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Abstract: In rheumatoid arthritis (RA), inflammatory cytokines play a pivotal role in triggering
abnormal osteoclastogenesis leading to articular destruction. Recent studies have demonstrated
enhanced levels of interleukin-9 (IL-9) in the serum and synovial fluid of patients with RA. In
RA, strong correlation has been observed between tissue inflammation and IL-9 expression in
synovial tissue. Therefore, we investigated whether IL-9 influences osteoclastogenesis in patients
with RA. We conducted the study in active RA patients. For inducing osteoclast differentiation,
mononuclear cells were stimulated with soluble receptor activator of NF-kB ligand (sRANKL) and
macrophage-colony-stimulating factor (M-CSF) in the presence or absence of recombinant (r) IL-9.
IL-9 stimulation significantly enhanced M-CSF/sRANKL-mediated osteoclast formation and function.
Transcriptome analysis revealed differential gene expression induced with IL-9 stimulation in the
process of osteoclast differentiation. IL-9 mainly modulates the expression of genes, which are
involved in the metabolic pathway. Moreover, we observed that IL-9 modulates the expression
of matrix metalloproteinases (MMPs), which are critical players in bone degradation. Our results
indicate that IL-9 has the potential to influence the structural damage in the RA by promoting
osteoclastogenesis and modulating the expression of MMPs. Thus, blocking IL-9 pathways might be
an attractive immunotherapeutic target for preventing bone degradation in RA.

Keywords: rheumatoid arthritis; interleukin-9; osteoclast; matrix metalloproteinases; osteoclastogenesis;
differential gene expression

1. Introduction

Rheumatoid arthritis (RA) is an inflammatory bone disease characterized by uncon-
trolled synovial inflammation resulting in subsequent destruction of bone and cartilage [1].
Patients with RA frequently experience poor skeletal health, increased risk of fractures, and
osteoporosis due to the imbalance in bone remodeling, which is an important phenomenon
for maintaining bone integrity [2,3]. Bone remodeling is a complex and dynamic process.
This process is tightly controlled by two types of bone cells, osteoclasts that mediate bone
resorption, and osteoblasts, which participate in the formation of new bone matrix. Under
physiological conditions, complex interplay of cytokines modulates the formation and
function of these bone cells in order to maintain the skeletal homeostasis. But in RA, exag-
gerated inflammatory cytokines disrupt the bone homeostasis due to enhanced osteoclast
formation and function, resulting in more bone decay over bone formation [4,5].

Osteoclasts are multinucleated cells derived from myeloid precursor cells. Formation
of osteoclasts from their precursor cells is predominantly controlled by two cytokines—
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macrophage colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand
(RANKL) [6,7]. After attaching to the bone matrix, osteoclasts mediate bone degradation
by secreting proteinases and by creating an acidic milieu.

Several pieces of evidence derived from the pathological samples of RA patients
and animal models of RA support the critical role of osteoclasts in the pathogenesis of
RA [8–11]. In RA, the involvement of osteoclasts in bone erosion is also evident from
studies using mice deficient in factors essential for osteoclast formation. These osteoclast-
lacking mice when induced for arthritis using serum transfer, showed protection from
bone degradation despite having inflammation [12]. In addition, osteoclast-deficient mice
showed protection from bone erosion when crossed with tumor necrosis factor-α (TNF-α)-
expressing transgenic mice, which spontaneously develop arthritis [13]. These observations
clearly indicate the importance of osteoclasts in inflammatory bone diseases.

The process of osteoclastogenesis is influenced by various local and systemic factors.
In RA, prominent proinflammatory cytokines such TNF-α, interleukin (IL)-1, IL-6, and
IL-17 have been implicated as enhancing the process of osteoclastogenesis [14–19]. Thus,
in the inflamed joints of RA patients, accumulated inflammatory cytokines due to the
exaggerated immune activation contribute to the enhanced osteoclast formation.

Recently, an increased level of IL-9 has been observed at the disease site as well as
in the circulation of patients with RA [20–22]. This cytokine is a member of the common
γ-chain (γc) family [23]. It mediates pleiotropic function by binding to a heterodimeric
receptor, composed of an IL-9 receptor alpha (IL-9Rα) chain and a gamma chain (γC). The
cytokine is profusely secreted by a new subset of T-helper (Th) cells know as Th-9 cells,
but is also produced by Th-17 cells, important players in mediating inflammation and
osteoclastogenesis in RA. In RA, the frequencies of both Th-9 and Th-17 cells strongly
correlate with the disease activity [21,24]. Additionally, IL-9 was observed to prolong the
survival of neutrophils and augment the functions of inflammatory T cells in RA [21].
From these observations, it is conceivable that IL-9 plays an important role in the disease
pathogenesis. However, the effect of IL-9 on osteoclastogenesis in RA remains to be
determined.

In this study, we investigated the impact of IL-9 on MCSF and RANKL-mediated
osteoclastogenesis in RA. Most studies with human samples are performed with cells
derived from peripheral blood (PB), but they do not provide a clear reflection of the
disease pathology. Therefore, we analyzed the osteoclastogenic potential of IL-9 on cells
derived from both peripheral blood (PB) and synovial fluid (SF) of patients with RA.
Additionally, we performed transcriptome analysis to understand the differential gene
expression induced by IL-9 in order to influence osteoclastogenesis.

Here, we demonstrate that IL-9 promotes MCSF/RANKL-mediated osteoclastogenesis
in RA by enhancing the production of TNF-α and by modulating the expression of genes
involved in the metabolic pathways.

2. Results
2.1. Patient Characteristics

The patients included in the study were examined in the Out-Patient Department
(OPD) and the details of the clinical profile have been summarized in Table 1. The mean
age of the patients was 45.06 ± 8.74 years with 5 males and 10 females. The average
duration of the disease symptoms was 9.76 ± 3.88 years. Mean disease activity score (DAS)
28 score was 5.21 ± 0.89. The disease activity at first presentation was determined using
ESR and CRP. Mean ESR was 31.73 ± 14.6 and mean CRP was 16.14 ± 15.1; suggesting
higher disease activity in the patients. All the patients received disease-modifying anti-
rheumatoid agents or biological-like anti-TNFα drugs or combination therapy. Radiological
joint erosions were present in all the patients except two cases. Age- and sex-matched
healthy subjects (5 males and 10 females) were recruited for the study and their mean age
was 41.2 ± 8.04 years.
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Table 1. Characteristics of rheumatoid arthritis patients included in the study.

Patient Age/Sex Duration of Disease (Years) DAS28 ESR ESR (mm/1st Hour) CRP(mg/lit) Treatment Joint Erosions

1 43/F 9.4 6.1 56 43.6 Mtx YES
2 54/F 16.7 5.9 34 11.9 Mtx, Inf YES
3 31/M 4.2 4.5 22 13.4 Mtx NO
4 45/F 8.4 4.2 59 39.1 Inf YES
5 49/F 5.9 4.6 31 24.9 Ada, Mtx NO
6 56/F 11.5 6.2 42 28.2 Mtx YES
7 36/M 6.5 6.5 47 33.9 Mtx YES
8 41/F 8.4 5.1 41 27.3 Lfu YES
9 47/M 10. 5.2 11 1.3 Eta NO

10 29/M 8.5 4.2 21 4.3 Mtx, Inf YES
11 39/M 4.9 5.6 29 5.6 Mtx YES
12 46/F 9.8 6.3 27 3.8 Mtx, Inf YES
13 54/F 13.2 5.7 17 0.4 Mtx, Inf YES
14 48/F 11.5 4.1 15 1.9 Mtx, Inf YES
15 58/F 17.5 4.0 24 2.5 Mtx, Inf YES

DAS28, disease activity score 28—joint assessment; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; Mtx, methotrexate; Inf,
infliximab; Eta, etanercept; Lfu, leflunomide.

2.2. Influence of IL-9 on M-CSF- and RANKL-Induced Osteoclastogenesis

In RA, IL-9 influences the pathogenesis of the disease by enhancing the survival of
neutrophils and by augmenting the inflammatory cytokine producing T cells (21). Here, we
investigated the effect of IL-9 on osteoclastogenesis in cells derived from both peripheral
blood (PB) and synovial fluid (SF) of patients with RA. As a control, we also checked
the effect of IL-9 on osteoclastogenesis in cells derived from PB of healthy controls (HC).
In vitro differentiations of human monocytes into osteoclasts require stimulation with
soluble (s) RANKL and M-CSF. Thus, cells were cultured for 21 days with M-CSF alone
(M-CSF) or M-CSF along with sRANKL (M-CSF + sRANKL) or in a combination of M-CSF,
sRANKL and recombinant (r) IL-9 (M-CSF + sRANKL + rIL-9). Tartrate-resistant acid
phosphatase (TRAP)-positive cells with three or more nuclei were scored as osteoclasts. We
observed a significant increase in the number of osteoclasts with rIL-9 stimulation along
with M-CSF and sRANKL as compared to the stimulation with M-CSF and sRANKL in
PB of HC, PB, and SF of patients with RA (Figure 1A; Supplementary Figure S1). We next
checked the expression of osteoclast markers in the cells treated with M-CSF and sRANKL
in the presence or absence of rIL-9 (Figure 1B–E). Real-time PCR analysis revealed that
rIL-9 stimulation along with M-CSF and sRANKL significantly enhanced the expression of
nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), a master transcription regulator
of osteoclast differentiation in cells derived from PB of HC, PB, and SF of patients with
RA (Figure 1B). Treatment with rIL-9 along with M-CSF and sRANKL also enhanced
the expression of cathepsin K (CTSK), a potent protease in mediating bone resorption
as compared to M-CSF/sRANKL-stimulated cells (Figure 1C). However, the expression
of acid phosphatase 5, tartrate-resistant (ACP5), and matrix metalloproteinase (MMP)-9
was comparable in cells treated with M-CSF and sRANKL in the presence or absence of
IL-9 in cells derived from PB of HC, PB, and SF of RA patients (Figure 1D and E). Next,
we tested whether IL-9 stimulation along with M-CSF and sRANKL enhances the bone
resorptive capacity of osteoclasts (Figure 1F). Using a fluorescent bone resorption assay, we
checked the resorptive capacity of osteoclasts on fluoresceinated calcium-phosphate-coated
plates by measuring the fluorescence intensity of the culture supernatant. Indeed, IL-9
stimulation along with M-CSF and sRANKL significantly enhanced the bone resorptive
capacity of osteoclasts. The effect of IL-9 on osteoclastogenesis was comparable in cells
derived from either circulation (PB) or inflammatory site (SF) of RA patients. Together,
these observations suggest that IL-9 has the potential to enhance the RANKL-mediated
differentiation of monocytes into functional osteoclasts.
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Figure 1. Interleukin (IL)-9 enhances osteoclast formation and function in cells derived from RA and HC. (A) Cells derived 
from peripheral blood (PB) of healthy control (HC); cells derived from PB and synovial fluid (SF) of patients with RA were 
treated as indicated with macrophage colony-stimulating factor (M-CSF; 25 ng/mL), soluble receptor activator of nuclear 
factor κB ligand (sRANKL; 50 ng/mL), or IL-9 (100 ng/mL) for 21 days. Half of the culture medium was replenished with 
fresh culture medium containing stimulating factors (M-CSF, sRANKL, and rIL-9) at 4-day intervals. Cells were then fixed 
and stained for tartrate-resistant acid phosphatase (TRAP). Using a light microscope, multinucleated (≥3 nuclei) TRAP+ cells 
were counted manually. Graph shows TRAP+ multinucleated cells (MNCs) (mean  ±  SD; n  =  5). Statistical analysis was 
performed using paired Student’s t-test comparing M-CSF/sRANKL/rIL-9-treated cells to M-CSF/sRANKL, M-CSF, or M-
CSF/sRANKL-treated cells to M-CSF (*: p  ≤  0.05; **: p  ≤  0.005; ***: p  ≤  0.0005). (B–E) Cells derived from PB of HC, PB, 

Figure 1. Interleukin (IL)-9 enhances osteoclast formation and function in cells derived from RA and HC. (A) Cells derived
from peripheral blood (PB) of healthy control (HC); cells derived from PB and synovial fluid (SF) of patients with RA were
treated as indicated with macrophage colony-stimulating factor (M-CSF; 25 ng/mL), soluble receptor activator of nuclear
factor κB ligand (sRANKL; 50 ng/mL), or IL-9 (100 ng/mL) for 21 days. Half of the culture medium was replenished with
fresh culture medium containing stimulating factors (M-CSF, sRANKL, and rIL-9) at 4-day intervals. Cells were then fixed
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and stained for tartrate-resistant acid phosphatase (TRAP). Using a light microscope, multinucleated (≥3 nuclei) TRAP+
cells were counted manually. Graph shows TRAP+ multinucleated cells (MNCs) (mean ± SD; n = 5). Statistical analysis
was performed using paired Student’s t-test comparing M-CSF/sRANKL/rIL-9-treated cells to M-CSF/sRANKL,M-CSF,
or M-CSF/sRANKL-treated cells to M-CSF (*: p ≤ 0.05; **: p ≤ 0.005; ***: p ≤ 0.0005). (B–E) Cells derived from PB
of HC, PB, and SF of patients with RA were stimulated as indicated with M-CSF (25 ng/mL), sRANKL (50 ng/mL), or
IL-9 (100 ng/mL) for 3 days. Cells were then lysed followed by RNA extraction and cDNA preparation. Quantitative
real-time PCR (RT-PCR) was performed for osteoclast-specific marker genes, nuclear factor of activated T-cells, cytoplasmic
1 (NFATc1), cathepsin K (CTSK), acid phosphatase 5, tartrate-resistant (ACP5), and matrix metalloproteinase-9 (MMP-9). The
graphs represent the relative expression of NFATc1, CTSK, ACP5, and MMP-9 (mean ± SD; n = 8). Statistical analysis was
performed using paired Student’s t-test comparing M-CSF/sRANKL/rIL-9-treated cells to M-CSF/sRANKL-, M-CSF-, or
M-CSF/sRANKL-treated cells to M-CSF (*: p ≤ 0.05; **: p ≤ 0.005; ***: p ≤ 0.0005; ns –non significant). (F) Cells derived
from PB of HC, PB, and SF of patients with RA were stimulated with M-CSF (25 ng/mL), sRANKL (100 ng/mL), or IL-9
(100 ng/mL) as indicated for 24 days. Half of the culture medium was replenished with fresh culture medium containing
stimulating factors (M-CSF, sRANKL, and rIL-9) at 4-day intervals. Using a fluorometer, fluorescence intensity of the culture
supernatant was measured. The graph represents the relative fluorescence intensity (mean ± SD; n = 3). Statistical analysis
was performed using paired Student’s t-test comparing M-CSF/sRANKL/rIL-9-treated cells to M-CSF/sRANKL-treated
cells. (*: p ≤ 0.05; **: p ≤ 0.005).

2.3. IL-9 Enhances TNF-α Production during Osteoclastogenesis

In RA, IL-9 has been observed to enhance the frequency of TNF- α-producing T
cells [21]. TNF-α is a potent osteoclastogenic cytokine as it not only enhances the RANKL-
induced osteoclastogenesis but can mediate the process of osteoclastogenesis in a RANKL-
independent manner [14]. In addition, TNF-α-expressing transgenic mice can sponta-
neously develop arthritis [25]. Therefore, we investigated whether IL-9 can influence the
production of TNF-α, a potent osteoclastogenic cytokine in monocytes. Cells derived from
PB and SF of patients with RA were stimulated with M-CSF alone (M-CSF), a combination
of M-CSF and sRANKL (MCSF + sRANKL), or a combination of M-CSF, sRANKL, and
rIL-9 (M-CSF + sRANKL + rIL-9) for 4 days. Cell culture supernatants were analyzed for
TNF-α (Figure 2A,B). We observed that IL-9 stimulation along with M-CSF and RANKL en-
hanced the production of TNF-α both in PB-derived cells and SF-derived cells as compared
to stimulation with M-CSF or M-CSF along with sRANKL.

Similar to TNF-α, the proinflammatory cytokines IL-1β and IL-6 are potent stim-
ulators of RANKL-mediated osteoclast differentiation and bone resorption [26]. Thus,
we checked whether IL-9 has the capacity to modulate the production of IL-1β and IL-6
during osteoclastogenesis. Cell culture supernatants from stimulated cells were analyzed
for IL-1β (Figure 2C,D) and IL-6 (Figure 2E,F). IL-9 stimulation along with MCSF and
sRANKL did not show any effect on the production of IL-6 and IL-1β. Thus, IL-9 influences
osteoclastogenesis by inducing TNF-α in RA.

2.4. IL-9 Induces Differential Gene Expression during Osteoclastogenesis in RA

To check the effect of IL-9 on the differential gene expression profile during osteoclasto-
genesis in RA, cells derived from SF of patients with RA were stimulated with M-CSF along
with sRANKL in the presence or absence of rIL-9. Differentially expressed genes (DEG)
were identified between cells treated with M-CSF along with sRANKL in the presence or
absence of rIL-9 using the DESeq software. For false discovery rate (FDR), the threshold
level was defined as a less than 0.05. We observed 778 DEGs (genes filtered at 2 fold change
and p value 0.05) between cells treated with M-CSF along with sRANKL in the presence or
absence of rIL-9. Among them, 111 genes were upregulated and 667 genes were downregu-
lated. Upregulated and downregulated DEGs are represented in volcano plots (Figure 3A).
We also performed hierarchical cluster analysis; the upregulated and the downregulated
genes are shown in the heatmap (Figure 3B). Analysis with the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway showed that IL-9-mediated differentially expressed
genes were mostly involved in metabolic pathways (Supplementary Figure S2). These
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observations indicate that IL-9 influences osteoclast differentiation in RA by differentially
regulating gene expression.
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Figure 2. Interleukin (IL)-9 enhances TNF-α production during osteoclastogenesis in RA. (A–F) Cells
derived from peripheral blood (PB) and synovial fluid (SF) of patients with RA were treated as
indicated with macrophage colony-stimulating factor (M-CSF; 25 ng/mL), soluble receptor activator
of nuclear factor κB ligand (sRANKL; 50 ng/mL), or IL-9 (100 ng/mL) for 4 days. Cell culture super-
natants were analyzed for TNF-α (A,B), IL-1β (C,D), and IL-6 (E,F) using ELISA (mean ± SD; n = 8).
Statistical analysis was performed using paired Student’s t-test comparing M-CSF/sRANKL/rIL-9-
treated cells to M-CSF/sRANKL- or M-CSF-treated cells (*: p ≤ 0.05; ns–non significant).
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2.5. Validation of the IL-9-Induced Differentially Expressed Genes

Transcriptome analysis revealed differential gene expression between cell treated
with M-CSF along with sRANKL in the presence or absence of rIL-9. From transcriptome
analysis, we selected six upregulated genes with stimulation with M-CSF along with
sRANKL in presence of rIL-9, which are relevant in the context of osteoclastogenesis and
validated in more samples. PB-derived cells (HC and RA) and SF-derived cells (RA) were
stimulated with either M-CSF alone or in combination with sRANKL in the presence and
absence of rIL-9 for 4 days (Figure 4A–F). Treated cells were analyzed for the expression of
ephrinB2 (EFNB2), ATP-binding cassette subfamily A member 7 (ABCA7), Krueppel-like
factor 2 (KLF2), cadherin 6 (CDH6), acyl-coenzyme A synthetase (ACSM4), and potassium
voltage-gated channel subfamily A member 3 (KCNA3) using real time PCR (Figure 4A–F).
We validated that IL-9 enhances the expression of these genes in order to augment the
M-CSF/RANKL-mediated osteoclastogenesis.

2.6. IL-9 Modulates the Expression of Matrix Metalloproteinases of Bone Cells

Matrix metalloproteinases (MMPs) are the critical player in the degradation of the
organic matrix of the bone and play a fundamental role in the pathological destruction
of joint tissues in RA. Several MMPs have been identified over recent years and are
divided into four subgroups—collagenases, gelatinases, stromelysins, and membrane-type
metalloproteinases. Therefore, we investigated the influence of IL-9 on the expression of
selected MMPs (MMP-1, -2, -3, -8, -9, -12, -13, and -16), which are known to be involved in
the pathogenesis of RA [27].
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Figure 3. IL-9 mediated differential gene expression profile during osteoclastogenesis in RA.
Cells derived from synovial fluid (SF) of patients with RA were treated with macrophage colony-
stimulating factor (M-CSF; 25 ng/mL) and soluble receptor activator of nuclear factor κB ligand
(sRANKL; 50 ng/mL) in the presence or absence of rIL-9 (100 ng/mL) for 4 days. After that RNA
sequencing was performed with the treated cells as described in Materials and Methods. (A) Volcano
plot of differentially expressed genes between M-CSF + sRANKL-treated cells and M-CSF + sRANKL
+ rIL-9-treated cells. (B) Heatmap of hierarchical cluster analysis of differentially expressed genes
between M-CSF + sRANKL-treated cells and M-CSF + sRANKL + rIL-9-treated cells.

For this purpose, we used the bone explant culture model as it enabled us to investigate
the effect of specific stimuli on bone cells in a system in which the cell–cell and cell–matrix
interaction is intact. Using bone explant, we checked the effect of rIL-9 on the expression of
MMP-1, -2, -3, -8, -9, -12, -13, and -16 (Figure 5A–F). We observed that IL-9 significantly
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enhanced the expression of collagenase (MMP1 and MMP13), gelatinase (MMP9), elastase
(MMP12), and membrane-type metalloproteinases (MMP16). These observations suggest
that IL-9 has the capacity to influence bone degradation by modulating the expression of
MMPs in the bone cells.
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(ABCA7), Krueppel-like factor 2 (KLF2), cadherin 6 (CDH6), acyl-coenzyme A synthetase (ACSM4),
and potassium voltage-gated channel subfamily A member 3 (KCNA3). The graphs represent
the relative expression of these genes (mean ± SD; n = 8). Statistical analysis was performed
using paired Student’s t-test comparing M-CSF/sRANKL/rIL-9-treated cells to M-CSF/sRANKL-,
M-CSF-, and M-CSF/sRANKL-treated cells to M-CSF (*: p ≤ 0.05; **: p ≤ 0.005; ***: p ≤ 0.0005;
ns–non significant).
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Figure 5. Effect of IL-9 on the expression of matrix metalloproteinases (MMPs). (A–H) Bone explant
culture was stimulated with and without rIL-9 (100 ng/mL) for 5 days. Cells were then lysed
and homogenized, followed by RNA extraction and cDNA preparation from an equal quantity of
RNA. Glyceraldehyde phosphate dehydrogenease (GAPDH) was used as an internal control as the
expression of GAPDH showed the least variation with stimulation. Quantitative real-time PCR
(RT-PCR) was performed for MMP-1 (A), MMP-2 (B), MMP-3 (C), MMP-8 (D), MMP-9 (E), MMP-12
(F), MMP-13 (G), and MMP-16 (H). The graphs represent the relative expression of these genes (mean
± SD; n = 6). Statistical analysis was performed using paired Student’s t-test comparing treated cells
to untreated cells (*: p ≤ 0.05; **: p ≤ 0.005; ns—non significant).

3. Discussion

In RA, inflammatory cytokines including TNF-α, IL-6, IL-1, and IL-17 play a central
role in modulating the process of bone remodeling by enhancing bone resorption and
reducing bone formation [28]. Recently, elevated levels of IL-9 have been documented
in arthritic conditions such as psoriatic arthritis (PsA) and RA [29,30]. IL-9 accentuates
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inflammation in PsA by activating γδ T cells and in RA, by promoting the function of
Th1 and Th17 cells [21,31]. However, in RA, another report showed that IL-9-produced
by type 2 innate lymphoid cells (ILC2s) contributes to induction of the resolution of
inflammation [32]. Various cellular sources of IL-9 have been documented in literature [23].
Our group and others have shown the enrichment of IL-9-producing Th-9 cells in the
peripheral blood as well as synovial fluid of patients with RA [20,21]. Rauber et al. also
observed the expression of IL-9 in Lin+ cells in the synovial tissue of patients with active
RA [32]. However, they observed a shift in the expression of IL-9 from Lin+ cells to Lin-
ILC2 cells in the patients, who were in the clinical remission phase [32]. Thus, it appears
from these observations that the cellular source of IL-9 dictates it role as protective or
pathogenic.

In this study, we showed that IL-9 has the potential to enhance the RANKL-mediated
osteoclastogenesis. IL-9 facilitates osteoclast differentiation in cells derived from HC
as well as in patients with RA by enhancing the expression of osteoclast-specific genes.
Here, we showed that IL-9 promotes osteoclast formation and bone resorptive capacity
irrespective of its cellular source (PB or SF). Moreover, we showed that IL-9 augments
osteoclast formation and function in RA by inducing the production of TNF-α, a potent
osteoclastogenic cytokine.

Transcriptome analysis revealed that the IL-9 differentially modulates the expression
of genes to facilitate osteoclast formation and function. IL-9 upregulates the expression of
ephrinB2, an important molecule in mediating bone homeostasis and a target of NFATc1.
It has been observed that during RANKL-mediated osteoclastogenesis, the expression of
ephrinB2 gets upregulated [33]. In our study, we also found RANKL-induced upregulation
of ephrinB2. In the bone remodeling cycle, the bidirectional interaction between ephrinB2
and its receptor EphB4 expressed on osteoblast cells has been considered to regulate the
transition from the bone destruction phase to a bone formation phase. Another gene,
which was upregulated by IL-9 stimulation along with MCSF and sRANKL is Krueppel-
like factor 2 (KLF-2). Recent studies have shown the importance of KLF-2 in regulating
autophagy [34]. The differentiation of osteoclasts from their precursor cells is a complex
phenomenon and autophagy plays an important role in regulating this process. Autophagy
is essential for the cell survival and for recycling of the organelles and proteins during
osteoclastogenesis. Thus, IL-9 might influence autophagy by regulating the expression of
KLF-2 during osteoclast differentiation process.

In addition to autophagy, the osteoclast differentiation and maturation process requires
active metabolic reprogramming due to the synthesis of a variety of proteins involved in
fusion, proton pumps, ion channels, and proteases, etc. Indeed, KEGG pathway analysis of
transcriptomics data revealed that IL-9 induced differentially expressed genes which are
mostly involved in the metabolic pathway. Recent studies have appreciated the importance
of lipid metabolism in bone remodeling. Enhanced osteoclastogenesis has been observed
in mice with high fat diets [35–37]. Additionally, high-fat-diet-fed animals showed severe
destruction of joints compared to animals with normal diets [38]. It appears from our
results that IL-9 has the potential to regulate lipid metabolism during osteoclast differentia-
tion by upregulating the expression of ABCA7 and ACSM4, which are involved in lipid
metabolism [39–42].

Another important step in the formation of osteoclasts is the fusion of mononuclear
cells. During osteoclastogenesis, involvement of cadherin-6 in cell–cell interaction and K+
channel in multinucleation has been observed [43,44]. Here, we showed that IL-9 influence
the fusion process in osteoclast differentiation by regulating the expression of KCN4 and
CDK6.

Extensive literature supports the importance of MMPs in bone and cartilage degrada-
tion. Inflammatory cytokines such as TNF-α and IL-1 have been known to modulate the
expression of MMPs [45–47]. Here, we demonstrate for the first time that IL-9 also has the
potential to regulate the expression of MMP 1, 9,12, 13, and 16 in bone cells. Together, our
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observations suggest that IL-9 may influence the bone degradation in RA by promoting
osteoclastogenesis and by modulating the expression of MMPs.

In the clinical course of RA, progressive bone erosion results in functional disability.
Disease-modifying antirheumatic drugs help in reducing the ongoing inflammation but fail
to halt the bone destruction in RA [48]. Biologics targeting potent osteoclastogenic cytokine-
like TNF-α have revolutionized the treatment of RA as it prevents bone erosion [49–51].
Based on our observation, we conclude that IL-9 could be a good therapeutic target for
preventing progressive erosive arthritis in RA.

4. Materials and Methods
4.1. Study Subjects

The study was conducted with approval from Institute Ethics Committee (IEC-
490/01.09.2017). After obtaining informed consent, subjects were recruited from the
Department of Orthopedics OPD and Department of Rheumatology OPD of AIIMS, New
Delhi. Diagnosis was made on the basis of ACR criteria 1987. All recruited RA patients had
active disease. For this study, we collected synovial fluid (SF) and autologous peripheral
blood (PB) from RA patients during RA flares. Specimens for cell culture were collected in
heparinized tubes (BD, Franklin Lakes, NJ, USA). Fifteen age-matched healthy controls
(HC) who were free from any acute or chronic ailment and were not on medication at the
time of enrolment were recruited.

4.2. Cell Separation, Culture, and Stimulation

Synovial fluid mononuclear cells (SFMC) and peripheral blood mononuclear cells
(PBMCs) were isolated using density gradient centrifugation with Lymphoprep (Axis-
Shield, Oslo, Norway). Monocytes were enriched from mononuclear cells due to their
ability to adhere. Briefly, cells were plated on tissue culture plates for 12 h followed by
the removal of non-adherent cells. Adherent cells were grown in α-minimum essential
media (MEM) (Gibco, Grand Island, NY, USA) containing 10% fetal bovine serum (FBS)
(Gibco, Grand Island, NY, USA), 100 U/mL penicillin, and 100 µg/mL streptomycin (Sigma-
Aldrich, St. Louis, MO, USA). Cells were kept in humidified 5% CO2 incubator at 37 ◦C.
Cells were stimulated as indicated with soluble (s)-RANKL(ProSpec, Israel), M-CSF (R&D
Systems, Minneapolis, MN, USA) and rIL-9 (ProSpec, Israel).

4.3. TRAP Staining

A total of 2 × 106 cells was plated in 1 mL of complete medium in each well of
24-well plates. After 12 h, non-adherent cells were removed and adherent cells were kept
in fresh complete medium. Adherent cells were then stimulated as described in figure
legends with M-CSF alone or along with sRANKL in presence and absence of rIL-9 for
21 days. After 21 days, cell supernatant was removed and cells were fixed. Fixed cells
were then stained using acid phosphatase, Leukocyte (TRAP) Kit (Sigma, St. Louis, MO,
USA) as recommended by manufacturer’s protocol. Multinucleated (three or more nuclei)
TRAP-positive cells were scored as osteoclasts.

4.4. Bone Explant Culture

Bone samples were obtained under sterile conditions from subjects undergoing ortho-
pedic surgery for non-pathological fractures. Bone samples were washed several times
with phosphate buffer saline (PBS) containing antibiotics. Samples were broken into small
pieces. Bone explant cultures were performed in complete αMEM medium (Gibco, Grand
Island, NY, USA) supplemented with 10% FBS (Gibco, Grand Island, NY, USA), 2 mM
l-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin (Sigma-Aldrich, St. Louis,
MO, USA). Each piece of bone was kept in one well of a 6-well plate and in the presence or
absence of 100 ng/mL IL-9 for 5 days. Bone explant cultures were maintained in humidified
5% CO2 incubator at 37 ◦C.
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4.5. Real Time PCR

A total of 2 × 106 cells derived from peripheral blood or synovial fluid were seeded
per well of a 6-well culture plate and then stimulated with either MCSF or MCSF along
with sRANKL in the presence or absence of rIL-9. RNA was extracted using GeneJET
RNA Purification Kit (Thermo Fisher Scientific, Waltham, MA, USA), according to the
manufacturer’s protocol. cDNA was prepared from equal quantity of RNA by using
Revert Aid First strand cDNA synthesis kit (Thermo Fisher Scientific, Waltham, MA, USA).
Quantitative RT-PCR was performed using Powerup Sybr Master Mix (Applied Biosystem,
Waltham, MA, USA) with the primers listed in Table 2. RT-PCR was performed using
the QuantStudio 5 Real-Time PCR Systems (Applied Biosystems, Waltham, MA, USA).
For amplification of all the genes, an initial enzyme activation step of 2 min at 50 ◦C and
denaturation step of 5 min at 95 ◦C was common. However, the annealing cycles for each
gene were different. For EFNB2 and ACSM4 (40 cycles at 95 ◦C for 15 s and at 63 ◦C for
1 min); KCNA3, CDH6, KLF2, ACSM4 (40 cycles at 95 ◦C for 15 s and at 67 ◦C for 1 min);
NFATc1, CTSK, ACP5, GAPDH (40 cycles at 95 ◦C for 15 s and at 56 ◦C for 1 min); MMP1,
MMP2, MMP3, MMP8, MMP9, MMP12, (40 cycles at 95 ◦C for 15 s, 58 ◦C for 1 min); and
MMP13 and MMP16 (40 cycles at 95 ◦C for 15 s, 56 ◦C for 1 min). GAPDH was used as a
normalization control. The fold change was calculated using 2−∆∆CT.

Table 2. List of primers and their sequences.

Gene Primer Sequence

EFNB2 Forward primer: 5′ TCCAACAAGACGTCCAGAAC 3′

Reverse primer: 5′ CGTCTGTGCTAGAACCTGGAT 3′

KCNA3 Forward primer: 5′ TTGGTCTGCCTATGCCCTTG 3′

Reverse primer: 5′ CAGCCCACTTGCAAAACAGG 3′

CDH6 Forward primer: 5′ TTTCGTTTTCCTTGGCCCCT 3′

Reverse primer: 5′ CGCCGTGTTGTCTTTGTTGT 3′

ABCA7 Forward primer: 5′ TGAGGTCAGATACGGAGGCT 3′

Reverse primer: 5′ TTTTCAGGACACGGTCGAGG 3′

KLF2 Forward primer: 5′ GTGGGCATTTTTGGGCTACC 3′

Reverse primer: 5′ CCCAGTTCCAAGCAACCAGA 3′

ACSM4 Forward primer: 5′ ACTGCTGCCACGATAAGAGG 3′

Reverse primer: 5′ GCCCAATACGGTACCCAGAG 3′

MMP1 Forward primer: 5′ AGCCATCACTTACCTTGCACT 3′

Reverse primer: 5′ CTGGGAAGCTGTGAGACACC 3′

MMP2 Forward primer: 5′ ATCCAGACTTCCTCAGGCGG 3′

Reverse primer: 5′ CCATTAGCGCCTCCATCGTAG 3′

MMP3 Forward primer: 5′ TGAAATTGGCCACTCCCTGG 3′

Reverse primer: 5′GGAACCGAGTCAGGTCTGTG 3′

MMP8 Forward primer: 5′CTCCCTGAAGACGCTTCCAT 3′

Reverse primer: 5′TCCAGGTAGTCCTGAACAGT 3′

MMP9 Forward primer: 5′ GTACTCGACCTGTACCAGCG 3′

Reverse primer: 5′ AGAAGCCCCACTTCTTGTCG 3′

MMP12 Forward primer: 5′ AACCAACGCTTGCCAAATCC 3′

Reverse primer: 5′ TTTCCCACGGTAGTGACAGC 3′

MMP13 Forward primer: 5′ TTGTTGCTGCGCATGAGTTC 3′

Reverse primer: 5′AAGTGGCTTTTGCCGGTGTA 3′

MMP16 Forward primer: 5′CTACTGCTGACCCTGTCTTCG 3′

Reverse primer: 5′ GCTTCAATGGATGGACGAGC 3′

NFATc1 Forward primer: 5′ CCGTAGGCTTGTTCATAG 3′

Reverse primer: 5′ GTAACCTATTGATGTGCTATTC 3′
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Table 2. Cont.

Gene Primer Sequence

CTSK Forward primer: 5′ CAAATCCATCCTGCTCTTC 3′

Reverse primer: 5′ TATCACCACATCTGCTTCA 3′

ACP5 Forward primer: 5′ CTTCCACTATGGGACTGA 3′

Reverse primer: 5′ CCTCGATGTAAGTGACAG3′

GAPDH Forward primer: 5′ AGTCAGCCGCATCTTCTTTT 3′

Reverse primer: 5′ CCCAATACGACCAAATCCGT 3′

4.6. Cytokine ELISA

A total of 2 × 106 cells derived from PB or SF were seeded per well of a 6-well
culture plate and then stimulated with either M-CSF or M-CSF along with sRANKL in the
presence or absence of rIL-9 for 4 days. Supernatants of stimulated cells were harvested
and analyzed for TNF-α, IL-6, and IL-1β using ELISA Kit (Invitrogen Human TNF-α/IL-
6/IL-1β uncoated ELISA kit; Invitrogen, Waltham, MA, USA) as per the manufacturer’s
protocol.

4.7. Bone Resorption Assay

1× 106 cells derived from PB or SF were seeded per well of a 24-well fluoresceinated
calcium-phosphate-coated plate (Cosmo Bio Co., LTD, Tokyo, Japan). Cells were cultured
in phenol-red-free DMEM medium (Gibco, Grand Island, NY, USA) containing 10% FBS
(Gibco, Grand Island, NY, USA) as described by manufacturer’s protocol. For differentia-
tion, cells were stimulated as indicated for 24 days. On every fourth day, half of the medium
was replaced with fresh medium containing M-CSF, sRANKL, or r-IL-9. Evaluation of bone
resorption activity was done by measuring the fluorescence intensity of the conditioned
medium at an excitation wavelength of 485 nm and emission wavelength of 590 nm as per
the instructions of the manufacturer’s protocol using a Tecan plate reader.

4.8. RNA Sequencing and Analysis

A total of 2 × 106 cells were seeded per well of a 6-well culture plate and then
stimulated as indicated. Total RNA was isolated using TRIzol (Thermo Fisher Scientific,
Waltham, MA, USA). The quality of RNA was checked on the Agilent TapeStation system
using the manufacturer’s protocol. The first strand of cDNA was synthesized followed
by preparation of mRNA library. Sequencing was performed using Illumina HiSeqX10.
FastQc (Version 0.11.5) was used for checking the quality of the reads including distribution
of base quality score, distribution of sequence quality score, average base content per read,
and distribution of GC in the reads (Table 3). The mapping of reads to the human reference
genome was done using Minimap2 software. Samtools was used for quantifying the level
of gene expression. Differential expression analysis was performed using DEseq software.
Expression plots were made using R scripts.

Table 3. The number of clean reads in the MCSF + RANKL- and MCSF + RANKL + IL-9-treated group.

Sample Number of Reads

MCSF_RANKL1_set1_R1 31,668,998

MCSF_RANKL1_set1_R2 31,668,998

MCSF_RANKL2_set2_R1 34,530,684

MCSF_RANKL2_set2_R2 34,530,684

MCSF_RANKL_IL9_set1_R1 30,689,185

MCSF_RANKL_IL9_set1_R2 30,689,185

MCSF_RANKL_IL9_set2_R1 39,599,229

MCSF_RANKL_IL9_set2_R2 39,599,229
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4.9. Statistical Analysis

Data are presented as means ± SD. Comparison between the groups was performed
by employing Student’s t-test. p values ≤ 0.05 were considered significant. Statistical
significance of the results was determined with help of the Graph Pad Prism 5 software
(GraphPad Software Inc., La Jolla, CA, USA).

5. Conclusions

Our study strongly suggest that IL-9 has the potential to mediate structural damage in
inflammatory bone diseases such as RA by the enhancing the differentiation of osteoclasts,
its bone resorptive capacity, and by modulating the expression of MMPs. Thus, blocking or
inhibiting the IL 9 pathway might be an attractive immunotherapeutic strategy for RA in
preventing bone loss.
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