted p < 0.1; red dot
represents genes with adjusted p < 0.1 but log2 fold change
between −1 and 1; whereas black represent genes with log2
fold change between −1 and 1 and adjusted p > 0.1. Also, in
Figure 3C, an MA-plot displays the log2 fold change between
complicated course and non-complicated course samples as a
function of the average expression level across all samples. Red
dots are relatively larger than the black ones. The dataset included
a total of 30 uncomplicated disease course patients who met the
SIRS criteria when excluding these patients from our analysis we
observed five genes that achieved robust normalization scores but
did not meet the DEG cutoffs. Those genes were: TGFBI, DEFA4,
CEP55, MME, and OLAH.

Functional Enrichment Analysis of the
DEGs Displayed an Association With an
Overactive Innate Immune System and
Neutrophil Activity
The top 17 most significantly differentially expressed genes
(absolute log fold change>1 and adjusted p< 0.1) obtained from
the derivation dataset GSE66099 were analyzed. “Hematopoietic
cell lineage” (hsa04640) was the most enriched KEGG pathway;
“neutrophil degranulation” (HSA-6798695), “immune system”
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FIGURE 4 | Functional analysis of the 17 DEGs using the expression levels of the patients included in the derivation dataset GSE66099 containing 228 samples. The

Gene Ontology terms representing our knowledge for the biological domain are grouped on the basis of three major aspects: Biological Processes (BP), Cellular

Components (CC), and Molecular Function (MF). A biological process is a specific objective that an organism is genetically designed to accomplish. It is often

described by the ending state or the outcome. For instance, a biological process defined as “cell division” results in the creation of a divided cell (two daughter cells)

from a single parent cell. A Cellular Component (CC) defines a location occupied by a macromolecular machine during the execution of a specific molecular function.

For instance, “cytoplasmic side of plasma membrane” is a cellular component defining the location of a gene product relative to cellular structures. A Molecular

Function (MF) represents the primary activity of a gene product at the molecular level. Biochemical activities such as “binding” or “catalysis” are examples of GO terms

representing molecular functions. In this figure, the y-axis represents the gene ontology terms and the x-axis represents the “Gene Ratio” or the percentage of total

DEGs in the given GO term. The size of the dot or the “Gene Count” represents the number of genes associated with the enriched term and the color of the dot

represents the significance of the terms (more significant terms being redder). “P.adjust” is the p-value adjusted using the Benjamini-Hochberg procedure.

(HSA-168256) and “antimicrobial peptides” (HSA-6803157)
were some of the most enriched Reactome pathways. Gene
Ontology (GO) analysis of the DEGs revealed known GO terms
such as “neutrophil degranulation” (GO:0043312), “neutrophil
activation involved in immune response” (GO:0002283),
“neutrophil activation” (GO:0042119), and “neutrophil-
mediated immunity” (GO: 0002446) as some of the top enriched
biological processes; “Serine-type endopeptidase activity”
(GO:0004252), “endopeptidase activity” (GO: 0004175), and
“serine-type peptidase activity” (GO:0008236) were some of
the most enriched molecular functions; “Specific granule”
(GO:0042581) and “specific granule lumen” (GO:0035580)
were some of the most enriched cellular components. Figure 4
displays the results from the functional analysis. The y-axis
represents the gene ontology terms and the x-axis represents
“Gene Ratio” or the percentage of total DEGs in the given
GO term.

We also performed functional analysis on the top predictors
from our machine learning analysis which included three
additional genes (PLCB1, NLRP1, and SDC4) apart from the
DEGs (Table 1). The top enriched biological process term was
neutrophil degranulation (GO:0043312) similar to the results
from our previous functional analysis with the DEGs. Some of

the newer enriched terms included cell activation (GO:0001775),
immune response (GO: 0006955), immune system process
(GO:0002376), and response to stimulus (GO: 0050896). It is
well-known that immunosuppression is a hallmark of sepsis and
the top predictors capable of distinguishing between complicated
and uncomplicated course patients show enrichment in the
immune response process. Neutrophil degranulation (HSA-
6798695), innate immune system (HSA-168249) were among the
top enriched REACTOME pathways. The innate immune system
is activated as the first response to an infection before the adaptive
immune system. Most of the clinical phenotypes of sepsis can
be attributed to the innate immune response. Interestingly, the
adaptive immune response was not one of the enriched pathways
for our list of genes which might warrant further investigation.

Machine Learning Models Built Using the
Derivation Dataset Generate a Strong
Predictive Model of Complicated Sepsis
Based on the Top Gene and Clinical
Variables
An ROC curve plots True Positive Rate vs. False Positive Rate
and displays the performance of a binary classifier at different
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TABLE 1 | Top consistently chosen variables across folds.

Variable name Normalized

score (%)

Full gene name Overlap with

known gene sets

Adj p-value (from

DEG analysis)

KS test

Statistic p-value

RETN 100 Resistin PERSEVERE (14) 6.65 × 10−5 0.44 2.08 × 10−7

IL1R2 100 Interleukin 1 Receptor Type 2 Sweeney et al. (17) 1 × 10−4 0.34 1 × 10−4

PRISM Score** 100 Not applicable Not applicable Not applicable 0.46 3.08 × 10−8

SDC4*# 100 Syndecan-4 Nikaido et al. (48) 1.93 × 10−10 0.49 3.98 × 10−9

TGFBI 100 Transforming Growth Factor Beta Induced PERSEVERE XP (15),

Sweeney et al. (17)

1.36 × 10−5 0.41 1.15 × 10−6

CEACAM8 96 CEA Cell Adhesion Molecule 8 Sweeney et al. (17) 1 × 10−4 0.44 1.35 × 10−7

MMP8 92 Matrix metalloproteinase-8 PERSEVERE (14) 2 × 10−4 0.39 4.51 × 10−6

ELANE (ELA2) 92 Elastase, Neutrophil Expressed PERSEVERE (14) 2 × 10−3 0.37 1.59 × 10−5

CLEC5A* 92 C-Type Lectin Domain Containing 5A 8.87 × 10−5 0.37 2.35 × 10−5

TCN1* 92 Transcobalamin 1 1 × 10−4 0.39 6.59 × 10−6

CEP55 92 Centrosomal Protein 55 PERSEVERE XP (15),

Sweeney et al. (17)

3.78 × 10−6 0.40 2.20 × 10−6

MME 92 Membrane Metalloendopeptidase PERSEVERE XP (15) 2 × 10−4 0.39 4 × 10−6

MS4A3* 92 Membrane Spanning 4-Domains A3 7 × 10−3 0.34 1 × 10−4

DEFA4 92 Defensin Alpha 4 Sweeney et al. (17) 5.8 × 10−2 0.30 1 × 10−3

HCAR3* 88 Hydroxycarboxylic Acid Receptor 3 Kangelaris et al. (49) 2 × 10−3 0.33 1 × 10−4

LCN2 88 Lipocalin-2 PERSEVERE (14) 9.6 × 10−5 0.39 3.8 × 10−6

OLAH* 84 Oleoyl-ACP Hydrolase

Olfactomedin 4

Basu et al. (50) 1.1 × 10−2 0.31 6 × 10−4

OLFM4 68 Olfactomedin 4 Basu et al. (50) 1.8 × 10−3 0.33 1 × 10−4

LTF 68 Lactoferrin PERSEVERE (14) 3.9 × 10−3 0.34 9.5 × 10−5

PLCB1*# 68 Phospholipase C Beta 1 0.3 1 × 10−4

NLRP1*# 68 NLR Family Pyrin Domain Containing 1 2.56 × 10−6 0.45 5.41 × 10−8

*Novel genes.
#Non-DEGs.

**Clinical variable. Novel Biomarkers are indicated in bold.

classification thresholds. Area under the ROC curve (or AUROC)
measures the entire two-dimensional area under the ROC curve
and estimates the ability of a binary classifier at discriminating
between the two classes (complicated and uncomplicated course
outcome). AUROC ranges from 0 to 1 and higher values of
AUROC signifies better discriminative power of the generated
classifier. The best performance in terms of overall mean AUROC
(=0.823), mean specificity (=0.885) and mean MCC (=0.445)
was obtained using an oversampling technique, SMOTE, and
BRF classifier pair. The ROC curve of the best performing model
is shown in Figure 5 and the results for the best performing
classifiers is shown in Table 3. The orange-colored curve is
the mean ROC curve obtained after averaging the results from
different runs of the repeated 5-fold cross-validation. The list
of the top clinical and genomic variables that were consistently
chosen across different folds of the cross-validation of the top-
performing model and their overlap with previously published
predictor genes in sepsis is shown in Table 1. PRISM score,
which was the only clinical variable included in our model
was also chosen as one of the top predictors in our analysis.
The “normalized score” represents the fraction of times the
given predictor was consistently chosen over all experiments,
representing the stability (46) of these genes as possible predictors
of a complicated course. On the derivation cohort GSE66099
containing 228 patients, the best model in terms ofmeanAUROC
(=0.823) was obtained using the top consistently chosen 20 gene

biomarkers and PRISM score. Seventeen out of these 20 gene
biomarkers were among the differentially expressed genes as
shown in the heatmap and the volcano plot (green and orange
dots) in Figure 3 and Table 1. Among the other classification
metrics, the best mean sensitivity (=0.792) was obtained using
an undersampling technique, REDN, and the BRF classifier
(Table 3).

Clinical Characteristics of the Patients
Included the Validation Dataset
For our first validation dataset (GSE54514), out of the 127 septic
patients, 27 had a complicated course outcome. The age of the
cohort was 59.13 ± 15.99 (mean ± SD). Females constitute
the majority of the dataset (75; 59%; P = 0.11). In the 27
complicated course patients, 14 (51.85%; P = 0.02) were females;
whereas, in the non-complicated course group, 61 (61%; P =
0.14) were females. Of the 27 with the complicated course,
17 (63%; P = 0.16) died. For our second validation dataset
(E-MEXP-3850), gene expression data from five critically ill
children was measured at 29 distinct time points during the
first 48 h of admission to the PICU. Of the 5 patients, only
one patient died within 28 days of admission to the hospital.
The age of the cohort was 1.3 ± 0.58 (mean ± SD). The
majority of the patients were females (3; 60%; P = 0.6). For
the third validation dataset (E-MEXP-3567), the average age of
the cohort was 2.0 (IQR 0.6–6.9). There was an equal number
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FIGURE 5 | ROC plot displaying the classification performances of the best

model (in terms of mean AUROC) trained using the top 21 consistently chosen

gene and clinical variables (Table 2) from patients included in the derivation

dataset GSE66099 containing 228 samples. An ROC plot illustrates the

performance of a binary classifier at different classification thresholds usually

featuring a false positive rate (1-Specificity) on the x-axis and true positive rate

(Sensitivity) on the y-axis. The top left corner is an ideal point with a false

positive rate of zero and a true positive rate of one. The area under the curve

(or AUC) denotes the probability that a randomly chosen positive instance is

ranked higher than a randomly chosen negative one by our classifier. An AUC

of zero means that the classifier is predicting the positive class as negative and

vice versa, while an AUC of one denotes perfect separability. In the above

figure, we denote the ROC plots generated from the different cross-validation

experiments along with the mean area under the curve (in orange). The

variance of the curve (shaded part) roughly shows how the output from our

best performing model is affected by changes in the training data.

(six) of male and female infants in the cohort. The majority
of the deceased patients were females (4; 67%; P = 0.33).
For the fourth validation dataset (GSE40586), out of the 21
patients suffering from bacterial meningitis, 8 had a complicated
course outcome. The age of the cohort was 43.4 ± 26.86.
There was no information regarding the gender distribution of
the cohort. Of the 8 patients with the complicated course, 2
(25%; P = 0.01) died. The clinical characteristics of patients
belonging to the different validation cohorts are provided in
Supplementary Tables 1B–E.

Machine Learning Models Generated Using
the Top 20 Gene Biomarkers Displayed
High Classification Performances on Four
Independent Test Datasets
For the Array Express dataset E-MEXP-3567 based on the
pediatric cohort, the best performance in terms of overall
AUROC (=0.83) was obtained using an undersampling
technique, REDN, and LOGIT classifier pair. This model

also gave the best specificity (=0.83) and MCC (=0.67).
The best sensitivity (=1.0), however, was obtained using an
undersampling technique REDN, and BRF classifier pair. The list
of 10 genes that were chosen as top variables using the LASSO-
based variable selection technique were MMP8, CEACAM8,
LCN2, RETN, CLEC5A, TGFBI, CEP55, MME, OLAH, and
SDC4. The ROC plots of the top performing models obtained
using this dataset is shown in Figure 6A. The best classifier
(AUROC = 0.83) was obtained using a classification threshold
of 0.847.

For the GSE54514 expression data based on the adult cohort,
the best performance in terms of overall AUROC (=0.7233) was
obtained using an undersampling technique, REDN, and BRF
classifier pair. This model also gave the best MCC (0.395). The
best specificity (0.80) was obtained using another undersampling
technique, IHT and a stacked classifier containing BRF, GB,
and ET. The best sensitivity (0.70) was obtained using the
sampling technique, IHT and ET classifier pair. Both these
methods used a LASSO based variable selection strategy. For
the undersampling technique REDN, the list of genes that were
selected using the LASSO based variable selection technique
wereMMP8, CEACAM8, LCN2, RETN, CLEC5A, TGFBI, CEP55,
MME, OLAH, and SDC4 and for IHT the list of genes that were
selected wasOLFM4, CEACAM8, LCN2, RETN, ELANE, HCAR3,
IL1R2, CLEC5A, MS4A3, TGFBI, DEFA4, CEP55, MME, SDC4,
PLCB1, andNLRP1.The ROC plots of the top performingmodels
obtained using this dataset is shown in Figure 6B. Predominantly
two undersampling techniques, namely, Repeated Edited Nearest
Neighbors and Instance Hardness Threshold gave consistently
good performances in terms of AUROC. The best classifier
(AUROC = 0.723) was obtained using a classification threshold
of 0.701.

For the GSE40586 expression data based on a diverse group
of patients (infants, children, and adults), the best performance
in terms of overall AUROC (=0.822) was obtained using an
undersampling technique RUS, and BRF classifier pair. This
model also gave the best sensitivity (=0.875) and MCC (=0.626).
The best specificity (=0.846), however, was obtained using the
undersampling technique RUS and a stacked ensemble of BRF
and ET classifiers. The list of top 15 genes selected by the
LASSO technique wereMMP8, OLFM4, CEACAM8, RETN, LTF,
HCAR3, IL1R2, MS4A3, TGFBI, DEFA4, MME, OLAH, SDC4,
PLCB1, andNLRP1.The ROC plots of the top performingmodels
obtained using this dataset is shown in Figure 6C. The best
classifier (AUROC = 0.822) was obtained using a classification
threshold of 0.361.

For the Array Express dataset E-MEXP-3850 based on the
pediatric cohort, the best performance in terms of overall
AUROC (=0.9566) was obtained using an undersampling
technique, RUS, and ET classifier pair. A tree-based variable
ranking approach gave the best results in this case. The list
of 11 genes selected by the tree-based technique were MMP8,
TCN1, OLAH, CEP55, PLCB1, OLFM4, HCAR3, TGFBI, MS4A3,
CEACAM8, and SDC4.

This model also gave the best specificity (=0.913), sensitivity
(=1.0), andMCC (=0.828). The ROC plots of the top performing
models obtained using this dataset is shown in Figure 6D.
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TABLE 2 | Top genomic predictors obtained during external validation analysis.

Validation

dataset identifier

Cohort type Best AUROC Gene names

GSE54514# Adult 0.723 MMP8, CEACAM8, LCN2, RETN, CLEC5A, TGFBI, CEP55, MME, OLAH, SDC4

E-MEXP-3850* Pediatric 0.956 MMP8, TCN1, OLAH, CEP55, PLCB1, OLFM4, HCAR3, TGFBI, MS4A3, CEACAM8, SDC4

E-MEXP-3567# Pediatric 0.83 MMP8, CEACAM8, LCN2, RETN, CLEC5A, TGFBI, CEP55, MME, OLAH, SDC4

GSE40586# MIxed 0.822 MMP8, OLFM4, CEACAM8, RETN, LTF, HCAR3, IL1R2, MS4A3, TGFBI, DEFA4, MME, OLAH, SDC4, PLCB1, NLRP1

*Kolmogorov-Smirnov test was performed on the ranked list of genes obtained using the tree-based variable importance method. Only the significant (p < 0.1) results are included in

this list.
#List of genes selected using the LASSO-based variable selection technique.

TABLE 3 | Performance measure for various sampling technique and classifier pairs (Derivation set).

Sampling technique—classifier Sensitivity (CI) Specificity (CI) AUROC (CI) MCC (CI)

CCN-BRF 0.722 (0.700–0.743) 0.740 (0.722–0.755) 0.802 (0.787–0.823) 0.411 (0.383–0.434)

CCN-ET 0.700 (0.689–0.711) 0.752 (0.733–0.767) 0.801 (0.767–0.834) 0.404 (0.378–0.423)

CCN-LOGIT 0.624 (0.578–0.639) 0.822 (0.810–0.834) 0.818 (0.800–0.835) 0.424 (0.381–0.450)

REDN-BRF 0.792 (0.776–0.811) 0.647 (0.631–0.657) 0.801 (0.765–0.833) 0.374 (0.361–0.394)

REDN-ET 0.707 (0.678–0.723) 0.722 (0.710–0.741) 0.815 (0.799–0.834) 0.376 (0.351–0.389)

REDN-LOGIT 0.780 (0.765–0.799) 0.691 (0.667–0.712) 0.820 (0.801–0.839) 0.409 (0.387–0.420)

SMOTE-BRF 0.551 (0.497–0.584) 0.885 (0.878–0.903) 0.823 (0.800–0.838) 0.445 (0.411–0.476)

SMOTE-ET 0.554 (0.532–0.578) 0.865 (0.842–0.878) 0.822 (0.800–0.837) 0.422 (0.380–0.449)

SMOTE-LOGIT 0.527 (0.499–0.537) 0.859 (0.839–0.870) 0.790 (0.765–0.801) 0.399 (0.367–0.411)

Top average values obtained for each classification metric are indicated in bold.

The best classifier (AUROC = 0.956) was obtained using a
classification threshold of 0.684.

The classification metrics and the list of the top genomic
predictors for the best performing models generated during
the validation analysis are shown in Tables 1, 4, respectively.
The list of tuned hyperparameters for the different sampling-
classifier pairs that gave the best results is attached in
Supplementary Tables 5A–D.

Both the Derivation and Validation
Datasets Displayed Significant
Distributional Differences in Terms of the
Top Gene and Clinical Variables
The Kolmogorov-Smirnov test (or KS test) (47) is a non-
parametric test of equality of two continuous distributions
and is used to quantify the distance between two empirical
distribution functions. The results of the two-sample KS-tests
using the derivation set (GSE66099) are shown in Table 1. Both
the value of the statistic and the p-value is given for each
variable. A higher value of the statistic corresponds to greater
distributional differences between the two experimental groups.
For the derivation dataset (GSE66099) containing 228 patients,
the Gaussian kernel density plots for the 20 genes and one clinical
variable (PRISM score) demonstrating significant (p < 0.1)
distributional differences is shown in Figure 7 and Table 1. The
KS statistic values range from 0.3 to 0.485. The gene expression
values of SDC4 displayed the highest significant distributional

difference (KS statistic = 0.485) between the complicated and
the uncomplicated course groups. The only clinical variable
(PRISM score) also displayed a significantly high KS statistic
value (=0.460). From this analysis, we can clearly see that
the distributions of the top gene and clinical variables have
statistically significant differences between the complicated and
uncomplicated course patients.

Using the same top 20 genes, we repeated the two sample
KS-tests on all four validation sets (Supplementary Table 6B).
Since the GSE54514 dataset had APACHE II scores, we evaluated
the sensitivity of the model toward different score cutoffs of
15, 20, 25, and 30 (Supplementary Table 6A). The list of genes
that showed a significant distributional difference between the
two classes and their corresponding KS scores are shown in
Supplementary Table 6A. It can be seen from the analysis that
an APACHE II cutoff of 25 gave the highest number (10) of
significant genes showing that only a fraction of the top 20
biomarkers discovered using pediatric data is actually indicative
of a complex course outcome in an adult cohort. We then
performed repeated 5-fold cross-validation experiments on the
validation data using these 10 genes and achieved the best
results using the sampling technique SMOTE and XGBoost
classifier pair (mean AUROC = 0.72; mean Sensitivity = 0.78;
mean Specificity = 0.65; mean MCC = 0.4). These results
were similar to the external validation results for the GSE54154
dataset mentioned in the previous section. For the E-MEXP-3850
dataset, we derived a ranked list of the 20 gene variables using
a tree-based variable ranking method and achieved a high
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FIGURE 6 | Combined ROC plots illustrating the performances of various binary classifiers on four independent validation sets. “N” represents the total number of

samples in each dataset and “M” represents the total number of genes used to derive the best classification models (in terms of AUROC). (A) E-MEXP-3567: The best

model (AUROC=0.833) was obtained using a total of 10 out of the 20 gene biomarkers (MMP8, CEACAM8, LCN2, RETN, CLEC5A, TGFBI, CEP55, MME, OLAH, and

SDC4). (B) GSE54514: The best model (AUROC = 0.723) was obtained using a total of 10 out of the 20 gene biomarkers (MMP8, CEACAM8, LCN2, RETN, CLEC5A,

TGFBI, CEP55, MME, OLAH, and SDC4). (C) GSE40586: The best model (AUROC = 0.822) was obtained using a total of 15 out of the 20 gene biomarkers.

(D) E-MEXP-3850: The best model (AUROC = 0.956) was obtained using a total of 11 out of the 20 gene biomarkers (MMP8, TCN1, OLAH, CEP55, PLCB1, OLFM4,

HCAR3, TGFBI, MS4A3, CEACAM8, and SDC4). Due to the inherent imbalance in the training data (GSE66099) we tried different classification thresholds for the

tuned classifiers and reported the ones that gave the best classification performances. The list of top performing classifiers included both individual and stacked

classifiers. The legend displays the names of the sampling-classifier combinations, the AUROC and the classification thresholds that gave the top results in brackets.

AUROC of 0.956 (Table 4). After performing the two-sample
KS test using this ranked list, we further achieved a list of 11
candidate gene variables (Table 1) that displayed a statistically
significant distributional difference between the two classes.

Repeating the external validation analysis using this set of 11
genes gave us comparable classification performances (AUROC
= 0.956, Specificity = 0.913, Sensitivity = 1.0, and MCC =
0.828). For the remaining datasets, E-MEXP-3567 andGSE40586,
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TABLE 4 | Performance measure for various sampling technique and classifier pairs (Validation sets).

Dataset identifier Sampling technique—classifier Sensitivity (95% CI) Specificity (95% CI) AUROC (95% CI) MCC (95% CI)

GSE54514 IHT-BRF 0.667 (0.662–0.672) 0.740 (0.732–0.746) 0.703 (0.691–0.708) 0.349 (0.335–0.355)

IHT-ET 0.704 (0.688–0.709) 0.700 (0.687–0.712) 0.701 (0.696–0.709) 0.339 (0.330–0.345)

IHT-BRF+ET 0.629 (0.619–0.635) 0.800 (0.789–0.810) 0.714 (0.709–0.718) 0.386 (0.379–0.390)

IHT-ET+GB 0.629 (0.618–0.634) 0.790 (0.780–0.808) 0.709 (0.701–0.712) 0.374 (0.370–0.380)

IHT-BRF+GB+ET 0.629 (0.619–0.635) 0.800 (0.788–0.809) 0.715 (0.710–0.720) 0.387 (0.378–0.390)

REDN-BRF 0.670 (0.652–0.681) 0.780 (0.758–0.811) 0.723 (0.719–0.727) 0.395 (0.380–0.400)

REDN-EE 0.629 (0.619–0.635) 0.770 (0.741–0.779) 0.700 (0.682–0.709) 0.352 (0.340–0.360)

REDN-BRF+LOGIT 0.670 (0.652–0.682) 0.770 (0.741–0.779) 0.718 (0.710–0.721) 0.382 (0.375–0.391)

REDN-BRF+XGBoost 0.670 (0.652–0.682) 0.740 (0.731–0.749) 0.703 (0.691–0.709) 0.350 (0.341–0.359)

E-MEXP-3850 RUS-ET (tree-based) 1 (1.0–1.0) 0.913 (0.889–0.919) 0.956 (0.945–0.961) 0.828 (0.821–0.832)

RUS-ET (LASSO) 1 (1.0–1.0) 0.869 (0.861–0.872) 0.934 (0.929–0.941) 0.761 (0.759–0.769)

EDN-GB 1 (1.0–1.0) 0.782 (0.779–0.789) 0.891 (0.887–0.899) 0.653 (0.649–0.659)

E-MEXP-3567 REDN-BRF 1 (1.0–1.0) 0.33 (0.282–0.339) 0.667 (0.652–0.671) 0.44 (0.429–0.448)

REDN-LOGIT 0.83 (0.819–0.841) 0.83 (0.821–0.839) 0.83 (0.820–0.837) 0.67 (0.664–0.678)

IHT-LOGIT 0.83 (0.821–0.839) 0.67 (0.663–0.680) 0.75 (0.744–0.76) 0.52 (0.512–0.530)

GSE40586 RUS-BRF 0.875 (0.869–0.881) 0.769 (0.761–0.773) 0.822 (0.817–0.830) 0.626 (0.659–0.632)

RUS-ET 0.625 (0.619–0.632) 0.769 (0.761–0.773) 0.697 (0.691–0.701) 0.394 (0.389–0.399)

RUS-BRF+ET 0.625 (0.619–0.633) 0.846 (0.839–0.85) 0.736 (0.729–0.74) 0.485 (0.479–0.49)

IHT-BRF 0.875 (0.869–0.882) 0.692 (0.685–0.7) 0.783 (0.779–0.789) 0.551 (0.549–0.559)

IHT-GB 0.875 (0.869–0.882) 0.691 (0.685–0.71) 0.784 (0.779–0.786) 0.551 (0.549–0.558)

Top average values obtained for each classification metric are indicated in bold.

FIGURE 7 | Class-wise gaussian kernel density plots for the top performing variables along with the KS test scores built using the gene expression values from the

228 patients included in the derivation dataset GSE66099. The x-axis represents the gene expression values and the y-axis represents the probability density function.

A Kolmogorov-Smirnov test is a non-parametric test used to compare the equality of probability distributions. There are two scores associated with a KS test: a KS

statistic that is used to quantify the distance between two distributions and the p-value which tells us the significance of the result. The differences in the distribution

between the complicated and uncomplicated course groups in terms of the top 20 gene predictors and a severity score (PRISM) is shown in this plot.

we repeated the KS test analysis on the list of reported genes
obtained using the LASSO-based variable selection technique.
In both cases, we found significant distributional differences

between the respective classes. The complete list of genes and
the KS test results for all four validation sets are shown in
Supplementary Table 6B.
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DISCUSSION

Functional Role of the Identified
Biomarkers in Sepsis
This study revealed differentially expressed genes in peripheral
blood samples from a previously published gene expression
dataset collected within 24 h of PICU admission. Among the
most significant genes from our machine learning analysis of
complex sepsis trajectories, we found genes that are responsible
for innate immune response. Sepsis is caused by the dysregulation
of the host response to an infection and in its severe
form, causes life-threatening organ dysfunction. Cytokines play
an important role during sepsis by regulating the immune
response to the infection. A variety of pro-inflammatory and

anti-inflammatory mediators contribute to the inflammatory

response and an imbalance between the two directly results in
dysregulation. Matrix metalloproteinase-8 (MMP8) and Resistin
(RETN) have been associated with the activation of pro-
inflammatory cytokines TNF-α (51, 52) which in turn stimulates
systemic inflammation. MMP8 is involved in the homeostasis of
the extracellular space, largely expressed by mononuclear cells
and macrophages; it has been shown to be involved in roles
supporting innate immunity (53). MMP8 knockout mice have
been observed to have reduced phagocytosis and NET activity
(54). A number of the identified genes have been long implicated
in neutrophil extracellular traps (NETs), the activation of the
NET results in NETosis, which can significantly complicate
disease course. Among our genes, Olfactomedin 4 (OLFM4),
Elastase Neutrophil Expressed (ELANE), and lactotransferrin
(LTF) were identified (42, 55, 56). Recent findings have
suggested CEA Cell Adhesion Molecule 8 (CEACAM8), C-Type
Lectin Domain Containing 5A (CLEC5A) (57) may be further
implicated inNETosis. Polymorphonuclear neutrophils, typically
pro-inflammatory, also perform immunoregulatory roles, by
expressingCEACAM8 and thus releasing solubleCEACAM8 after
activation. Extracellular chromatids have been shown to activate
the secretion of CEACAM8 through degranulation (58). A recent
study finds CLEC5A, which has long been associated with dengue
virus-induced lethal disease (59), to be an important factor
associated with modulating innate immune response against
bacterial infection in mice. This study suggests in mice with
a knockout gene (CLEC5A), that prognosis was severe and by
day 5, the mice had significant liver necrosis and increased risk
for death. While these genes have been previously associated
with mortality, in this work we show that these genes are also
implicated in complex disease courses, even among survivors.

A combination of the genes identified in this analysis also
has been involved in microbiome homeostasis. Specifically,
Lipocalin-2 (LCN2), an innate immune protein has been
associated with maintaining an intestinal barrier against
oxidative stress, having immunosuppressive character, and
protects against multi-organ dysfunction (60–62). This protein
has been increasingly suggested to be a therapeutic candidate to
protect against gut-origin sepsis (62).

The complexity of the disease may also contribute to
the ambiguity in identifying the correct class of pathogens,
specifically in gram-negative/gram-positive bacterial

differentiation. Therefore, interest has emerged in differentiating
these characteristics through gene expressions, and Interleukin
1 Receptor Type 2 (IL1R2) has been specifically implicated
(63) in this. Identifying such differentiation may also aid
in determining the complexity and severity of sepsis by
investigating the specific types of toxins released by either
class of pathogens. Superantigens, for instance, produced by S.
aureus and S. pyogenes have been suggested to cause a massive
cellular immune response, leading to fatal toxic shock (64),
while other microbial toxins have been involved in significant
sepsis-led immunosuppression (65). Hence, earlier identification
of such differentiation can improve case management and
therapeutic selection.

We identified Hydroxycarboxylic Acid Receptor 3 (HCAR3)
and Membrane Metalloendopeptidase (MME) as two of the
three downregulated genes similar to the findings of Kangelaris
et al. (49) that study changes in gene expression among Acute
Respiratory Distress Syndrome (ARDS) patients affected with
sepsis. The genes overexpressed in ARDS were often found
to be associated with a more severe sepsis outcome in other
studies (including MMP8, RETN, and OLFM4) (66, 67). Similar
results were found among patients with Acute Kidney Injury
(AKI) where the overexpression of genes such as MMP8, IL1R2,
and OLFM4 was associated with increased severity and organ
failure (50).

Some of the genes identified in this work overlap with
approaches to predict sepsis mortality (17). DEGs identified
in our study namely, CEACAM8, IL1R2, CEP55, TGFBI, and
DEFA4 belonged to that list. Among the PERSEVERE genes
(14) that were identified as DEGs, our analysis included MMP8,
ELA2, LCN2, LTF, and RETN, while those overlapping with the
PERSEVERE XP genes (15) included CEP55, TGFBI, andMME.

Among the top consistently chosen variables (that were
not DEGs) in our machine learning analysis, Syndecan-4
(SDC4) has been found to be a potential biomarker with an
anti-inflammatory function in patients with acute pneumonia
(48). Microbiologic results of the patients from our dataset,
identified Pneumococcus as the second most frequently occurring
pathogen hence this result is quite significant. We also identified
Phospholipase C Beta 1 (PLCB1) as one of the top genes that
were not a DEG. Phospholipase (PLC) proteins are a class of
membrane-associated enzymes that hydrolyze phospholipids and
are responsible for signal transduction and gene transcription.
The hydrolysis of phospholipids results in the activation of
protein kinase C (PKC) signaling which in turn regulates
macrophage mediated inflammatory response (68). Finally, the
NLR Family Pyrin Domain Containing 1 (NLRP1) gene, which is
one of the many genes responsible for the activation of the NLR-
inflammasome cascades was found to be significantly altered
among septic patients in a recent study (69).

The exclusion of patients meeting SIRS criteria resulted in
a lower number of DEGs, and the machine learning prediction
scores were also reduced, with an AUROC of 0.61. This implies
that the inclusion of such patients within the non-complicated
disease course resulted in a more robust characterization of
complex patients, thereby improving the predictive performance.
Moreover, five genes, namely TGFBI, DEFA4, CEP55, MME,
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and OLAH, all except CEP55 are implicated as early markers of
neutrophil activity. CEP55 overexpression has been implicated in
T-cell lymphoma and genome instability (70, 71).

Refining Gene Profiles Through Variable
Selection and Stability Analysis
The gene expression profiles of the top 20 gene markers and one
clinical variable (PRISM score) from the stability analysis had
significant distributional differences between the complicated
and uncomplicated course patients (Figure 7 andTable 1).When
tested on a closely related independent adult validation set, two
pediatric datasets and a mixed-age dataset, we achieved an out-
of-sample AUC of 0.72, 0.95, 0.83, and 0.82 respectively. The
relatively lower AUC in the case of the adult cohort can be
attributed to the fact that the derivation cohort is based on
pediatric patients (mean age 3.81 years) while this validation
cohort (GSE54514) is based on adult patients (mean age 59.13
years). Some of the gene predictors that are indicative of a
complex course outcome for pediatric patients, might not play
the same role for adult patients. This was further justified when
we found that out of the top 20 gene biomarkers, only 10
had a significant class-wise distributional difference using the
gene expression profiles from the validation cohort (GSE54514)
using an APACHE II cutoff of 25 (Supplementary Table 6A).
In the case of the two pediatric cohorts (E-MEXP-3850 and E-
MEXP-3567), where we used 28-day mortality and in-hospital
mortality as class labels, respectively, the number of top genes
that had a significant distributional difference between the two
classes were 11 and 10, respectively. This can be attributed to
the fact that unlike these two validation cohorts, the variables
used for the derivation cohort were based on a complicated
course outcome (See Data collection under the Materials and
Methods section) and not mortality. In the derivation cohort,
28 out of the 52 complicated course patients died. Finally, for
the fourth validation set, a set of 15 out of the 20 genes gave
the best AUROC of 0.822. One of the consistently chosen top
variables (Figure 7 and Table 1) from our analysis using the
derivation data (GSE66099) was the PRISM score which could
not be used for the validation analysis because this information
was not available in any of the validation cohorts. Also, even
within the validation datasets, the complex disease course was
interpreted based on severity of illness scores that were available
at the time of ICU admission or mortality. Hence, a more similar
dataset which derives complex disease courses longitudinally
during ICU stay may have improved the performance of the
proposed biomarkers.

Limitations
There are some limitations to our study. First, we present
in this study a novel hybrid method of biomarker discovery
that identifies stable and consistently chosen variables among
multiple iterations of the pipeline as candidate gene markers
of complex disease course. While we try to balance this novel
approach by demonstrating traditional methods of identifying
DEGs, further investigations in other datasets may be required
to establish its validity. Second, due to the lack of any
similar public dataset that identifies complicated disease courses

within sepsis patients, we identified four closely related datasets
which present severity of illness scores and mortality, using
which we derived our interpretations of complicated and
uncomplicated courses. Therefore, to ensure generalization and
minimize selection bias, further validation must be performed
on closely related prospective datasets. Third, in this study,
we focus only on biomarkers derived from circulating blood
leukocytes. Circulating biomarkers associated with cells from
other dysfunctional organs, including tissue macrophages and
vascular cells, might also be involved in a complicated clinical
course for sepsis and were not included in this study. Finally,
complicated and uncomplicated course outcomes were defined
clinically, and so there may be some limitations in that
interpretation, which contributes to bias.

Rapid Phenotyping of Complex Critically Ill
Patients for Improved Situational
Awareness
Sepsis is a highly heterogeneous condition requiring significant
clinical resources to identify, manage, and forecast disease
trajectories (4). Current work in sepsis biomarker discovery is
primarily centered around the use of mortality as a key indicator
of outcomes, with the assumption that the disease trajectory is
uniform among survivors and non-survivors. Several traditional
biomarkers such as Procalcitonin (PCT) and C-reactive protein
(CRP) have been extensively used to predict mortality among
septic shock patients due to their high prognostic value (72, 73).
While elevated levels of CRP have been associated with acute
inflammation, organ failure, and mortality (74), PCT levels have
been used as an indicator for decreased length of antibiotic
treatments (75). However, CRP suffers from low specificity
in diagnosing patients with systemic inflammation (76), and
variation in early PCT levels is dependent on the type and severity
of the initial infection and not necessarily on the severity of the
disease itself (77). The primary outcome in most of these studies
was either diagnosis of sepsis or mortality. The novelty of the
proposed biomarker signature discussed here lies in identifying a
holistic panel of non-invasive biomarkers to predict complicated
sepsis among patients admitted to the PICU. This will minimize
heterogeneity and cost in high-risk patient management.

While mortality is an important predictor variable, it
does not capture the dynamic nature of several sepsis-
related complications, including, but not limited to disease
severity, intervention effectiveness and progressive multi-organ
dysfunction. Conversely, the use of complicated course outcomes
as a predictor variable is associated with poor outcomes and
has been proposed as clinically relevant endpoints in several
studies (78, 79). The biomarkers described in our study,
which are predictive of a complicated course outcome among
pediatric patients, will ultimately aid in situational awareness
and clinical decision making as it pertains to the degree of
care management required for patients suspected of sepsis.
Unlike a set of biomarkers that may predict mortality, these
collective genes enable clinicians to identify those patients
who may likely survive the ICU stay but develop significant
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complications that result in significant expenditure of resources
and clinical interventions.

CONCLUSION

This paper presents a novel list of genes that predict a
complicated disease course for critically ill patients in the
pediatric intensive care unit. The list of 20 genes was derived from
a rigorous variable selection and validation pipeline, wherein we
measure variable stability over 10 simulated iterations. While
these genes have been previously associated withmortality, in this
work we show that these genes are also implicated in complicated
course outcomes, even among survivors. Many of the derived
genes were attributed to an innate immunity function and
contributed to NETosis. The resulting derivation AUROC of 0.82
and validation AUROCs of 0.723, 0.956, 0.83, and 0.82 suggests
that these markers can reliably predict the outcome given only a
single test of peripheral blood. Finally, this is an explorative study
of biomarker discovery using computational predictions derived
from publicly available gene expression data. Further evaluation
of the performance of these genes in discriminating complicated
course outcomes will require experimental validation using
closely related prospective datasets and eventually within a
prospective trial.
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