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Neurons in the primate dorsal striatum signal
the uncertainty of object–reward associations
J. Kael White1 & Ilya E. Monosov1

To learn, obtain reward and survive, humans and other animals must monitor, approach and

act on objects that are associated with variable or unknown rewards. However, the neuronal

mechanisms that mediate behaviours aimed at uncertain objects are poorly understood. Here

we demonstrate that a set of neurons in an internal-capsule bordering regions of the primate

dorsal striatum, within the putamen and caudate nucleus, signal the uncertainty of object–

reward associations. Their uncertainty responses depend on the presence of objects asso-

ciated with reward uncertainty and evolve rapidly as monkeys learn novel object–reward

associations. Therefore, beyond its established role in mediating actions aimed at known or

certain rewards, the dorsal striatum also participates in behaviours aimed at reward-uncertain

objects.
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T
o survive, humans and other animals must act on objects
that have been previously associated with certain or reliable
rewards1–3. However, learning, foraging and decision-

making also require animals to monitor, approach and act on
objects associated with variable or unknown rewards4–7, even
when the mean reward value of such uncertain objects is lower
than that of other objects8–10. To date, the mechanisms that
direct behaviour towards uncertain objects are not well
understood.

Expected (or certain) reward-driven behaviours are in part
dependent on the caudate–putamen complex11–13, also called the
dorsal striatum (DS). In primates, the caudate nucleus in
particular has recently been shown to contain multiple
mechanisms for directing gaze at objects associated with high
reward values14–17. Here we asked if the primate DS also contains
a mechanism to support behaviour aimed at objects associated
with outcome uncertainty.

Our experiments showed that a subset of neurons, mostly in
the internal-capsule bordering regions of the DS (icbDS), was
preferentially activated by visual objects associated with reward-
uncertain outcomes. Furthermore the icbDS reward-uncertainty
responses depended on the presence of visual objects associated
with reward uncertainty because they were mostly ablated
when the object was removed before the uncertain outcome
was delivered. Finally, during object–reward associative
learning, icbDS neurons’ uncertainty responses evolved rapidly
as monkeys learned novel object–reward associations. These
uncertainty responses identified object associations that were
uncertain either due to the subjects’ lack of knowledge or due to
known uncertainty (also called risk18,19).

Our experiments suggest that uncertainty-sensitive neurons in
the primate DS may play important roles in object-based
behaviours under uncertainty.

Results
DS neurons selectively signal reward uncertainty. To test if the
primate DS contains neurons that are preferentially activated by
visual objects associated with reward-uncertain outcomes,
we recorded 141 single neurons from DS while two monkeys
(B, n¼ 103 neurons; W, n¼ 38 neurons) participated in a
behavioural procedure that was composed of two distinct blocks:
a reward-probability block, in which three visual conditioned
stimuli (CSs) predicted a 0.25 ml juice reward with 100, 50 and
0% chance; and a reward-amount block, in which three CSs
predicted 0.25, 0.125 and 0 ml of juice (experiment 1). For each
block, we used two fractal sets that could appear in one of three
spatial locations. Monkeys’ knowledge of the task was tested with
interleaved choice trials (Methods), and neuronal recordings did
not begin until the monkeys chose the CSs associated with higher
expected value over CSs associated with lower expected value
490% of the time (Supplementary Fig. 1).

Uncertainty-sensitive neurons were defined as those that varied
their responses across the task CSs (Kruskal–Wallis test; Po0.01)
and displayed significantly stronger responses to the 50% CS than
to both 100 and 0% reward CSs or weaker responses to 50% CS
than to both 100 and 0% reward CSs (two-tailed rank-sum tests;
Po0.01). We found that 45/141 neurons, mostly in the internal-
capsule bordering regions of the striatum, were selectively
activated by reward uncertainty (n¼ 19 in monkey W; n¼ 26
in monkey B). 0/141 neurons was selectively suppressed by
uncertainty.

An example uncertainty-sensitive (Uþ ) neuron’s CS responses
are shown in Fig. 1a. Its activity increased following the
presentation of the CS that predicted 0.25 ml of juice reward
with 50% chance until the uncertain outcome was delivered and

the uncertainty was resolved. This example neuron did not
strongly respond to other CS objects or task events.

The location of all recorded Uþ neurons is shown in Fig. 1b.
Uþ neurons were most often found within the anterior–dorsal
putamen and caudate nucleus regions that bordered the internal
capsule (Supplementary Figs 2–4), prominently in the anterior
putamen. We refer to this brain area as the icbDS. The low
baseline discharge rate of Uþ neurons (mostly o1 spikes per s;
Fig. 1c) suggests that they are medium spiny neurons12,15,20–22—
the chief output neurons of the striatum.

All Uþ neurons exhibited roughly similar responses
(Fig. 2a,b). On average, they were strongly activated by the
presentation of the CS that predicted 0.25 ml of juice reward with
50% chance. This activation was most often a ramp-like increase
in activity, which continued until the uncertain outcome was
delivered and the uncertainty was resolved (Fig. 2a). Amongst
single neurons, 44/45 Uþ neurons’ responded more strongly to
the CS object associated with 50% 025 ml of juice than to the CS
object associated with 0.125 ml of juice (Fig. 2b) even though
these CSs were associated with the same expected reward value.

Further neuron-by-neuron analyses revealed that amongst the
task features of experiment 1, Uþ neurons were consistently
sensitive to reward uncertainty and to reward context (that is,
difference between trials in which reward was possible versus
trials in which rewards would not be delivered). This is shown in
Fig. 2c and in Supplementary Fig. 5 for icbDS Uþ neurons in
caudate and putamen, separately. Most single Uþ neurons did
not encode information about expected values (defined as the
difference between responses to objects associated with 0.25 and
0.125 ml of juice), spatial- and object-feature parameters (Fig. 2c),
or aversive outcomes (Supplementary Fig. 6). However, 24/45
Uþ neurons discriminated reward-associated CSs from CSs
associated with no outcome delivery (Fig. 2c, this reward-related
enhancement can also be observed in the average activity in
Fig. 2a). Also, on average, Uþ neurons responded to the delivery
of expected/certain rewards with a weak but consistent phasic
excitation (Fig. 2a; Po0.05; sign-rank test). The observations in
Fig. 2 indicate that while Uþ were preferentially dedicated to
signalling reward uncertainty, they were also sensitive to reward
context (or expectation) and reward delivery.

While Uþ neurons did not encode the locations of CS objects,
thus far, it was unknown if they respond before or during
saccades aimed at reward uncertain objects. To assess this further,
we studied the dynamics of Uþ uncertainty selectivity during
choice trials. We found that, on average, Uþ uncertainty
selectivity emerged after the monkeys fixated the object associated
with reward uncertainty (Supplementary Fig. 7). Therefore, Uþ
neurons did not trigger saccades aimed at reward-uncertain
objects.

Overall, the results of experiment 1 showed that the icbDS
contains a subpopulation of neurons with striking sensitivity to
objects associated with reward uncertainty. However, several
important questions about these neurons remained unclear. First,
are they sensitive to the level of uncertainty in a graded
manner7,23? Second, do Uþ neurons signal internal states
related to the expectation of reward or are their uncertainty
responses dependent on external cues or objects? Third, can Uþ
neurons support object learning under uncertainty? To answer
these important questions, we selectively recorded from Uþ
neurons in the icbDS in experiments 2–4.

icbDS neurons are sensitive to the level of reward uncertainty.
To test if Uþ neurons were sensitive to the level of reward
uncertainty, in experiment 2, we recorded 20 Uþ neurons (14 in
monkey B and 6 in monkey W) in a behavioural procedure in
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which monkeys experienced a reward-probability block that
contained five objects associated with five probabilistic reward
predictions (0, 25, 50, 75 and 100% of 0.25 ml of juice), and a
reward-amount block that contained five objects associated
with 100% reward predictions of varying reward amounts
(0.25, 0.1875, 0.125, 0.065 and 0 ml)7,23. The expected values of
the five CSs in the probability block matched the expected value
of the five CSs in the amount block.

Reward-uncertainty neurons in icbDS were identified during
online screening as neurons that responded to any of the
uncertain conditioned stimuli (25, 50 or 75% reward). The same
preselection criteria were used in subsequent experiments in this
study and in our previous reports7,23.

An example Uþ neuron’s responses to the 10 CS objects are
shown in Fig. 3a. It responded most strongly to the presentation
of the 50% CS object, and less strongly to the presentation of the
25 and 75% CS objects. Moreover, it did no respond to the
presentation of objects associated with certain reward predictions
(0 and 100% reward CS objects and CS objects in the reward-
amount block). A similar result can be observed across the
population of Uþ neurons (Fig. 3b,c). Uþ neurons’ average

response was strongest for the presentation of the 50% CS object.
Their responses were weaker for 25 and 75% reward-associated
CS objects. On average, there was no significant difference
between their responses to the 25% versus 75% CS objects, which
have the same level of uncertainty but different expected values.
Furthermore, as in experiment 1, during the reward-amount
block, the neurons discriminated objects associated with rewards
from objects associated with no reward (Fig. 3c, black trace). In
sum, experiment 2 showed that Uþ neurons were sensitive to
the levels of reward uncertainty.

icbDS uncertainty responses are object-dependent. The results
of experiments 1 and 2 are consistent with two scenarios. First,
Uþ responses may signal internal states related to reward
expectation, particularly with the expectation of uncertain
rewards. A second scenario is that Uþ responses may signal the
uncertainty of the object–reward associations, rather than the
internal state associated with reward uncertainty. To distinguish
between these alternatives, monkeys were presented with four CSs
(experiment 3). Two distinct CSs were associated with 100 and
50% chances of reward and were kept on the experimental
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Figure 1 | Selective reward-uncertainty responses in the DS. (a) Responses of a single uncertainty selective (Uþ ) neuron in the internal-capsule

bordering region of the striatum to the presentation of six fractal objects (shown above rasters) associated with certain and uncertain predictions of juice

reward. Dark blue raster plots indicate the activity in 50% CS trials in which reward was omitted. (b) Estimated locations of 45 Uþ neurons (red dots) in

the internal-capsule bordering striatum shown on two coronal slices. Ranges of the neurons on each slice and the distance of each slice from the centre of

the anterior commissure (AC) are indicated. Black dots indicate other recorded neurons. Inset is the histogram of recording locations along the anterior–

posterior axis. Uþ neurons (red) were most often found anterior to the AC. (c) Histogram of baseline firing rates of recorded neurons. Inset shows spike

durations (trough-to-trough) for all Uþ neurons (left), non-uncertainty-selective putative medium spiny neurons (pMSN; neurons with a baseline firing

rate of o3 spikes per s), and non-uncertainty-selective putative cholinergic interneurons (pCHAT) neurons (neurons with a baseline firing rate Z3 spikes

per s). Error bars indicate standard errors. Single neuron data points are shown as scatters. Asterisks indicate significant differences (Wilcoxon rank-sum

test; Po0.05).
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presentation screen for 2.5 s, until the time of the trial outcome
(same trial structure as in Fig. 1a). Two other CSs were also
associated with 100 and 50% chances of reward and were present
on the screen for 1 s and outcomes were delivered in 1.5 s after the
removal of the CSs (the 1.5 s period during which the CS is not
present is referred to as a trace period). Therefore, for all CSs,
reward was delivered 2.5 s after CS onset. Monkey performance
indicated that they understood the procedure and were similarly
motivated by trace and no-trace 50% reward predictions
(Supplementary Fig. 8).

We identified Uþ neurons in icbDS and recorded their
activity in this paradigm (n¼ 32 neurons; 11 in monkey W and
21 in monkey B). An example Uþ neuron is shown in Fig. 4a.
This neuron robustly discriminated 50% reward-associated CS
object (uncertain condition) from the 100% reward-associated CS
object (Po0.01; rank-sum test). But surprisingly, the removal of
the uncertain CS (trace condition) before the outcome was
delivered completely abolished its uncertainty selectivity (Fig. 4a,
green and blue traces). Similar results were found for most of the
Uþ neurons (Fig. 4b). The discriminability of striatal uncertainty
signals was greatly diminished when the uncertain object was not
present at the time of the outcome (Fig. 4c). Many Uþ neurons’
uncertainty signals were completely abolished (Fig. 4b,c). These
results indicate that Uþ neurons’ reward-uncertainty responses
are contingent on the presence of the uncertain object.

In the basal forebrain (particularly in its medial regions), some
neurons also signal reward uncertainty with ramp-like
responses23, however, additional experiments revealed that
their uncertainty-selective signals persist during the same
trace-conditioning procedure used to study Uþ neurons
(Supplementary Fig. 8). Consistent with this observation, other
reward-related signals are preserved during trace conditioning in
brain regions that are interconnected with the basal forebrain,
such as in the dorsal raphe24 and in the amygdala25. These
observations suggest that basal forebrain and related limbic
structures signal values and uncertainty of internal states (perhaps

somewhat independently of the external environment), whereas
the Uþ neurons in the basal ganglia signal reward uncertainty
associated with objects.

icbDS uncertainty responses are rapidly shaped by learning.
The data thus far prompted us to assess how Uþ neuronal
responses are shaped by the learning of novel object–reward
associations (experiment 4). Thus, far we tested the responses of
Uþ neurons to reward uncertainty arising from knowledge
about reward variability associated with 50% reward CSs
(also called known-uncertainty or risk). But, if uncertain object–
reward signals in the DS contribute to object learning, then Uþ
neurons should also signal uncertainty that is due to a lack of
previous object–outcome associations (also called ambiguity)—an
uncertainty that can be identified and resolved by learning. To
test this, we recorded the activity of identified Uþ neurons in a
Pavlovian procedure in which three novel fractals were used as
CSs associated with 100, 50 and 0% reward probabilities (n¼ 30
neurons; 11 in monkey W and 19 in monkey B). One example
Uþ neuron is shown in Fig. 5a. At the start of learning, this
neuron showed a strong increase in response to all the novel CSs.
As the CSs were repeatedly experienced, the neuronal activity
started to decrease for certain CSs (0 and 100%) and remained
roughly the same for the reward-uncertain CS (50% reward
prediction). The population of 30 Uþ neurons shows a similar
pattern (Fig. 5b and Supplementary Fig. 9). The neuronal
responses to certain object–reward associations decreased as the
monkeys learned (Fig. 5c). These results demonstrated that Uþ
neurons signal object–reward uncertainty of unknown or novel
objects and that the DS uncertainty responses can be rapidly
shaped by learning, even within a single experimental session.

Discussion
In the caudate–putamen complex we found a population of
neurons that signal uncertainty of object–reward associations.
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Figure 2 | Population activity of Uþ neurons. (a) Average responses of 45 Uþ neurons to different reward predictions in the reward-probability and

reward-amount procedure. Shaded region represents standard error. The inset shows proportion of neurons (of 45 Uþ neurons and of all 141 striatal

neurons) displaying uncertainty selectivity during the CS epoch in time. (b) CS responses of 45 Uþ neurons for different reward predictions in the reward-

probability and reward-amount procedure (normalized to the maximum CS response; from 0 to 1). In all, 44/45 neurons had the highest response for the

50% CS. (c) Sensitivity indices (Methods) for 45 striatal uncertainty-selective neurons for different behavioural/task variables. Asterisk above the

histogram indicates significant deviation from 0 (Po0.01; sign-rank test). Significant individual neuron indices (Po0.01; Wilcoxon rank-sum test) are grey.

The number of significant indices is indicated near the histogram.
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These Uþ neurons were often found in the icbDS. Their
uncertainty-selective responses depended on the presence of
objects associated with reward uncertainty and evolved rapidly as
monkeys learned novel object–reward associations.

What brain regions supply reward uncertainty signals to Uþ
neurons? Their average location in the striatum may provide a
clue. Uþ neurons were most often found within the anterior
putamen and caudate regions that bordered the internal capsule

(icbDS), prominently in the anterior putamen. icbDS receives
inhibitory inputs from the ventral pallidum26, where some
neurons are inhibited by reward uncertainty (Supplementary
Fig. 10)27. Given the uncertainty-excitatory responses of many
icbDS neurons (Fig. 2), we hypothesize that the inhibition of
pallidal neurons by uncertainty may open a gate, so that Uþ
neurons can selectively respond to cortical inputs carrying
sensory information about objects28,29 and about their reward
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value or uncertainty30. But precisely what cortical regions send
uncertainty and other signals to Uþ neurons remains to be
assessed.

The task responses of striatal Uþ neurons differentiated them
from reward uncertainty-selective neurons in the anterodorsal
septum and the medial basal forebrain. For example, during
object learning, anterodorsal septal uncertainty-selective neurons
responded preferentially to knowledge-based uncertainty (often
called risk), after monkeys learned the uncertain stimulus–
response association7. In contrast, during a similar object-
learning task, Uþ neurons responded strongly to novel stimuli,
whose conditioned stimulus–unconditioned stimulus relationship
was not yet learned (Fig. 5). Unlike Uþ neurons, medial basal
forebrain reward uncertainty-sensitive neurons slowly learned to
discriminate between certain and uncertain reward-predicting
objects23. This slow learning was not correlated with the fast time
course of the monkeys’ object–reward associative learning23.
These data are consistent with the observation that there are no
known connections from the medial basal forebrain or septum to
the striatum and suggest that Uþ neurons belong to a mostly
distinct system for signalling uncertainty of objects that may be
particularly well suited to contribute to object learning.

It is noteworthy that Uþ neurons did not encode all types of
uncertainty, or only uncertainty7,19,31. First, they did not respond
to uncertainty about punishments. Whether there are neurons
that signal uncertainty about all salient events (such as uncer-
tainty about rewards and punishments) remains a mystery.
Second, on average, they discriminated reward-associated CSs
from reward-unassociated CSs (Fig. 2a,c). In fact, similar reward-
related tonic activity shifts were observed in other neurons that

encode reward uncertainty7,23. It remains to be tested whether
they are due to context value (or relevance), or if they are due to
uncertainty that could exist even during the expectation of
‘certain’ rewards (for example, due to errors in the estimation of
reward timing). Third, Uþ neurons’ uncertainty responses were
abolished by the removal of the CS before the trial outcome
(during trace conditioning). This suggests that striatal Uþ
neurons’ responses depended on the presence of the uncertain CS
object. This finding further differentiated striatal Uþ neurons
from uncertainty-enhanced neurons in the medial basal forebrain
whose uncertainty selectivity persisted when the CS object was
removed before the trial outcome (Supplementary Fig. 8).

Our study in monkeys and a previous human brain-imaging
study32 suggest that icbDS is a prominent node for processing
information about reward uncertainty. However, it remains
possible that there are other striatal mechanisms for signalling
uncertainty, and/or for integrating uncertainty with stimulus-
feature information, movement kinematics and values33,34.
Indeed, different areas of the primate striatum learn and signal
values in distinct manners11,14,16,17,33–37 to support their
different roles in action, decision-making, and learning and
memory11,14,15,17,29,33,34,36,38–40. How uncertainty guides
computations across different striatal subregions must therefore
be an important direction of future studies.

Objects in the environment are important because they signal
rewards or dangers, or because they represent an opportunity to
learn and change one’s state. In this study, we showed that the
basal ganglia signals reward uncertainty of object–reward
associations—a critical variable for monitoring and learning from
objects. These results demonstrate a novel role for internal-
capsule bordering putamen and caudate in controlling behaviours
in uncertain contexts.

Methods
General procedures. Two adult male rhesus monkeys (Macaca mulatta) were
used for the neurophysiology experiments in the DS (Monkeys B who is 6 years
old; and Monkey W who is 5.25 years old). All procedures conformed to the Guide
for the Care and Use of Laboratory Animals and were approved by the Washington
University Institutional Animal Care and Use Committee. A plastic head holder
and plastic recording chamber were fixed to the right side of the skull under general
anaesthesia and sterile surgical conditions. The chambers were tilted laterally by
35� and aimed at the anterior portion of the striatum. After the monkeys recovered
from surgery, they participated in the behavioural and neurophysiological
experiments.

Data acquisition. While the monkeys participated in the behavioural procedures
we recorded single neurons in the right DS. The recording sites were determined
with 1 mm-spacing grid system and with the aid of magnetic resonance images
(3 T) obtained along the direction of the recording chamber. This magnetic
resonance imaging-based estimation of neuron recording locations was aided by
custom-built software (PyElectrode). Single-unit recording was performed using
glass-coated electrodes (Alpha Omega). The electrode was inserted into the brain
through a stainless-steel guide tube and advanced by an oil-driven micro-
manipulator (MO-97A, Narishige). Signal acquisition (including amplification and
filtering) was performed using Alpha Omega 44 kHz SNR system. Action potential
waveforms were identified online by multiple time-amplitude windows with an
additional template-matching algorithm (Alpha-Omega). Neuronal recording was
restricted to single neurons that were isolated online. Neuronal and behavioural
analyses were conducted offline in Matlab (Mathworks, Natick, MA).

Eye position was obtained with an infrared video camera (Eyelink, SR
Research). Behavioural events and visual stimuli were controlled by Matlab
(Mathworks, Natick, MA) with Psychophysics Toolbox extensions. Juice, used as
reward, was delivered with a solenoid delivery reward system (CRIST Instruments).
Juice-related anticipatory licking during the CS epoch was measured and quantified
using previously described methods23.

Reward-probability and reward-amount procedure (experiment 1). The
reward-probability and reward-amount behavioural procedure consisted of two
blocks, a reward-probability block and a reward-amount block (Fig. 1). In the
reward-probability block, three visual fractal CSs were followed by a liquid reward
(0.25 ml of juice) with 100, 50 and 0% chance, respectively. In the reward-amount
block, three CSs were followed by a liquid reward of 0.25, 0.125 and 0 ml,
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respectively. Thus, the expected values of the three CSs matched between the
probability and amount blocks. To control for neuronal object preference, we used
two fractal sets (that is, for every CS there were two different fractals).

Each trial started with the presentation of a green trial-start cue at the centre.
The monkeys had to maintain fixation on the trial-start cue for 1 s; then the trial-
start cue disappeared and one of the three CSs was presented pseudo randomly.
After 2.5 s, the CS disappeared, and juice (if scheduled for that trial) was delivered.
The monkeys were not required to fixate on the CSs. In each trial, the CS could
appear in three locations: 10� to the left or to the right of the trial-start cue, or in
the centre. One block consisted of 18 trials with fixed proportions of trial types
(each of the three CSs appears three times each block, 9/18 trials total).

In the remainder of the trials in each block (9/18), the monkeys chose amongst
the task CSs. Each trial started with the presentation of a purple trial-start cue at
the centre, and the monkeys had to fixate it for 0.5 s. After the monkey fixated on
the trial start cue for 0.5 s, a choice array was presented consisting of two fractals
used in the Pavlovian procedure (shown in Fig. 1a). The monkey had to continue to
fixate until the trial start cue disappeared (0.5 s). Monkeys then made saccadic eye
movements to their preferred reward-associated fractals and fixated them for 0.75 s
to indicate their choices. Then, the unchosen stimulus disappeared, and the
monkeys waited for 1 s to receive the scheduled outcome (associated with their
chosen fractal).

The inter-trial intervals ranged from 3 to 6 s. Approximately one in five inter-
trial intervals contained uncued events (chosen randomly). These could be either a
juice reward alone (0.25 ml) or an B70 dB 0.15 s auditory white noise burst paired
with a brief change in screen colour (same duration as the auditory stimulus).

Neuronal recordings did not begin until the monkeys chose the CSs associated
with higher expected value over CSs associated with lower expected value 490% of
the time. The monkeys’ knowledge of the CSs was further confirmed when we
measured the monkeys’ licking behaviour. The magnitude of licking was correlated
to the reward value of the fractals in the reward-probability block (Po0.001;
Spearman’s rank correlation) and the reward-amount blocks (Po0.001;
Spearman’s rank correlation).

Five reward-probability and reward-amount procedure (experiment 2). The
reward-probability and reward-amount behavioural procedure consisted of two
blocks, a reward-probability block and a reward-amount block. The trial structure
was the same as in experiment 1. However, here the reward-probability block
contained five objects associated with five probabilistic reward predictions (0, 25,
50, 75 and 100% of 0.25 ml of juice) and a reward-amount block that contained five
objects associated with 100% reward predictions of varying reward amounts (0.25,
0.1875, 0.125, 0.065 and 0 ml)7,23. One block consisted of 20 trials with fixed
proportions of trial types (each of the five CSs appears four times each block).

Trace reward-probability procedure (experiment 3). The temporal structure of
this procedure was the same as in probability-amount procedure (experiment 1).
The trace procedure contained four possible distinct CS fractals. The first two CSs
were associated with 100% (CS 1) and 50% (CS 2) chance of 0.25 ml of juice. These
CSs remained on the screen for 2.5 s and were followed by the scheduled reward
outcome. (same as in experiment 1). The other two CSs were also associated with
100% (CS 3) and 50% (CS 4) chance of 0.25 ml of juice but were only presented for
1 s. This was followed by a 1.5 s trace period, during which the screen did not
contain any stimulus. The trace period was followed by the scheduled reward
outcome. Therefore, in both trace and non-trace conditions, monkeys experienced
two types of reward predictions (certain and uncertain) and experienced outcome
delivery in 2.5 s after the initial CS presentation.

Object learning procedure (experiment 4). Instead of using previously condi-
tioned object fractals, monkeys were exposed to three novel CSs associated with
100, 50 and 0% chance of reward delivery. The task design and temporal structure
of the trials were the same as in probability-amount procedure (experiment 1).
However, the interleaved choice trials were choice trials amongst the three novel
fractals.

Appetitive–aversive procedure. The procedure consisted of two alternating
blocks: appetitive and aversive23. In the appetitive block, three visual fractal CSs
were followed by a liquid reward (0.4 ml of juice) with 100%, 50% and 0% chance,
respectively. In the aversive block, three visual fractal CSs were followed by an air
puff with 100%, 50% and 0% chance, respectively. Airpuff (B35 psi) was delivered
through a narrow tube placed 6–8 cm from the monkey’s face. Temporal structure
of the trials was the same as in other procedures, but here monkeys were not
required to fixate the trial start cue. Each block consisted of 12 trials with fixed
proportions of trial types (100%, four trials; 50%, four trials; 0%, four trials).

Data processing and statistics. Spike-density functions were generated by
convolving spike times with a Gaussian filter (s¼ 50 ms). To display single neu-
rone examples (Figs 1a, 3a, and 4a) spike-density functions were generated by
convolving spike times with a 100 ms Gaussian filter. A neuron was defined
as uncertainty sensitive if its responses varied across the four possible reward

predictions (100% 0.25, 50% 0.25, 100% 0.125 and 0 ml of juice) (Kruskal–Wallis
test, Po0.01; analysis window: 100 ms after CS presentation until outcome) and if
its response to the uncertain CS (50%) was significantly stronger or weaker than its
responses to both 100 and 0% reward CSs (two-tailed rank-sum test; Po0.01). The
same analysis window was used to study neuronal activity during the CS epoch
in Fig. 2c.

To normalize task-event-related responses, we subtracted baseline activity (the
last 500 ms of the inter-trial interval) from the activity during the task-event-related
measurement epoch. All statistical tests were two-tailed. For comparisons between
two task conditions for each neuron, we used a rank-sum test, unless otherwise
noted. For comparisons between two task conditions across the population average
we used a paired signed-rank test, unless otherwise noted. Statistical threshold
throughout this study is Po0.01 unless otherwise noted.

To assess the sensitivity of individual uncertainty-selective striatal neurons to
task-related variables in Experiment 1 (Fig. 2c), we obtained their response indices
(difference between neuronal responses to two conditions divided by their sum).
To assess CS spatial location sensitivity, we compared responses to the 50% CS
when it was shown 10� to the right versus 10� to the left of centre. To assess object-
feature sensitivity, we compared responses to two distinct 50% CS fractal objects.
Reward-value sensitivity was assessed by comparing neuronal responses to 100%
0.25 ml CS versus 0.125 ml CS. Reward-context sensitivity was assessed by
comparing CS activity in certain reward trials (100% 0.25 and 0.125 ml CS trials)
versus no reward trials. Uncertainty sensitivity was assessed by comparing
responses to 50% reward CSs with 100% reward CSs. Reward prediction error
sensitivity was assessed by comparing reward versus no-reward responses after the
50% reward prediction (in the 250 ms window after the outcome). Neuronal
responses during experiments 2–4 were measured in the last 500 ms before the trial
outcome.

To calculate receiver-operating characteristic (ROC) that assessed neuronal
discrimination of uncertainty, we compared spike-density functions of 100%
reward CS trials and 50% reward CS trials. The analysis was structured so that
receiver-operating characteristic area values 40.5 indicate that the activity in the
50% reward CS trials is greater than in the 100% reward CS trials values o0.5
indicate that the activity in the 100% reward CS trials is greater than in the 50%
reward CS trials.

Data availability. Data supporting the findings of this study are available within
the article and its Supplementary Information Figures or from the authors on
request.
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