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Introduction: It has been proposed that bilinguals’ language use patterns are 
differentially associated with executive control. To further examine this, the present 
study relates the social diversity of bilingual language use to performance on a color-
shape switching task (CSST) in a group of bilingual university students with diverse 
linguistic backgrounds. Crucially, this study used language entropy as a measure of 
bilinguals’ language use patterns. This continuous measure reflects a spectrum of 
language use in a variety of social contexts, ranging from compartmentalized use to 
fully integrated use.

Methods: Language entropy for university and non-university contexts was calculated 
from questionnaire data on language use. Reaction times (RTs) were measured to calculate 
global RT and switching and mixing costs on the CSST, representing conflict monitoring, 
mental set shifting, and goal maintenance, respectively. In addition, this study innovatively 
recorded a potentially more sensitive measure of set shifting abilities, namely, pupil size 
during task performance.

Results: Higher university entropy was related to slower global RT. Neither university 
entropy nor non-university entropy were associated with switching costs as manifested 
in RTs. However, bilinguals with more compartmentalized language use in non-university 
contexts showed a larger difference in pupil dilation for switch trials in comparison with 
non-switch trials. Mixing costs in RTs were reduced for bilinguals with higher diversity 
of language use in non-university contexts. No such effects were found for 
university entropy.

Discussion: These results point to the social diversity of bilinguals’ language use as being 
associated with executive control, but the direction of the effects may depend on social 
context (university vs. non-university). Importantly, the results also suggest that some of 
these effects may only be detected by using more sensitive measures, such as pupil 
dilation. The paper discusses theoretical and practical implications regarding the language 
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entropy measure and the cognitive effects of bilingual experiences more generally, as well 
as how methodological choices can advance our understanding of these effects.

Keywords: bilingualism, executive control, language entropy, individual differences, pupillometry, generalized 
additive mixed modeling

INTRODUCTION

It has been theorized that the life experience of using more 
than one language contributes to enhanced domain-general 
executive control in bilinguals,1 as they are constantly required 
to regulate the simultaneous activation of multiple languages 
in one mind (Kroll et al., 2012). However, defining “bilingualism” 
is perhaps an impossible feat (Surrain and Luk, 2019). There 
is now a general consensus that it is unattainable to accurately 
represent the dynamic, multifaceted, and complex nature of 
bilingualism by treating it as a binary construct (Bialystok, 
2021, this special issue). Recent work examining bilingualism 
on a continuum has suggested that individual experiences place 
different demands on language control and domain-general 
cognitive systems, each differentially shaping language processing, 
cognitive functioning, and brain structure and function (DeLuca 
et  al., 2019; Beatty-Martínez and Titone, 2021; Gullifer and 
Titone, 2021b). Despite recent attempts to unravel the complexity 
of bilingualism and its consequences for cognition, much 
remains unknown about how bilingual experiences may 
be responsible for these neurocognitive adaptations. Importantly, 
to capture these intricate effects, sensitive methodologies are 
required (Poarch and Krott, 2019). This study investigates how 
the social diversity of language use relates to behavioral and 
pupil indices of executive control in bilinguals.

Bilingual experiences comprise static factors such as age of 
acquisition (AoA) and number of languages ever learned as 
well as ongoing, dynamic experiences such as code-switching 
practices and current language use within and across contexts. 
These static and dynamic experiences likely interact in modulating 
cognitive performance in bilinguals, but recent years have seen 
a particular focus on the diversity of language use, rather than 
knowledge, in shaping neurocognitive adaptations in bilinguals 
(Abutalebi and Green, 2016). This idea was put forward by 
Green and Abutalebi (2013) in the Adaptive Control Hypothesis. 
Specifically, Green and Abutalebi identified three types of 
interactional contexts: a single-language context (SLC), a dual-
language context (DLC), and a dense code-switching context 
(DCS). In the SLC, bilinguals use their languages for different 
purposes and in strictly separate contexts (e.g., communicating 
in the L1 at home and in the L2  in educational settings). In 
the DLC, bilinguals engage in highly integrated language contexts 
in which their languages may be  used in a more balanced 
manner (e.g., speaking both the L1 and L2 at work, but with 
different people). Finally, in the DCS, language use is also 
highly integrated, but fewer restrictions are placed on when 

1 Our paper uses the term “bilingualism” to represent the proficiency in more 
than one language, whether the proficiency is in two languages (bilingualism) 
or in three or more languages (multilingualism).

to use which language and with whom. According to the 
Adaptive Control Hypothesis, each context places different 
demands on language- and domain-general executive control 
in bilinguals, with the DLC being the most challenging for 
the executive control system.

Empirical work looking at the influence of interactional 
contexts on executive control has, for instance, found that 
Spanish-English bilinguals who reside in contexts in which 
languages are used separately (i.e., an SLC) showed greater 
reliance on reactive control, whereas bilinguals residing in 
contexts in which languages are used interchangeably (i.e., both 
in dual-language and dense code-switching contexts) mostly 
adopted proactive control strategies (Beatty-Martínez et  al., 
2020). Similarly, Hartanto and Yang (2016) classified bilinguals 
into SLC bilinguals and DLC bilinguals and found that DLC 
bilinguals showed lower switching costs than SLC bilinguals. 
In a follow-up study, the authors reported that DLC bilingualism 
predicted enhanced set shifting abilities and that DCS bilinguals 
were more likely to perform better on tasks requiring inhibitory 
control and goal maintenance (Hartanto and Yang, 2020). 
Likewise, Yow and Li (2015) found a relationship between 
enhanced goal maintenance (operationalized as mixing cost) 
and more balanced language use in bilinguals. Altogether, these 
findings suggest that demands that are placed on bilinguals 
by the environment differentially modulate cognitive adaptations, 
on an aggregated level and within bilingual groups.

Despite the empirical importance of investigating theoretical 
propositions in such aggregated groups, individual variation 
in bilingual language use is perhaps best captured using 
continuous measures (Luk and Bialystok, 2013). Bilinguals 
may not always find themselves in a purely SLC or DLC 
(cf. Lai and O’Brien, 2020), and on an individual level, some 
social settings may be  characterized as DLCs and others as 
SLCs (e.g., two languages are spoken at home, but only one 
language is spoken at work). In this light, Gullifer and Titone 
(2020) proposed a novel continuous measure of the social 
diversity of language use: language entropy. Entropy is a 
concept adapted from information theory (Shannon, 1948) 
and is generally used to quantify the diversity or uncertainty 
of a phenomenon. Language entropy reflects a spectrum of 
language use across or between communicative contexts, and 
it draws on the concepts proposed in the Adaptive Control 
Hypothesis.2 Crucially, language entropy is not restricted to 

2 It needs to be noted, however, that there is no one-to-one mapping of language 
entropy and the interactional contexts posited in the Adaptive Control Hypothesis, 
as language entropy does not differentiate between DLC and DCS. For example, 
language entropy is not able to distinguish a person frequently switching between 
two languages with one person in one context from a person perfectly balancing 
speaking two languages in one context with two different people. The resulting 
entropy values would be  comparable.
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a set number of languages, as its values range from 0 to 
log n (where n is the number of languages that entropy is 
computed over). It is calculated in such a way that it captures 
the inherent variability in bilingual language use, where the 
lowest values approximate compartmentalized language use 
(i.e., only one language is used in a context), and the highest 
value represents fully integrated language use (i.e., all languages 
are used equally). In fully compartmentalized contexts, one 
language is used much more than the other(s) and, as such, 
the predictability of which language to use is very high. In 
highly integrated contexts, the languages are used in a more 
balanced way and so the (appropriate) language to use is 
less predictable. It then follows that the degree of 
unpredictability is also affected by the number of languages 
a person speaks. That is, when all available languages are 
used in a fully integrated manner, the unpredictability of 
which language to use increases as the number of available 
languages increases. The extent to which the management 
of this unpredictability is needed is argued to drive 
neurocognitive adaptations, which consequently increase 
behavioral efficiency and optimize decision making (Gullifer 
and Titone, 2021a).

However, it is less clear how this continuous measure of 
the diversity in bilingual language use may be associated 
executive control. To reiterate, the Adaptive Control Hypothesis 
posits that, in contexts where the predictability of which language 
to use is low, bilinguals need to engage domain-general executive 
control processes to adapt to changing environmental demands 
(e.g., a change in interlocutor with whom another language 
needs to be spoken) to a larger extent than in high-predictability 
contexts. In other words, they must keep speaking the appropriate 
language without letting their other language(s) interfere (goal 
maintenance, also termed proactive control), scan the 
environment for changes (e.g., conflict monitoring), and switch 
to another language when this is required (mental set shifting, 
henceforth set shifting). Previously, higher language entropy 
has been associated with increased reliance on proactive control 
(Gullifer et  al., 2018; Gullifer and Titone, 2021b), and with 
functional brain patterns related to enhanced conflict monitoring, 
set shifting, and goal maintenance (Li et al., 2021), underscoring 
the possible relationship between the diversity of language use 
and individual differences in executive control. Importantly, 
language entropy may reflect a distinct aspect of bilingual 
language use, as it has been shown by Kałamała et  al. (2021) 
that other indices of bilingual language use, such as code-
switching and language-mixing habits, only moderately correlated 
with language entropy.

In the bilingualism literature, conflict monitoring, set shifting, 
and goal maintenance have been frequently assessed using 
cued-switching paradigms (Lehtonen et  al., 2018), such as the 
color-shape switching task (CSST). The cued-switching paradigm 
is difficult enough to result in large RT costs even in young 
adults (Monsell, 2003). Despite this, reaction times may not 
always be  sensitive enough in capturing individual differences 
in certain groups. For example, young adults, a commonly 
studied demographic, showcase less individual variation in 
cognitive performance and, as such, in RTs, than other age 

groups (Hultsch et  al., 2002). This may be  due to the fact 
that young adults are at their cognitive performance peak (Park 
et al., 2002; Bialystok et al., 2012). Perhaps unsurprisingly then, 
behavioral effects of bilingualism have been found least 
consistently in young adults (Antoniou, 2019). It is therefore 
paramount that a measurement is used that is sensitive enough 
to yield relatively large effects and individual variation when 
studying young adults, while also capturing a form of processing 
that is expected to be  modulated by bilingual experiences.

It is worth mentioning that cognitive effects of bilingualism 
have been found in brain indices in the absence of behavioral 
effects between bilingual and monolingual groups, as well as 
between bilingual groups with different characteristics (e.g., 
Bialystok, 2017; Lehtonen et  al., 2018; DeLuca et  al., 2020). 
Thus, to further increase sensitivity of the assessments, behavioral 
indices may be  supplemented with a proxy of brain activity, 
such as pupil dilation. Pupil dilation in response to task demands 
is commonly thought to be  modulated by phasic activity in 
the locus coeruleus-norepinephrine (LC-NE) system (Aston-
Jones and Cohen, 2005; van der Wel and van Steenbergen, 
2018). The LC-NE system receives information from the 
orbitofrontal cortex and the anterior cingulate cortex about 
task demands. In turn, the LC adjusts its activation patterns 
to ensure that behavioral responses are optimal (Aston-Jones 
and Cohen, 2005). As such, pupil dilation can serve as a 
window into processes related to task performance. An increase 
in pupil size has often been used as an index of higher resource 
allocation (i.e., increased cognitive effort and attention allocation 
to complete the task). This effect has been found in a variety 
of cognitive tasks (for a literature review, see van der Wel 
and van Steenbergen, 2018). For example, Rondeel et al. (2015) 
showed that switch trials elicited larger pupil dilation than 
non-switch trials in a number switch task. To date, there have 
been no inquiries regarding the cognitive effects of bilingualism 
on set shifting using pupil dilation as an outcome measure.

The current study’s primary goal is to examine how the 
social diversity of bilingual language use, as measured by 
language entropy, relates to executive control in university 
students with diverse bilingual experiences, using behavioral 
measures and pupil dilation. The study was conducted in 
November and December 2020 at the University of Groningen, 
the Netherlands, when COVID-19 restrictions were in place. 
Specifically, the data were collected at a time when teaching 
took place fully online. The University of Groningen’s student 
population consists mostly of native speakers of Dutch but 
also includes international students from all over the world 
(University of Groningen, 2020). This diverse student population 
is the result of many of the study programs at the University 
of Groningen being taught exclusively in English. The Dutch 
student population starts to formally learn English from a 
young age (the end of primary school or even earlier) and is 
regularly exposed to the language through media input, as 
Dutch television subtitles its foreign programs, for instance. 
At university, students may speak English in the classroom 
but Dutch or English or yet other languages with their fellow 
students during breaks. Their multilingual experience may 
extend to contexts outside of university, as the North of the 
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Netherlands is a highly multilingual region in itself (Schmeets 
and Cornips, 2021). In this part of the Netherlands, some 
speak a regional minority language such as Frisian (in the 
province of Fryslân) or a form of the Low Saxon dialect in 
addition to Dutch. In sum, the sample that was targeted in 
this study was linguistically diverse and likely to vary in how 
they used their languages across social contexts. This allowed 
us to assess the impact of inter-individual differences in the 
social diversity of bilingual language use on executive control.

In our study, we  used a color-shape switching task (see 
method below) to measure conflict monitoring, set shifting, 
and goal maintenance. As described previously, bilinguals who 
mainly use their languages in separate contexts are not regularly 
required to monitor the interactional context for linguistic 
changes. However, bilinguals who use two or more languages 
within one context need to engage these precise executive 
control processes more often to appropriately regulate the 
activation of their languages, thereby possibly increasing their 
efficiency over time (Green and Abutalebi, 2013). Thus, 
we predicted bilingual individuals with higher language entropy 
to demonstrate enhanced conflict monitoring, set shifting, and 
goal maintenance abilities relative to those individuals whose 
language use is more compartmentalized. Crucially, the CSST 
was adapted to allow for simultaneous recording of pupil size 
over time, permitting an additional, and potentially more 
sensitive, measure of set shifting in addition to RTs. Behavioral 
versions of the CSST have been used regularly in this field 
(see meta-analysis by Lehtonen et  al., 2018). However, to our 
knowledge, only one study has examined set shifting with 
simultaneous tracking of pupil size (Rondeel et  al., 2015). 
Changes in pupil size occur very slowly and require slower-
paced task designs than purely behavioral tasks (Mathôt, 2018; 
Winn et  al., 2018). Therefore, our secondary objective was to 
validate whether our version of the CSST captured the expected 
additional effort of completing switch trials over non-switch 
trials, henceforth denoted as pupil switching cost, and whether 
a smaller pupil switching cost was related to higher language 
entropy. In the case of the CSST, we  proposed that a smaller 
difference in pupil size between switch and non-switch trials 
would reflect enhanced set shifting efficiency. We  explored the 
possibility that increased efficiency in set shifting is visible in 
the pupil data only, given that pupil size over time may be more 
sensitive in detecting individual differences than RTs in our 
young adult sample.

MATERIALS AND METHODS

General Procedure
Fifty-five young adults were recruited for this study at the 
University of Groningen, the Netherlands, and through posts 
on a Facebook page targeting research participants in Groningen. 
Participants enrolled in the study by filling out a short screening 
questionnaire at home, which simultaneously served to determine 
their eligibility to participate. Participants were excluded from 
participation when they reported having (1) reading or learning 
disorders; (2) uncorrected sight problems (e.g., color blindness); 

(3) current substance abuse; (4) past traumatic brain injury; 
and (5) a history of psychological or neurological disorders. 
Furthermore, participants belonging to a COVID-19 at-risk 
group (e.g., people with compromised immune systems and/
or pulmonary problems) were not eligible to participate, as 
data were collected during the COVID-19 pandemic (November 
and December of 2020). Importantly, participants were not 
selected based on their language background, as the current 
study aimed to explore the impact of various bilingual experiences 
on executive control. Hence, our target demographic consisted 
of students being born in the Netherlands as well as international 
students. With most degree programs at the University of 
Groningen teaching (at least partially) in English, no subjects 
reported exclusive monolingual daily language use; all reported 
to be  bilingual or multilingual and were proficient in English 
and at least one other language.

Eligible participants first provided written informed consent 
online. They were then asked to complete an online background 
questionnaire at home. They were subsequently invited to an 
experimental laboratory session. In this session, participants 
completed three eye-tracking tasks, of which the CSST was 
administered last. Prior to the CSST, participants completed a 
resting-state measurement and an anti-saccade task (the results of 
which are not reported here). Task instructions were given in English.

The entire experimental session took approximately 1 h and 
45 min to complete, of which 45 min were spent on the 
CSST. Participants received a monetary compensation of €15 
upon session completion and were debriefed on the goals of 
the study. The study protocol was approved by the Research 
Ethics Committee (CETO) of the Faculty of Arts at the University 
of Groningen (reference number: 69895095).

Participants
Complete data were collected for 44 participants (33 women), 
aged 18–30 years (M = 22.75, SD = 2.78). Demographic variables 
such as age, gender, educational attainment, and paternal and 
maternal educational attainment as a proxy of socio-economic 
status were extracted from the online background questionnaire. 
Nineteen out of 44 participants reported to have been born 
in the Netherlands. Sample characteristics, including language 
background indices, are listed in Table  1.

In total, participants reported 14 different first languages 
(L1s; first language based on reported age of onset of learning). 
Dutch was most frequent (n = 18), followed by English (n = 6), 
Italian, and German (both n = 4). The majority (n = 32) reported 
to speak English as their second language (L2). Participants 
reported speaking English with a generally high proficiency 
level (scale of 1–10: M = 8.42, SD = 1.22, min = 6, max = 10).

There were 10 participants who did not complete the study, 
either because they did not fill out the background questionnaire 
(n = 1), because of COVID-19 symptoms or COVID-19 
restrictions (n = 4), technical difficulties (n = 2), or a lack of 
available lab facilities (n = 3). Additionally, it was impossible 
to calculate entropy scores for one participant due to missing 
data. This last participant’s data were used in the analyses 
investigating the main effect of trial type in the CSST, however.
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Materials
Background Questionnaire
In order to obtain a detailed picture of participants’ language 
background and usage patterns, a questionnaire was administered 
online to participants using Qualtrics (Qualtrics, Provo, UT). 
In addition to questions asking about standard demographic 
information, the questionnaire included questions from the 
LEAP-Q 3.0 (Marian et  al., 2007) and the Language Social 
Background Questionnaire (Anderson et  al., 2018). This was 
done to tailor the questionnaire to the University of Groningen 
context, specifically. For the purposes of the current study, 
we extracted data pertaining to language use in several contexts 
(for reading, for speaking, at home, at university, at work, 
and in social settings), global language exposure, AoA, and 
self-assessed language proficiency for the L1, L2, and L3. Please 
see our entry in the Open Science Framework (OSF; see section 
“Data Availability Statement”) for the complete questionnaire.

Color-Shape Switching Task
To tap conflict monitoring, set shifting, and goal maintenance 
abilities, we used a CSST. In the CSST, participants are presented 
with colorful geometric figures and are asked to respond to 
the color (in our case, blue or orange) or the shape (in our 
case, a circle or a square) of the figure by means of a button-
press. In so-called single blocks, participants are required to 

respond to a single criterion (i.e., only color or only shape). 
In the color task, participants decide by means of a button-
press whether the figure is blue or orange, and in the shape 
task, participants press a button to indicate whether the figure 
is a circle or a square. In mixed blocks, a cue indicates to 
which criterion the participant should respond. These cues 
randomly alternate within blocks, resulting in switch trials 
(trials for which the criterion changes) and non-switch trials 
(trials for which the criterion is the same as for the previous trial).

Following Li et al. (2021), we extracted global RT, switching 
costs, and mixing costs as indices of executive control. Global 
RT is represented by the overall RT in the mixed blocks and 
has been used previously to relate language entropy to conflict 
monitoring (Li et  al., 2021). Switching costs were calculated 
as the difference in RTs between switch trials and non-switch 
trials in the mixed blocks and were used as a proxy for set 
shifting (Prior and MacWhinney, 2010). Mixing costs were 
calculated by the difference in RTs between non-switch trials 
in the mixed blocks and single trials and have been considered 
to tap goal maintenance abilities (Marí-Beffa and Kirkham, 
2014). As engaging in contexts where language use is more 
integrated requires a speaker to monitor the environment for 
linguistic changes, we  expected that bilinguals with more 
integrated language use would have more efficient conflict 
monitoring abilities, as manifested in faster global RTs. 
Furthermore, we  predicted that more integrated bilingual 

TABLE 1 | Participant demographics and language experience.

Participants (n = 44)

M SD min max

Demographics
Gender 33 female; 11 male
Age (years) 22.75 2.78 18 30
Educational attainment1 3.25 1.40 2 5
Paternal educational attainment2 3.89 1.03 1 5
Maternal educational attainment1 3.82 1.05 1 5

Language experience
Number of known languages3 3.61 1.03 2 5
Age of Acquisition (AoA)
 L2 AoA (years) 6.42 3.45 0 19
 L3 AoA (n = 33; years) 12.30 4.45 0 22
Proficiency
 L1 Speaking (1–10) 9.54 0.87 6 10
 L2 Speaking (1–10) 7.79 1.97 1 10
 L3 Speaking (n = 33; 1–10) 4.66 2.65 1 10
Exposure
 L1 Exposure (%) 42.32 24.60 5 85
 L2 Exposure (%) 43.49 25.88 0 95
 L3 Exposure (n = 33; %) 10.97 16.11 0 72
Code-switching habits n (%)
 No switching 21 (47.7%)
 Switches on sentence-by-sentence basis 7 (15.9%)
 Switches on word-by-word basis 16 (36.4%)

1Scale of 1–6:1 = primary school, 2 = secondary school, 3 = intermediate vocational education/community college, 4 = University of Applied Sciences or equivalent, 5 = university, and 
6 = PhD degree.
2Scale of 1–5: 1 = no secondary school diploma, 2 = secondary school diploma, 3 = some post-secondary education, 4 = post-secondary degree or diploma, or 5 = graduate/PhD 
degree or professional degree.
3Participants were able to indicate up to five languages in the language background questionnaire. Therefore, it is possible that they knew more than five languages.
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FIGURE 1 | Sample trial procedure for a mixed trial in the color-shape switching task.

language use would be  associated with smaller switching and 
mixing costs in RTs, taking into account the findings by Li 
et  al. (2021), Gullifer et  al. (2018), and Gullifer and Titone 
(2021b).

Apparatus
Pupil size over time (in arbitrary units) was recorded using 
the Eyelink Portable Duo eye-tracking system (SR Research, 
Canada) at a sampling rate of 500 Hz. Data were only collected 
for the participants’ dominant eye. The CSST was programmed 
using OpenSesame version 3.2.8 (Mathôt et  al., 2012) and the 
PyGaze library (Dalmaijer et  al., 2014) and was presented on 
a 17.3-inch laptop with a 1920 × 1080 resolution.

Stimuli
In the CSST, participants were presented with blue (RGB: 95, 
167, and 252) and orange (RGB: 207, 152, and 24) squares 
and circles (square: 2.3° × 2.3°; circle: 2.3° diameter), which 
appeared one-by-one in the middle of the screen on a light 
gray background (RGB: 155, 155, and 155). Depending on 
the criterion, the participant had to either decide on the color 
or the shape of the stimulus by pressing a key. The cues, 
which only appeared in mixed blocks, were the words “SHAPE” 
or “COLOR” and appeared in dark gray (RGB: 112, 112, and 
112) in Arial (font size: 72) in the middle of the screen.3

Experimental Procedure
Participants were seated approximately 60 cm from the 
eye-tracker. Distance to the eye-tracker was tracked online 
with a target sticker placed on the participant’s forehead. The 
eye-tracking signal was calibrated and validated using a 

3 Whereas in previous versions of the CSST, graphic cues are used to circumvent 
possible linguistic effects (Yang et al., 2016); for the purpose of our experiment, 
it was vital to keep the luminosity of the cues constant across conditions. As 
such, we  opted for words denoting the task (cf. Ramos et  al., 2017).

nine-point procedure before the start of the task. Manual drift 
correction took place before each experimental block.

Following Prior and MacWhinney (2010), the participants 
completed two single-task blocks of 36 items each (color and 
shape), followed by three mixed blocks of 48 trials each, and 
ended with two single-task blocks of 36 items each. The order 
of the single-task blocks, as well as the dedicated response 
keys, were counterbalanced across participants, resulting in 
four versions of the experiment. Responses were made pressing 
the “d” and “f ” keys with the left hand and the “j” and “k” 
keys with the right hand. One hand always responded to the 
“color” criterion and the other always responded to the “shape” 
criterion. Experimental blocks were preceded by eight practice 
trials in single-task blocks, and 16 practice trials in mixed 
blocks. The practice blocks were repeated until the participant 
reached an accuracy of at least 80%, to ensure a correct 
understanding of the task. Participants received feedback on 
their performance during the practice trials only. In total, the 
experiment contained 144 single-task block trials (72 color 
and 72 shape task trials) and 144 mixed trials (72 switch and 
72 non-switch trials).

Trials were presented as follows. First, the participants looked 
at a fixation cross at the center of the screen for 400–600 ms 
in order to trigger the start of the trial. In the single-task 
blocks, the stimulus appeared after a lag of 150 ms. Alternatively, 
in mixed blocks, a cue (“COLOR” or “SHAPE”; 500 ms) and 
an additional gap of 500 ms preceded the stimulus. The stimulus 
always remained on the screen for 3,000 ms to ensure a fixed 
trial length within blocks. Despite this, participants were 
instructed to respond as fast and as accurately as possible. In 
the mixed blocks, trials of the same type did not appear more 
than four times in a row. Figure  1 schematically illustrates a 
mixed block trial.

Analysis
The data were preprocessed, analyzed, and plotted in R version 
4.1.1 (R Core Team, 2021) using version 1.0.7 of the dplyr 
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package (Wickham et  al., 2018). The full reproducible code 
is available in the OSF repository.

Calculating Language Entropy Scores
Following Gullifer and Titone (2020), language entropy scores 
were calculated from the self-reported language use data for 
the L1, L2, and L3  in each communicative context (at home, 
at university, in social domains, for reading, and for speaking; 
see Table  2), using the languageEntropy package (Gullifer and 
Titone, 2018). The usage data for the home, university, and 
social contexts were elicited using Likert scales, with the prompt 
“Please rate the amount of time you  actively use the following 
language(s)/dialect(s) in [context] on a scale of 1–7 (1 = no 
usage at all, 7 = all the time).” Following Gullifer and Titone 
(2020), these scores were baselined by subtracting 1 from each 
response, such that a score of 0 represented “no usage at all.” 
Subsequently, these scores were converted to proportions by 
dividing a language’s score by the sum total of the scores in 
each context. For reading and speaking, language use was 
elicited by percentage of use (e.g., “When choosing a language/
dialect to speak with a person who is equally fluent in all 
your languages, what percentage of time would you  choose 
to speak each language/dialect?”). All percentages added up 
to 100%. These percentages were converted to proportions, 
which were then used to calculate the entropy values per 
context for each participant. Language entropy was calculated 
using the entropy formula of Shannon (1948):

 
H P P

i

n
i i= − ( )

=
∑

1

2log

In this formula, the number of possible languages within 
the social context is represented by n, and Pi is the proportion 
of the use of languagei in that context. A language entropy 
value of 0 indicates that only one language is used in a certain 
context. If a bilingual’s language use is completely balanced, 
then the entropy value approximates 1 for two languages and 
1.60 for three languages.

To reduce the complexity of the entropy data, we  followed 
Gullifer and Titone (2020) and conducted a Principal Component 
Analysis (PCA). PCA is used to reduce the complexity of a 
given dataset by grouping correlated variables into a limited 
set of “principal components” reflecting the variance found 
in the data set (Abdi and Williams, 2010). We  used varimax 

rotated components and selected our final number of 
components using a biplot and correlation matrices of the 
PC scores and individual entropy scores. This resulted in two 
PC components. Home, social, reading, and speaking entropy 
loaded into one component and explained 43.2% of the data. 
University entropy, with some cross-loading from social entropy, 
loaded into the second component and explained 26.7% of 
the data. The individual varimax component loadings are 
provided in the Supplementary Table  1. As a PCA can only 
be  computed over complete cases, work entropy was not 
included in the PCA, as a considerable number of participants 
(n = 13, 29.5% of the sample) reported to be  unemployed. 
Component scores for each participant were extracted and 
served as indices of university entropy and entropy anywhere 
else (non-university entropy) in the subsequent analyses. Recall 
from above that lower scores represent a more 
compartmentalized context, whereas higher scores represent 
a more integrated context, where the proportion of use of 
each language is more balanced.

Preprocessing
Behavioral Data
Since participants performed at ceiling level for all trial types 
(see Section “The Effect of Language Entropy on RTs”), we limited 
our analyses to RTs. Only RTs from correct responses were 
analyzed. Following recommendations for RT analysis (Luce, 
1991; Whelan, 2008), responses <100 ms were excluded from 
the analysis (0.38% of the entire dataset). The data were subsetted 
per trial type to calculate global RT and switching costs (switch 
and non-switch trials) and mixing costs (non-switch and single-
task trials). The processed datasets are available in the 
OSF repository.

Pupil Data
The pupil data collected during the CSST were preprocessed 
using version 0.0.1.2. of the gazeR package (Geller et al., 2020). 
To preprocess the data, we  executed the following steps. First, 
we  identified blinks in the signal and subsequently applied a 
smoothing function and interpolated the signal using a cubic 
spline. Then, we  applied subtractive baseline correction (pupil 
size—baseline) for the 200 ms preceding the 150 ms gap in 
the trial. During the artifact rejection procedure, we  excluded 
3.98% of the data in the entire dataset in several steps. First, 
we removed trials that missed >25% of the data. Then, following 
recommendations by Mathôt et  al. (2018), we  rejected unlikely 
pupil values by visually inspecting a histogram of pupil values 
per participant. Any value that was clearly much higher or 
lower than the majority of the data was deleted. Lastly, 
we  estimated the mean absolute deviation and removed 
observations for which the pupil size changed quicker than 
physiologically probable. As a next step, we  aligned the event 
start time to the presentation of the cue. Finally, we downsampled 
the data to 50 Hz (i.e., time bins of 20 ms). For a complete 
discussion and accompanying code of the preprocessing 
procedure, we  refer to our preprocessing script in the OSF 
repository and Geller et  al. (2020).

TABLE 2 | Mean language entropy scores for reading, speaking, home, 
university, and social contexts.

Language 
entropy

Participants (n = 44)

M SD min max

Reading 0.79 0.38 0 1.57
Speaking 0.74 0.47 0 1.58
Home 0.73 0.47 0 1.58
University 0.43 0.49 0 1.49
Social 0.95 0.37 0 1.58
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Reaction Times
The RT data were analyzed using a trial-by-trial approach with 
generalized linear mixed-effects models using the glmer function 
from the lme4 package (version 1.1-27.1; Bates et  al., 2015). 
p-Values of the estimates were obtained via t-tests using the 
Satterthwaite approximations to degrees of freedom, using version 
3.1-3 of the lmerTest package (Kuznetsova et al., 2017). Following 
recommendations for RT analysis (Lo and Andrews, 2015), 
instead of using linear mixed-effects models and log-transforming 
the RTs, we  fitted generalized linear mixed-effects models with 
an Inverse Gaussian distribution paired with an “identity” link 
to approximate the distribution of our RT data. We  added 
sum-to-zero orthogonal contrasts to the trial type variable to 
improve interpretation of the results (Baguley, 2012; Schad et al., 
2020). For mixing cost, we  coded single trials as −0.5 and 
non-switch trials as +0.5 (−SI + NS). For switching cost, we coded 
non-switch trials as −0.5 and switch trials as +0.5 (−NS + SW). 
As such, the effect of trial type is to be  interpreted as the 
change in effect when moving from one trial type to the other.

To investigate the effect of the diversity of language use at 
university and in non-university contexts on global RT and 
switching and mixing costs, we  fitted two hypothesis models 
(RTs for switch and non-switch trials and RTs for non-switch 
and single trials). RT was entered as the dependent variable, 
followed by an interaction between trial type (switch and 
non-switch, or non-switch and single) and university and 
non-university entropy, a fixed effect of trial number to account 
for autocorrelation in the data, and a random intercept for each 
participant. This resulted in the following basic model specification:

 

RT Trial Type University Entropy

Trial Type Non universi

~ ×( )
+ × − tty Entropy

Trial Number |Subject

( )
+ + ( )1

Trial number was scaled and centered around the mean in 
each model. Model comparisons using the anova function and 
the Akaike’s Information Criterion (AIC) assessed whether the 
addition of random slopes of trial type or trial number per 
subject improved the fit of each hypothesis model. These random 
slopes were included in the model to account for the possibility 
that participants may show individual fatigue effect patterns 
(i.e., in some participants, RTs may increase as the number 
of completed trials increases).

Considering that more traditional bilingual language variables 
may explain variance in the data in addition to language use 
patterns (Gullifer and Titone, 2020), additional fixed effect 
predictors of L2 age of acquisition, L2 proficiency, and L2 
exposure were added one-by-one to our hypothesis model. 
These predictors did not significantly contribute to the model 
fit for switching cost [L2 AoA: (χ2(1) = 0.2302, p = 0.63); L2 
proficiency: (χ2(1) = 0.6773, p = 0.41); L2 exposure: (χ2(1) = 0.1484, 
p = 0.70)] or mixing cost [L2 AoA: (χ2(1) = 0.8309, p = 0.36); L2 
proficiency: (χ2(1) = 0.946, p = 0.33)], or inclusion led to 
unresolvable model convergence issues (in the case of L2 exposure 
in the mixing cost analysis). Therefore, these predictors were 
not included in the final models. Model assumptions were 

checked with version 0.8.0 of the performance package (Lüdecke 
et  al., 2021). We  applied model criticism on the best fitting 
models by excluding all observations with absolute residuals 
larger than 2.5 SDs above the mean (1.99% of the observations 
for switching cost and 2.14% of the observations for mixing 
cost). No undue influence from outliers on the model estimates 
was identified. The final models (see Table 3) reflect the results 
on the basis of the trimmed datasets. The results were visualized 
using version 2.8.9 of the sjPlot package (Lüdecke, 2021).

Pupil Size Over Time
Pupil size over time was analyzed using Generalized Additive 
Mixed Models (GAMMs).4 GAMMs are an extension of mixed-
effects regression models (Sóskuthy, 2017). However, they differ 
in that they are able to model non-linear data using so-called 
“smooths” (Baayen et  al., 2018; Wieling, 2018). These smooths 
are made by combining a set of basis functions in such a 
way that they fit the data (for more details, see Wieling, 2018, 
p.  91). GAMMs then apply a non-linearity penalty to prevent 
overfitting. This penalty is called wiggliness. This method is 
especially suitable for analyzing time-course data, as it can 
take into account autocorrelation and because the signal needs 
not be  averaged over a prespecified epoch. For this reason, 
GAMMs have become quite popular in recent years for studying 
event-related potentials (Meulman et al., 2015), dynamic phonetic 
data (Wieling, 2018), and pupillometric data (van Rij et  al., 
2019; Boswijk et  al., 2020).

GAMMs were fitted in R version 4.1.2 (R Core Team, 
2021), using version 1.8-38 of the mgcv package (Wood, 
2011). First, a base model was built to verify that our version 
of the CSST captured the additional attentional resources 
needed to respond to the more difficult switch trials. That 
is, to see whether switch trials resulted in larger pupil size 
over time than non-switch trials.5 This model included a 
factor smooth modeling the pupil size over time per 
participant. Another factor smooth modeled the individual 
variation over time by trial type. We  then investigated if 
gaze position (i.e., the x and y-coordinates on the screen), 
distance to the eye-tracker, and the effect of distance to 
the eye-tracker per participant needed to be  added to the 
model by comparing AIC scores per model using the 
CompareML function in mgcv.

To test our hypotheses, two models were built that included 
an interaction between trial type with university entropy or 
non-university entropy. These models were based on the best 
models resulting from the analysis investigating the main trial 
type effect. The best fitting models resulting from these comparisons 
are presented in the Results section. Since the models’ residuals 
were not normally distributed, all final models were refitted 
with a scaled-t distribution used for heavy-tailed data. The results 
were visualized using version 2.4 of the itsadug package  

4 For introductions and tutorials for GAMMs, please refer to Sóskuthy (2017), 
Wood (2017), and Wieling (2018).
5 The current design of the CSST did not permit appropriate comparison of 
pupil size during single and non-switch trials. As such, we  only target the 
difference in pupil size for switch- and non-switch trials.
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(van Rij et  al., 2020). For a complete overview of our model-
building procedure, see our entry in the OSF repository.

RESULTS

The Effect of Language Entropy on RTs
Mean RTs and accuracy rates per condition, followed by mean 
global RT, switching costs, and mixing costs in the CSST, are 
displayed in Table  4. The effects of university entropy and 
non-university entropy on global RT and switching costs, and 
on mixing costs are visualized in Figures  2, 3, respectively. 
Summaries of the final models, including random effects, are 
available in Table  3.

The model summary for switching cost showed a main effect 
of trial type (est = 129.358, p < 0.001), such that, overall, participants 
were slower to respond to switch trials in comparison to non-switch 
trials (i.e., showed a switching cost, as expected). In addition, 
university entropy modulated global RT (est = 127.393, p < 0.001), 
suggesting that those individuals with higher diversity of language 
use at university were generally slower in performing the mixed 
blocks. No main effect of non-university entropy was found, 
indicating that non-university entropy did not modulate global 
RT. Likewise, the interactions between trial type and neither 
entropy measure were not significant.

Similarly, for mixing cost, a main effect of trial type was found 
(est = 163.158, p < 0.001): participants responded significantly slower 
to non-switch trials in the mixed block in comparison with single 
trials (i.e., showed a mixing cost). The results also revealed a 
main effect of university entropy on RTs (est = 115.336, p < 0.001), 
such that participants who used their languages in a more integrated 
manner at university were slower in responding overall. The reverse 

was found for non-university entropy (est = −37.972, p < 0.01), 
indicating that those bilinguals with higher diversity of language 
use in contexts outside university were faster at responding overall. 
Finally, non-university entropy interacted with trial type 
(est = −41.526, p < 0.01), such that higher diversity of language 
use in contexts outside the university setting was related to a 
smaller mixing cost. No interaction effect was found between 
university entropy and trial type.

Pupil Dilation Results
The Main Effect of Switching on Pupil Size
The first GAMM modeled the main effect of trial type (switch 
trials versus non-switch trials) on pupil size over time. The 
results of this model, as well as the interaction models, can 
be  found in Table  5. The average pupil size for switch trials 
was significantly larger than for non-switch trials (est = 19.591, 
p < 0.001). The model estimates do not tell us how pupil dilation 
developed over time. In order to evaluate the actual pattern 

TABLE 3 | Summary of the glmer models of the effect of language entropy on global RT and switching costs (RT) as well as the effect of language entropy on mixing 
costs (RT) reporting the explained variance and standard deviation (SD) for the random effects, and the model estimates, standard errors (SE), t-values, and p-values for 
the fixed effects.

Global RT and Switching cost Mixing cost

Random effects

Grouping Effect Variance SD Correlation Effect Variance SD Correlation

Participant (Intercept) 9,793 98.960 – (Intercept) 4,415 66.444 –
Trial Type 

(-NS + SW)
2,413 49.126 0.41 Trial Type 

(-SI + NS)
4,888 69.912 0.60

Trial Number 7,623 87.311 – Trial Number 348.5 18.668 0.28 0.04
Residual 0.0002903 0.017 – – 0.0002089 0.0145 –

Fixed effects

Effect Estimate SE t-value p-value Estimate SE t-value p-value

(Intercept) 851.515 19.937 42.710 <0.001*** 709.160 12.478 56.834 <0.001***
Trial Type (−NS + SW) 129.358 12.323 10.497 <0.001*** – – – –
Trial Type (−SI + NS) – – – – 163.158 12.068 13.520 <0.001***
Trial Number 41.743 17.452 2.392 0.017* 29.046 5.169 5.619 <0.001***
University Entropy 127.393 27.433 4.644 <0.001*** 115.336 11.837 9.744 <0.001***
Non-university Entropy −38.015 27.184 −1.398 0.162 −37.972 11.570 −3.282 0.001**
Trial Type * University Entropy 19.874 19.607 1.014 0.311 23.557 14.206 1.658 0.097
Trial Type * Non-university Entropy 4.933 19.520 0.253 0.801 −41.526 14.454 −2.873 0.004**

*p < 0.05; **p < 0.01; ***p < 0.001. The values in bold reflect significance at at least the p < 0.05 level.

TABLE 4 | Mean RTs (ms) and accuracy, and EF measures derived from the 
CSST.

Reaction time (ms)

M (SD)

Accuracy

M (SD)

Single-task trials 525.74 (225.23) 0.99 (0.11)
Non-switch trials (mixed block) 624.18 (366.88) 0.97 (0.17)
Switch trials (mixed block) 710.79 (409.77) 0.96 (0.20)

EF measures

Global RT (mixed block) 667.24 (391.17)
Switching cost 82.92 (505.65)
Mixing cost 95.57 (426.66)
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FIGURE 3 | Regression model plot of the interaction between non-university entropy (left panel) and university entropy (right panel) and trial type (blue striped: 
single; red solid: non-switch) on RTs (ms). Shading represents the size of the confidence bands.

of this non-linear effect during the trial, we plotted the change 
in pupil size over time for switch trials and non-switch trials 
in Figure  4. As can be  seen in the plots, a pupil switching 
cost emerged immediately after the cue was shown. The difference 
between switch and non-switch trials became significant at 
609 ms after the cue was shown; it peaked around 2,200 ms, 
and it remained significant for the remainder of the trial.

University Entropy and Pupil Switching Cost
The second model supplemented the original model by including 
a non-linear interaction with university entropy. The model 
summary can be  found in Table  5. The main effect of trial 

type remained significant (est = 12.481, p < 0.001), meaning that 
the average pupil dilation for switch trials (the reference level) 
remained larger than for non-switch trials. Figure 5 is a contour 
plot that models the difference in pupil size between the switch 
and non-switch trials over time, while taking into account an 
interaction with university entropy. Contour plots are useful 
in visualizing three-dimensional interactions, but it is difficult 
to quantify the size of the difference between switch and 
non-switch trials based on color alone. The solid lines in the 
contour plot, therefore, show us how big the difference in 
pupil size is between switch and non-switch trials. The dotted 
green and red lines represent the confidence intervals for each 
line. The pupil switching cost became significant slightly earlier 

FIGURE 2 | Regression model plot of the interaction between non-university entropy (left panel) and university entropy (right panel) and trial type (blue striped: 
switch; red solid: non-switch) on RTs (ms). Shading represents the size of the confidence bands.
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for participants with higher university entropy scores. However, 
apart from this, there did not appear to be  a clear interaction 
between pupil switching cost and university entropy.

Non-university Entropy and Pupil Switching Cost
The last model supplemented the base model by including a 
non-linear interaction with non-university entropy. The summary 
for this model is available in Table  5. The main effect of trial 
type (est = 12.941, p < 0.001) remained, meaning that the average 
pupil dilation for switch trials continued to be  larger than for 
non-switch trials. To understand the model output, a contour 
plot was made showing the interaction between non-university 
entropy and pupil switching cost over time (Figure 6). Participants 
with lower non-university entropy scores (i.e., more 
compartmentalized language use) showed a larger pupil switching 
cost, whereas the difference in pupil size between switch and 
non-switch trials for participants with higher non-university 
entropy scores (i.e., more integrated language use) was much 
smaller. When looking at Supplementary Figure  1, we  can 
deduce that there was no significant difference in pupil size 
between switch and non-switch trials for participants with the 
highest non-university entropy scores.

DISCUSSION

The primary goal of the present study was to examine the 
effect of the social diversity of language use, as measured by 
language entropy, on executive control in young adults with 
diverse bilingual experiences. This was done by administering 
a CSST, tapping conflict monitoring (global RT), mental set 
shifting (switching cost), and goal maintenance (mixing cost). 
We  also recorded pupil size over time during the task and 
compared pupil size during switch and non-switch trials as an 
additional, and potentially more sensitive measure of set shifting. 
The social diversity of language use was calculated by looking 
at self-reported language use in several contexts (at home, 
speaking, reading, in social settings, and at university). These 
five contexts were reduced to two components using a PCA, 
namely, a university entropy component (language use at 
university) and a non-university entropy component (language 
use in all other contexts). Based on previous studies, we predicted 
that language entropy scores would modulate the performance 
on the CSST, such that individuals who engaged in more 
integrated language contexts (i.e., had higher entropy scores) 
would perform the task more efficiently. For RTs, higher university 
entropy scores were related to slower global RT. In addition, 
we  found reduced mixing costs for individuals with higher 
non-university entropy scores but not reduced switching costs. 
However, in the pupillometric data, we found a smaller difference 
in pupil size between switch trials in comparison with non-switch 
trials (i.e., a smaller pupil switching cost) for participants with 
more integrated bilingual language use in non-university contexts. 
This study is, to the best of our knowledge, the first to provide 
evidence for the beneficial effects of the diversity of bilingual 
language use on executive control using pupillometry.TA
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FIGURE 4 | Pupil dilation per trial type over time. Left panel: Pupil dilation (in arbitrary units) for switch trials (blue) and non-switch trials (red). Time (x-axis) starts at 
cue onset. The black dotted line at 1,000 ms represents the stimulus onset. Right panel: Pupil switching cost. The red dotted line represents the moment the 
difference in pupil size between switch and non-switch trials became significant.

FIGURE 5 | Contour plot showing the interaction between university entropy, time, and the pupil switching cost (i.e., the difference in pupil size between switch and 
non-switch trials). Time is plotted on the x-axis, university entropy is plotted on the y-axis, and the pupil switching cost is indicated by color: darker green indicates a 
small or even reversed effect (where non-switch trials elicit a larger pupil dilation). The more red or even white the plot becomes, the larger the pupil switching cost. 
The white bars indicate missing data (i.e., non-existing entropy values in our dataset).

Language Entropy and Executive Control
Before discussing our primary outcomes, it is important to 
consider the suitability of the employed method to answer 

our main research question. In other words, we  needed to 
establish whether the CSST captured robust switching and 
mixing costs. The pace of the CSST version used in the present 
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study was slower than in previous studies, which was required 
in order to let the task-induced pupil size return to baseline 
levels. We  therefore took the main effects of trial type on RTs 
as a starting point for our analysis. The size of the switching 
and mixing costs was generally smaller than in previous studies 
using faster paced versions of the task (Prior and MacWhinney, 
2010; Hartanto and Yang, 2016; Li et  al., 2021). Despite the 
slower pacing, however, significant switching and mixing costs 
emerged in our behavioral data. Hence, we  assumed that our 
version of the CSST was able to tap into behavioral indices 
of conflict monitoring, set shifting, and goal maintenance abilities.

Regarding effects of language entropy on the behavioral measure 
(RT) of the CSST, our results showed that higher university 
entropy was associated with slower overall RTs in the mixed 
blocks (i.e., global RT), contrary to our expectations. These results 
suggest that those bilinguals with more integrated language use 
at university showed poorer conflict monitoring skills. Surprisingly, 
we  observed an opposite pattern for the non-university entropy 
scores, such that bilinguals with higher entropy outside of university 
were faster at responding in the mixed blocks, albeit not significantly 
so. These results suggest that the diversity of language use in 
separate communicative contexts (in our case, university and 
non-university contexts) may differentially affect executive control. 
However, we  believe there are several potential alternative 
explanations for these findings. First, our data were collected 
during the COVID-19 pandemic, when most teaching had been 
online for several months. Paired with the observation that a 
number of participants had moved to the Netherlands during 
the pandemic, it is fair to conclude that these participants only 
had minimal exposure to university as a social context. Even 
participants who had been studying at the University of Groningen 

for more than a year had not taken in-person classes in the 
9  months preceding their participation in the current study. 
Additionally, the quality and quantity of participation in online 
classes are generally not found to be as high as in-person education 
(e.g., Meeter et  al., 2020). While it is possible that language 
entropy is not as reliable in assessing bilingual language use in 
all social contexts, we  deem it unlikely that these unexpected 
results can be  attributed to the language entropy measure itself, 
considering the circumstances. As with any tool, the quality of 
the measure depends on the quality of the data it is fed. Comparing 
the university entropy scores to the other examined contexts, 
we  observed a considerable disparity between university and 
non-university contexts. This was further supported by our PCA 
that resulted in two clear components with only minimal cross-
loading from the other contexts to university entropy. Altogether, 
this raises the question if the university context was accurately 
represented as an interactional setting in our study, and 
consequently, if our outcomes are reliable in this respect.

Regarding the relationship between language entropy and set 
shifting (as measured by switching cost), there were no significant 
interactions between either entropy component (university and 
non-university) and switching cost in the behavioral data. The 
results are therefore not in line with our prediction that people 
with higher entropy scores would show a reduced switching cost. 
These results are not consistent with previous work by Hartanto 
and Yang (2016) either, who found that DLC bilinguals (i.e., 
bilinguals with more diverse language use) had significantly lower 
switching costs than SLC bilinguals. Moreover, our behavioral 
results do not align with those presented by Li et  al. (2021), who 
found a reduced switching cost for individuals with higher entropy 
scores. We speculate that the absence of this interaction for switching 

FIGURE 6 | Contour plot showing the interaction between non-university entropy, time, and the pupil switching cost. Time is plotted on the x-axis, non-university 
entropy is plotted on the y-axis, and the pupil switching cost is indicated by color: darker green indicates a smaller difference. The more red or even white the plot 
becomes, the larger the pupil switching cost. The white bars indicate missing data (i.e., non-existing entropy values in our dataset).
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cost in our study could be  caused by the timing of our adapted 
CSST, as it included a lag of 1,000 ms between the cue onset and 
stimulus onset to accommodate for the relatively slow pupillary 
trajectories. Even though our paradigm captured a significant main 
switching effect, the effect was relatively small (82.9 ms), as compared 
to 144 ms for bilinguals in Prior and MacWhinney (2010), 199 ms 
for DLC bilinguals in Hartanto and Yang (2016), and 185 ms in 
Li et  al. (2021). This may be  indicative of lower task difficulty, 
corroborated by the near-ceiling accuracy scores in our task. As 
such, it could be  the case that the relatively small switching effect 
was not substantial enough to also capture intricate interaction 
effects, especially if one keeps in mind that there is less individual 
variation in the RTs of young adults (Hultsch et  al., 2002).

Turning to the effects of language entropy on goal maintenance 
(as measured by mixing cost), no significant interaction was 
found between university entropy and trial type. Again, we attribute 
this finding to the possibility that university was not a representative 
social context during the COVID-19 pandemic. However, we did 
find a significant interaction between non-university entropy and 
trial type, such that higher entropy scores were associated with 
a smaller mixing cost, reflecting enhanced goal maintenance. 
Interpreted within the Adaptive Control Hypothesis framework 
(Green and Abutalebi, 2013), our results show that individuals 
who use their languages in a more integrated manner, and thus 
encounter situations in which it is less predictable which language 
will be  used, are more efficient in dealing with such ambiguity. 
These results are in line with our predictions and earlier work 
demonstrating a relationship between enhanced goal maintenance 
and more balanced language use (Yow and Li, 2015).

Language Entropy and Pupil Switching 
Cost
Our secondary objective was to verify if our version of the CSST, 
which was adapted for recording pupil size over time, captured 
the expected additional effort of completing switch trials over 
non-switch trials, and whether a smaller pupil switching cost 
was related to higher language entropy. As the CSST had not 
previously been conducted with pupillometry, the focus of our 
initial analysis was on the main effect of trial type (switch vs. 
non-switch trials). As expected, we  observed that switch trials 
induced significantly larger pupillary responses than non-switch 
trials, thus corroborating the main effect of trial type found in 
the behavioral data. This suggests that our version of the CSST 
was able to capture the increased attention that was required for 
completing the switch trials, and as such, we  treated the pupil 
switching cost as an additional measure of set shifting in our study.

As a next step, we  related the language entropy measures 
to the difference in pupil size for switch and non-switch trials 
(i.e., pupil switching cost). No interaction effect was found 
for university entropy and trial type in the pupil data. Several 
potential reasons for this have been described above. However, 
the analysis did reveal an interaction effect between 
non-university entropy and trial type: while a significant pupil 
switching cost emerged in participants with lower entropy 
scores, higher entropy scores were associated with smaller, 
non-significant, and pupil switching costs. This suggests that 

bilinguals with a higher diversity of language use in non-university 
contexts showed increased set shifting efficiency. Importantly, 
this effect was not captured in the RT data. This showcases 
the benefit of supplementing behavioral data with more sensitive 
indices, such as pupillometric data, when assessing the cognitive 
effects of individual bilingual experiences.

The fact that we  found a bilingual experience effect that 
was absent in more traditional behavioral measures is not 
uncommon in the bilingualism literature (e.g., Bialystok, 2017; 
Lehtonen et  al., 2018; DeLuca et  al., 2020). However, it has 
to be noted that Li et al. (2021) did find a relationship between 
higher language entropy and a smaller switching cost (but not 
global RT and mixing cost) in RTs and functional brain patterns 
relating to executive control. To reiterate, we  attribute this 
discrepancy between earlier work and our study to the faster 
pacing of the CSST in their study, making it more sensitive 
in detecting small individual differences in behavioral set shifting 
than our adapted CSST. Our result also highlights that differences 
with respect to methodological choices in task design can 
partly explain mixed results in the bilingualism literature (see 
Yang et  al., 2016, for cued-switching paradigms, specifically).

Limitations and Future Directions
While the present study presented novel results as to the effects 
of language entropy on executive control, it was subject to several 
limitations. First, our study set out to investigate one index of 
bilingual language use, namely, language entropy. For the current 
calculation of language entropy, we  did not take into account 
individual differences in the amount of time spent in the 
communicative contexts. A more accurate picture of the diversity 
of bilingual language use could be  obtained if entropy scores 
were weighted with the amount of time spent in each social 
context, as was first done in Kałamała et  al. (2020, 2021) and 
subsequently in Li et  al. (2021). This way, one can control for 
the disparity in engagement in the various contexts. This could 
be  a more appropriate approach, as the diversity of language 
use in contexts in which an individual spends more time likely 
has a larger effect on domain-general executive control (Abutalebi 
and Green, 2016). Moreover, to obtain a more complete image 
of bilingual language use patterns and their effects on executive 
control, variables quantifying language switching and mixing 
behaviors should be  considered in conjunction with language 
entropy (e.g., Kałamała et  al., 2021). This would simultaneously 
enable future research to test the full set of predictions made 
by the ACH. The second limitation relates to our adapted CSST 
task. Despite its ability to capture behavioral switching and 
mixing costs, we propose it can be  improved in two ways. First, 
in its current form, it does not allow for a direct comparison 
of pupil size during trials in the single blocks and non-switch 
trials in the mixed blocks to obtain pupil indices of goal 
maintenance. One way this can be  approached in the future is 
to alter the trial procedure, such that the cue (i.e., “COLOR” 
or “SHAPE”) is presented in mixed blocks as well as in single 
blocks. This way, trials are comparable in nature and length 
across single and mixed blocks, which would enable the 
investigation of a “pupil mixing cost.” Second, the relatively long 
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lag between cue onset and stimulus onset may explain the lack 
of an interaction effect between entropy and switching cost in 
the RT data in our study. This lag was initially introduced to 
accommodate for expected slow changes in pupil size. However, 
in the pupillometry analyses, we  found that larger pupil dilation 
for switch trials occurred almost immediately after cue onset, 
and even that this difference became significant before the 
stimulus onset. This result strongly suggests that pupillometry 
is an appropriate way to measure an increase in effort exerted 
during switch trials. However, it is also likely that the slower 
pace of our CSST made the task easier to complete, which 
would explain the generally smaller switching and mixing costs 
in the RT data, as compared to other studies (Prior and 
MacWhinney, 2010; Hartanto and Yang, 2016; Li et  al., 2021). 
To capture the behavioral effects better while still measuring 
pupil dilation patterns over time, we  recommend a faster paced 
design in future studies. Such a design will shorten the task 
and also increase task demands, possibly leading to an optimal 
sensitivity in capturing behavioral and pupil size effects.

A final and obvious limitation to discuss is the fact that 
this study was conducted during the COVID-19 pandemic. 
Our results currently point toward the possibility that the 
diversity of language use in separate social contexts (university 
and non-university contexts) is differentially associated with 
executive control. This suggests that language use varying per 
social context may be a key variable in neurocognitive adaptations 
resulting from bilingual experiences. It could be  argued that 
there is a difference between the two components in terms of 
voluntarity of language use. While language use in non-university 
contexts may be  more of a choice, students at the University 
of Groningen are often required to speak English during class, 
and so it is more predictable when which language to use at 
university than in other contexts. However, as discussed above, 
we  question the validity of the university entropy component 
in our study due to the circumstances imposed on the university 
system during the pandemic. It is therefore difficult to speculate 
if the contradictory results can indeed be  explained as such. 
Hence, we  recommend that future work replicates this study 
when restrictions regarding in-person teaching have been lifted.

CONCLUSION

In conclusion, our study’s findings provide further evidence 
for the relationship between the social diversity of bilingual 
language use, as measured by language entropy, and executive 
control. We demonstrated reduced switching and mixing costs, 
reflecting enhanced set shifting and goal maintenance abilities, 
for bilinguals with a higher diversity of language use relative 
to lower diversity in non-university contexts. No such relationship 
was found for university contexts, but higher university entropy 
was associated with weaker conflict monitoring. This potentially 
illustrates that the effect of the diversity of language use differs 
per social context. Alternatively, it is possible that university 
simply was not a valid social context during the COVID-19 
pandemic. As such, replication of this study is warranted. 
We  also showed that our adapted CSST effectively captured 

switching and mixing cost in the RTs. The pupillometry data 
were able to capture effects that were not visible in the behavioral 
data. These findings additionally highlight the utility of 
pupillometry as a sufficiently sensitive tool to assess the effects 
of individual bilingual experiences on executive control.
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