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L E T T E R  T O  T H E  E D I T O R

An H3F3A K27M-mutation in a sonic hedgehog medulloblastoma

Medulloblastomas are aggressive embryonal tumours 
growing in the cerebellum and brainstem. They sub-
divide into four major molecular groups. One of these 
subgroups is sonic hedgehog (SHH) medulloblastoma, 
which typically occurs either in infants or older children/
young adults, and harbours mutations in SHH pathway 
genes [1]. Large series of SHH medulloblastomas have 
been sequenced to date to analyse the mutational spec-
trum [1, 2]. As also discussed in a recent mini-symposium 
on medulloblastomas in Brain Pathology [3], SHH me-
dulloblastomas often have mutations in genes related to 
chromatin modification [1]. However, mutations in the 
histone proteins, which condense and structure the DNA, 
have not been detected in medulloblastomas so far. One 
subunit of the histone complexes is histone 3 (H3), which 
is encoded by several highly homologous genes such as 
H3F3A. Surprisingly, we detected an H3F3A K27M-
mutation in an SHH medulloblastoma.

A 13-year-old female was admitted to the A&E de-
partment with strong pain in the forehead and nape, 
dizziness, nausea and vomiting as well as double vision. 
Her mother additionally described increased sleepi-
ness, slowness and a loss of appetite. On clinical exam-
ination, the patient was in a reduced general condition 
and showed signs of dehydration, a pale skin colour, a 
tilt of the head to the left side and slowed movements 
and speech. Pupils were equal, of normal size and slowly 
reacting to light. Apart from this, examination of the 
cranial nerves was inconspicuous, and no sensorimotor 
deficit was detected. Magnetic resonance imaging in-
dicated a cerebellar tumour located in the right hemi-
sphere (Figure 1A,B).

Histological examination of the surgical specimen re-
vealed a small blue round cell tumour on H&E staining 
(Figure 1C). Tumour cells formed nodules, delineated 
by cell-dense areas with a reticulin-rich fibre network 
(Figure 1D). Tumour cells in the reticulin-rich inter-
nodal areas expressed p75 (Figure 1E), whereas central 
areas strongly expressed NeuN (Figure S1A). Some tu-
mour cells showed a nuclear expression of YAP1 (Figure 
S1B). However, tumour cells did not display nuclear ex-
pression of β-Catenin (Figure S1C) and were negative for 
OTX2 (Figure S1D). Only a few scattered nuclei showed 

a strong nuclear accumulation of p53 (<1% of nuclei, 
Figure S1E). The nuclear expression of INI1 was retained 
(Figure S1F). The Ki67 proliferation index amounted up 
to 60% of the tumour cells (Figure 1H). Taken together, 
the histological diagnosis was desmoplastic/nodular 
medulloblastoma, WHO grade IV, and the immunohis-
tochemical profile was suggestive of an SHH-activated 
medulloblastoma.

To confirm this, we performed global DNA methyla-
tion profiling using an Illumina EPIC BeadChip array. 
We then analysed the methylation data with the DNA 
methylation-based brain tumour classifier as described 
previously [4]. The DNA methylation profile was not 
classifiable but received the highest score of 0.77 for the 
methylation class family medulloblastoma, SHH (score 
0.42 for the subclass SHH A, children and adult). A t-
SNE analysis confirmed the affiliation of this tumour 
with the group of SHH-activated medulloblastomas 
(Figure S2). A copy number profile calculated from the 
DNA methylation data showed several chromosomal 
gains and losses that did not add diagnostic information 
(Figure 1I).

Next, we performed DNA panel sequencing to screen 
for a mutation in an SHH pathway gene and to deter-
mine the TP53  status. While a PTCH1  mutation was 
present (NM_000264:c.2630_2631insGGGA) and TP53 
was wild-type, we unexpectedly detected an H3F3A 
K27M mutation (NM_002107:c.83A>T, Figure 1J). 
Immunohistochemical staining for H3 K27M confirmed 
the mutation, as it showed a nuclear expression of the 
H3  K27M mutant protein (Figure 1F). Also, staining 
for H3K27me3 revealed a loss of the H3 K27 trimethyl-
ation (H3K27me3, Figure 1G). In sum, we diagnosed a 
medulloblastoma, SHH-activated and TP53-wild-type, 
H3 K27M-mutant, WHO grade IV.

After surgery, the patient received combined radio-
chemotherapy according to HIT-MED Guidance 5.2 [ra-
diation of the craniospinal axis with 23.4 Gy plus boost 
(cumulative dose in tumour area 54 Gy); additionally, six 
cycles of Vincristin followed by eight cycles of Cisplatin 
plus CCNU). Three months post-surgery, the patient 
still has double vision looking into the distance but oth-
erwise, the general condition has improved.
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F I G U R E  1   A desmoplastic/nodular SHH medulloblastoma with H3 K27M mutation. (A and B) Representative axial MRI images of the 
tumour showing a partial contrast enhancement in the T1-weighted image plus contrast medium (A) and hyperintensity in the T2-weighted 
image (B). (C–H) Histology. The H&E staining showed a small blue round cell tumour with a nodular architecture also visible in a Gomori 
silver impregnation (D). The internodal areas were positive for p75 (E). A mutation-specific antibody indicated a nuclear expression of 
H3 K27M (F), whereas H3K27me3 trimethylation was lost in the tumour cells (G). (H) The Ki67 proliferation index amounted up to 30–
60%, depending on the tumour area. Scale bar for (C–H): 150 µm. (I, J) Molecular features. (I) Copy number profile calculated from DNA 
methylation data. (J) H3F3A K27M mutation, detected by DNA panel sequencing. Top: genomic position on chromosome 1q, indicated by the 
red bar (cf. arrow). Middle: base exchange from A to T with an allele frequency of 46% (exemplary reads). Bottom: reference sequences of bases 
and amino acids



      |  3 of 4LETTER TO THE EDITOR 

H3 K27M mutations have not been detected in SHH 
medulloblastomas so far. Thus, they seem to be very 
rare in these tumours. Hence, it is unclear how these 
mutations impact tumour biology and survival in SHH 
medulloblastomas. H3 K27M mutations are the genetic 
hallmark of a group of highly malignant gliomas that 
are called “diffuse midline gliomas, H3 K27M-mutant.” 
These tumours typically occur in midline structures 
of children and young adults [5]. In these tumours, 
H3  K27M mutations lead to a global reduction of the 
immunohistochemically accessible repressive histone 
trimethylation H3K27me3 as well as a DNA hypometh-
ylation phenotype. Consequently, this results in the ex-
pression of many oncogenes and in tumour growth [6, 
7]. The H3  K27M mutation described here thus rep-
resents a mechanism resulting in a loss of H3K27me3. 
Interestingly, loss of H3K27me3  has been detected in 
SHH medulloblastoma previously [8]. Regulation of 
epigenetic histone modifications in SHH medulloblas-
toma is a highly complex process, as these tumours 
may have mutations in genes encoding different histone 
methyltransferases and demethylases, such as KMD3B, 
KDM6A and KMT2D (MLL2) [1, 8]. Also, SHH medul-
loblastomas may have chromosomal aberrations involv-
ing histone-modifying genes [8]. Loss of H3K27me3 may 
ameliorate or worsen the prognosis of medulloblastoma, 
depending on the presence or the absence of other epi-
genetic histone modifications such as H3K4me3 [8].

Other than in diffuse midline gliomas, H3 K27M mu-
tations have been identified in single ependymomas that 
were molecularly classified as subgroup ‘posterior fossa 
group A’ [9, 10].

In diagnostics, an antibody-targeting H3  K27M is 
nowadays routinely used to screen midline tumours for 
the presence of an H3 K27M mutation in order to detect 
diffuse midline glioma, H3 K27M-mutant. Pathologists 
should be aware that H3 K27M mutations rarely occur 
in midline tumours other than diffuse midline glioma, 
H3 K27M mutant, especially if the tumour has an em-
bryonal or ependymal morphology.
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FIGURE S1 Complementary immunohistochemical 
stainings. (A) The central parts of the nodules were pos-
itive for NeuN. (B) Some cells showed a nuclear expres-
sion of YAP1. (C) No nuclear expression of ß-Catenin. 
(D) No expression of OTX2. (E) Only few nuclei stained 
for p53. (F) Nuclear expression of INI1 retained
FIGURE S2 A t-SNE analysis of DNA methylation data 
from the test case and reference samples from different 
classes of brain tumour allocates the test case to SHH-
medulloblastoma (non-trivial PCs 101, perplexity 55)
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