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Abstract: (1) Background: With the rapid global spread of the coronavirus disease 2019 (COVID-19)
and the relatively high daily cases recorded in a short time compared to other types of seasonal
flu, the world remains under continuous threat unless we identify the key factors that contribute
to these unexpected records. This identification is important for developing effective criteria and
plans to reduce the spread of the COVID-19 pandemic and can guide national authorities to tighten
or reduce mitigation measures, in addition to spreading awareness of the important factors that
contribute to the propagation of the disease. (2) Methods: The data represents the daily infections
(210 days) in four different countries (China, Italy, Iran, and Lebanon) taken approximately in the
same duration, between January and March 2020. Path analysis was implemented on the data
to detect the significant factors that affect the daily COVID-19 infections. (3) Results: The path
coefficients show that quarantine commitment (β = −0.823) and full lockdown measures (β = −0.775)
have the largest direct effect on COVID-19 daily infections. The results also show that more experience
(β = −0.35), density in society (β = −0.288), medical resources (β = 0.136), and economic resources
(β = 0.142) have indirect effects on daily COVID-19 infections. (4) Conclusions: The COVID-19 daily
infections directly decrease with complete lockdown measures, quarantine commitment, wearing
masks, and social distancing. COVID-19 daily cases are indirectly associated with population density,
special events, previous experience, technology used, economic resources, and medical resources.

Keywords: path analysis; COVID-19 pandemic; direct and indirect effects; socio-economic factor;
mitigation factor

1. Introduction

The coronavirus disease 2019 (COVID-19) has rapidly spread around the world since
it first appeared in the city of Wuhan, China, towards the end of December 2019. The World
Health Organization classified it as a pandemic in March 2020 [1]. Europe and the U.S. have
recorded the highest number of infections and deaths. U.S. cases formed more than one
fourth of total global infections by June 2020 [2]. Governmental and institutional reactions
and measures varied across countries with respect to the time of introduction of social
distancing measures and their degree of severity. Globally, these control measures have
caused significant disruption to social and economic structures. However, it is unknown
whether these policies have had an impact, and how long they should remain in place. It is
thus essential to assess the effects of these control measures on the pandemic for the benefit
of global health security.

Although there have been many efforts to analyze and predict the behavior of CVOID-
19 infections, due to the highly complex nature of the outbreak and the variation in its
behavior from nation-to-nation, the main challenge is to determine the factors that affect
the increase of daily infections. The study is aimed at examining the socio-economic and
mitigation measure determinants of the daily infections. Through the path analysis tech-
nique, which is a form of multiple regression statistical analysis that is used to evaluate
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causal models by examining the relationships between a dependent variable and indepen-
dent variables, we can estimate both the magnitude and significance of causal connections
between variables [3]. For this reason, we apply the path analysis technique in this study,
which involves the analysis of hypothesized relationships among multiple variables [4].
This technique consists of a family of models that depicts the influence of a set of variables
on one another [5].

Many studies have focused on the application of path analysis on the COVID-19
pandemic. V. Burkova conducted a path analysis to examine possible factors that may be
associated with self-reported levels of anxiety during the first wave of the COVID-19 pan-
demic [6], while B. Wielgus performed a path analysis to examine the relationship between
anxiety and general psychosomatic functioning during the COVID-19 pandemic, consider-
ing the influence of indirect factors such as psychological flexibility and mindfulness [7].
Annette Brose performed multilevel structural equation modeling to identify mechanisms
underlying changes in well-being in times of threat in the COVID-19 pandemic, with a
focus on appraisals of the pandemic and affective states, stress, and mindfulness in daily
life [8]. On the other hand, L. Tamariz conducted structural equation modeling (SEM)
on COVID-19 infections in South Florida and found that the infection is associated with
economic disadvantage in a particular geographical area and not with racial/ethnic dis-
tribution [9]. Furthermore, M. Zareipour conducted a study based on a path analysis to
find the determinants of COVID-19 prevention behavior in the elderly in Urmia, Iran,
and found that effective interventions based on the health belief model and promoting
knowledge, perceived susceptibility, severity, and perceived self-efficacy can prevent the
elderly from contracting this disease [10]. Marvin G. Pizon generated a path analysis
model of COVID-19 to establish the specific cause-and-effect between air pressure, air
temperature, and relative humidity [11]. L. Salehi applied a path analysis to assess the
relationship of fear and anxiety caused by COVID-19 with pregnancy and the mental health
of pregnant women and found that it is necessary to pay more attention to the mental
health of pregnant women during the pandemic [12].

Path analysis has also been used widely in the medical field. Hardenberg developed a
path analysis model based on linear equation system for use in phylogenetic studies [13].
In his article, using a path analysis, H. Nadrian examined the possible direct/indirect
effects of health belief model (HBM) constructs on self-care behaviors among heart failure
patients [14]. Rebekah J. Walker studied the association between the social determinants of
health to outcomes in individuals with type 2 diabetes and the results were consistent with
a previous conceptual framework which stated that there exist a direct and an indirect link
between socio-economic and psychosocial factors and glycemic control [15]. Path analysis
and SEM are some of the most used techniques nowadays despite the continuous rise of
new and sophisticated methods in social and medical sciences.

Previous studies have shown that many factors can be associated to the daily cases of
COVID-19. It was found in Thailand that touristic and cultural activities are significant
factors that contribute to the number of COVID-19 cases [16]. In Italy, a strict lockdown
decreased the transmission rate to maintain societal immunity [17]. Population density is
found to be positively related with deaths due to COVID-19 in low populated countries [18].
Income, social capital, and trust and beliefs are proven to be significant factors related to
daily COVID-19 cases [19].

The article is organized as follows. In Section 2, we explain the variables used in the
study, how data were collected, and the statistical methodology used. Second, we present
the results and coefficients in Section 3. Finally, we analyze and interpret our results and
provide the discussion and conclusions in Sections 4 and 5, respectively.
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2. Materials and Methods
2.1. Conceptual Framework
2.1.1. Statement of Problem

As the world witnessed a continuous increase in the daily infections of COVID-19
with great fear of an uncontrolled spread of the disease, it became essential to determine the
variables and factors affecting this increase and take immediate action to control the spread.

2.1.2. Importance of Variables Selected

Because COVID-19 transfers through surfaces and the air, implementing lockdown
measures with different levels is important to reduce contact between people. Quarantine
and lockdowns have always been effective ways to control communicable disease outbreaks.
An example of this is the 2003 SARS outbreak, where the use of quarantine, border controls,
contact tracing, and surveillance proved to be effective in containing the global threat in
just over three months [20]. We also think that medical and economic resources are among
the main factors that contribute to the daily COVID-19 cases where countries with enough
resources will not face difficulties in controlling the spread, whereas a lack of resources has
been a source of weakness in fighting against such SARS diseases. Financing profoundly
affects the performance of the health system in a specific country. Any policy that the
health system decides to implement or not directly depends on the amount of available
funding [21]. Experience in dealing with health outbreaks greatly impacted how countries
in response to COVID-19, as in the case of Hong Kong, which faced the 1957 “Asian” and
1968 “Hong Kong” influenza pandemics, along with A(H7N9) in 2013. In addition, Taiwan
experienced the SARS outbreak in 2003, whereas Liberia was profoundly affected by the
Ebola epidemic in 2014, which led to thousands of deaths.

All these experiences made local governments realize the importance of establishing a
tiered command structure to prepare for and respond to future outbreaks and consolidate
all health protection functions. As a result, the public health systems and social measures in
Hong Kong proved to be critical in controlling COVID-19. Liberia maintained a low level
of spread of the COVID-19 while Taiwan recorded only around 600 positive cases by March
2021 [22]. Some studies showed that the population density is important in modeling the
COVID-19 infections. A study in the U.S. revealed that population density is an effective
predictor of cumulative infection cases at the country level [23]. Other studies [24–27]
have shown that SARS-CoV-2 transmission is potentially more likely to occur among cities
with higher population densities. The use of modern technology in healthcare systems
has helped in many aspects. Artificial Intelligence (AI) is used to identify, track, and
forecast outbreaks and help in diagnosing the virus. It is used in processing the healthcare
claims. Drones and robots are used to deliver food and medical supplies and sterilize
public places. AI is helping to develop drugs and COVID-19 vaccines through the use of
supercomputers [28].

Not all factors influence the COVID-19 daily cases directly. For that we assume some
variables have direct and indirect effects, either negative or positive. Performing a series of
multiple regressions among the independent variables can help us identify the mediators
that connect independent variables with the daily COVID-19 cases. Based on the multiple
regressions, mediators are included in the path analysis so that independent variables have
direct and indirect effects on our dependent variable.

2.2. Data Set Collection

To answer and judge the test hypothesis and evaluate the outcomes of particular
questions, we used the process of collecting and measuring data. Thus, to predict the
behavior of the spread of coronavirus, four countries were chosen that adopted different
methodologies to deal with the COVID-19 pandemic and achieved different results related
to the methodology used: China (67 days), Lebanon (40 days), Italy (61 days), and Iran
(42 days).
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After studying the situation of the virus in these countries, we noticed several indica-
tors that directly or indirectly affected the level of spread in each country. These are:

• The governments’ reactions: this factor refers to the different responses and reactions
from the governments of the four countries during the outbreak. These indices are
used to explore whether government response affects the rate of infection and identify
correlates of intense responses.

• The medical resources: this factor refers to the health system policies such as the
COVID-19 testing regime or emergency investments into healthcare (ICU beds, etc.)
and the health services quality in these four countries. The sensitivity effects of this
factor on the results are proposed to be investigated in this study.

• The commitment of the people in each country to government guidelines. Theoret-
ically, this factor must have a direct dependance on the intensity of the spread of
COVID-19 in these countries.

• The special events: this factor takes into consideration the existence of simultaneous
events that affected the spread of COVID-19: other disasters, economic problems, war,
political problems or disturbance, official holidays, etc.

• The economic level and governmental aids: this factor refer to the economic policies
enacted during the pandemic, such as income support to citizens or the provision
of foreign aid. Depending on the direct relationship between this factor and the
quarantine compliance of the people in each country, we have proposed it to be
present in this study.

• Previous experience in the history of the four governments that determined the
existence of experience in critical disaster management, or lack thereof.

• The use of technology devoted to control the virus spread in these countries to
help in health and hospitalization services, lockdown control, and restrictions of
infected zones.

• The population density: this is considered as the number of the people per 1 km2 in
the four countries, which can affect the spread of the virus.

• The family number: this refers to the average number of family members in each of
the selected countries.

These direct and indirect factors were used as parameters by our model to predict
the future behavior of the spread of COVID-19. The data were combined into a series of
novel indices that aggregated various measures of each factor. The parameters were then
measured and detected depending on specified criteria and are presented in Table 1.

Table 1. The direct and indirect factors that are hypothesized to affect the spread level of COVID-19
in the selected countries.

Effective Factors Indications Values

Governance reactions
(Lockdown)

No lockdown measures at all
(value = 0).

0, 0.25, 0.5, 0.75, and 1

Disabling major facilities: Stop
flights at airports, public transport,
ports, tourist places, universities

and school closures and restrictions
in movement in the public places

(value = 0.25)

Partially lockdown measures
(value= 0.5)

Fully lockdown measures
(value= 0.75)

Providing virus checks abundantly
(value = 1)
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Table 1. Cont.

Effective Factors Indications Values

Medical resources

0 = no medical resources, 0.25 = low,
0.5 = medium, 0.75 = good, 1 = high

0, 0.25, 0.5, 0.75, and 1Number of nurses for 1000 people

Number of doctors for 1000 people

Number of ICU beds for 1000

Previous experience history Yes = 1/no = 0 1/0

The used technology 0 = no technology, 0.25 = low,
0.5 = medium, 0.75 = good, 1 = high 0, 0.25, 0.5, 0.75, and 1

Special events Yes = 1/no = 0 1/0

Economic resources and
governmental aids

0 = no economic resources,
0.25 = low, 0.5 = medium,

0.75 = good, 1 = high
0, 0.25, 0.5, 0.75, and 1

Population density/km2 * Number

Family number * Number

Quarantine commitment
(Procedure)

1 = no commitment, 0.75 = low,
0.5 = medium, 0.25 = good, 0 = high 0, 0.25, 0.5, 0.75, and 1

The infected patients by the
COVID-19 - new confirmed daily cases Number

Thus, we collected real data (210 days) of the four countries, from different official
sources for precise parameters and the daily infection records. The date range for the data
for each of the four countries is shown below.

• China: 9 January 2020–28 March 2020 (80 days)
• Lebanon: 21 February 2020–31 March 2020 (40 days)
• Italy: 31 January 2020–31 March 2020 (61 days)
• Iran: 19 February 2020–31 March 2020 (42 days)

The dependent variable is the daily infections records which are basically the cumula-
tive records for a dependent day-by-day scale. In other words, the record of the next day is
the sum of the records of the current day and the new records obtained in the same day.
Table 1 shows the technique for coding each of the factors by developing the measurement
scales used to build the model. This is the first basic step to build and develop a model
using the structural equation modeling method.

In addition, the data collected do not include missing values. Using the free missing
values factors, we can predict the degrees of the possibility of COVID-19 infection with the
help of a machine learning algorithm. These methods may result in better accuracy, unless
a missing value is expected to have a very high variance.

2.3. Hypothesis

We hypothesized that lockdown, medical resources, economic resources, technology
used, population density, previous experience, family number, procedure, and special
events variables influenced the daily COVID-19 infections.

The purpose of studying the above hypothesis lies in determining the factors with the
most influence on the development of the COVID-19 pandemic. This will enable us to act
quickly and consciously in tightening or reducing the mitigation measures, thereby leading
to a better understanding of the behavior of the virus.

2.4. Statistical Analysis

The data were analyzed by path analysis using the AMOS and SPSS statistical software
to determine the direct and indirect effects. We used structural equation modeling (SEM)
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which is defined as a combination of factor analysis and regression. SEM is a powerful,
multivariate technique used increasingly in scientific investigations to test and evaluate
multivariate causal relationships. SEM differs from other modeling approaches in that
it tests the direct and indirect effects on pre-assumed causal relationships. Path analysis
was developed to quantify the relationships among multiple variables [29]. It was the
early name for SEM before there were latent variables, and it was very powerful in testing
and developing the structural hypothesis with both indirect and direct causal effects.
However, the two effects have recently been synonymized. Path analysis can explain the
causal relationships among variables. A common function of path analysis is mediation,
which assumes that a variable can influence an outcome directly or indirectly through
another variable. The interest in SEM is generally on constructs called latent variables. The
relationship between the latent variables is represented by regression or path coefficients.
The structural equation model implies a structure of the covariances between the observed
variable and the latent variable [30]. Path analysis is a statistical technique that uses both
bivariate and multiple linear regression techniques to test the causal relations among
the variables specialized in the model [31]. By using this method, we can estimate both
the magnitude and significance of causal connections between variables. In this study,
path coefficients were computed via a series of multiple regression analyses based on
the hypothesized model. Path diagrams were constructed with a single headed arrow
representing the causal order between two variables, with the head pointing to the effect
and the tail to the cause. A curved, double arrow indicated a correlation between two
variables. The method is also known as causal modeling, analysis of covariance structures,
and latent variable model [32]. The sample size in this study was adequate based on the
recommendation by Kline [6] that 10–20 times as many cases as parameters are sufficient
for significance testing of model effects.

Path analysis is comprised of four stages: (1) model specification: statement of the
theoretical model in terms of equations or a diagram; (2) model identification and param-
eter estimate: the theoretical model can be estimated with observed data. The model’s
parameters are statistically estimated from data. Multiple regression is one such estimation
method, but most often more complicated methods are used; (3) model fit: the estimated
model parameters are used to predict the correlations or covariances between measured
variables and the predicted correlations or covariances are compared to the observed
correlations or covariances; (4) model respecification: the model is respecified by adding or
removing a significant or a non-significant parameter estimate depending on its P-value
and the change of the chi-square of the model. The final process of the path analysis is the
resulting identification of the effects of independent variables on the dependent variable.
The relationship between the variables is described in the form of structural equations.
The structural equations are constructed by calculating the direct effects (DE), indirect
effects (IE), and the total effect (TE) between the variables [33]. The values of these indices
are determined based on the path coefficients. The stages of path analysis are depicted
in Figure 1.
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3. Results
3.1. Descriptive Analysis

The days were distributed as follows: 31.9% from China, 20% from Iran, 29% from
Italy, and 19% from Lebanon. Only China had previous experience in dealing with a viral
outbreak, whereas the remaining countries had no experience. Most days (39%), people
were not completely committed to quarantine measures, and there were no special events
49% of the days. A full lockdown was held 43.8% of the days. Moreover, on 47% of the days,
medical resources were considered as good, and on 50.5% of the days, economic resources
were low. The technology used was considered low and high 30% of the time, respectively.

Table 2 displays a summary statistic on the variables used. We can see from Table 2
that in most days medical resources (mean = 0.7774) were available, whereas there was not
enough technology available to use for mitigation measures (mean = 0.4679).

Table 2. Summary statistics for the variables used in path analysis.

Descriptive Statistics

A N Minimum Maximum Mean Std. Deviation

Technology Used 210 0 1.00 0.4679 0.38339

Special Events 210 0 1 0.51 0.501

Procedure 210 0 1.00 0.3881 0.36924

Experience 210 0 1 0.32 0.467

Density 210 52 667 243.55 212.641

Family Number 210 3 5 3.59 0.803

Lockdown 210 0 1 0.5298 0.44292

Medical Resources 210 0.5 1 0.7774 0.18011

Economic resources 210 0.25 1 0.5405 0.33286

Daily COVID-19 Cases 210 0 15,136 1106.86 1866.425

Figure 2 shows that China, which implemented a full lockdown, recorded as much
COVID-19 cases as other countries that implemented partial lockdowns. Meanwhile, Iran
recorded less cases than Italy with the same lockdown measures (Lockdown = 0.25, 0.5).
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Figure 3 shows that countries with prior experience in health crises were able to reduce
the transmission of COVID-19, whereas countries with no previous experience recorded
higher cases of the virus.
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Table 3 displays the Pearson correlation between the independent variables among
each other and between every independent variable and the daily cases of COVID-19.

Table 3. Pearson correlation between the factors and the dependent variable.

Technology
Used Event Procedure Experience Density Family

Number Temperature Lockdown Medical
Resources

Economy
Resources

Daily
COVID-19

Cases

Technology
Used

1 0.370 ** −0.710 ** 0.845 ** −0.287 ** −0.540 ** 0.410 ** 0.671 ** 0.762 ** 0.931 ** 0.235 **

0 0 0 0 0 0 0 0 0 0.001

Event
0.370 ** 1 −0.338 ** 0.494 ** −0.620 ** 0.334 ** 0.161 * 0.282 ** 0.574 ** 0.339 ** 0.088

0 0 0 0 0 0.019 0 0 0 0.204

Procedure
−0.710 ** −0.338

** 1 −0.645 ** −0.012 0.224 ** −0.546 ** −0.865 ** −0.439 ** −0.676 ** −0.270 **

0 0 0 0.86 0.001 0 0 0 0 0

Experience
0.845 ** 0.494 ** −0.645 ** 1 −0.318 ** −0.505 ** 0.318 ** 0.717 ** 0.848 ** 0.901 ** 0.041

0 0 0 0 0 0 0 0 0 0.558

Density
−0.287 ** −0.620

** −0.012 −0.318 ** 1 0.024 0.286 ** 0.208 ** −0.711 ** −0.356 ** −0.245 **

0 0 0.86 0 0.732 0 0.002 0 0 0

Family
Number

−0.540 ** 0.334 ** 0.224 ** −0.505 ** 0.024 1 0.048 −0.265 ** −0.509 ** −0.645 ** −0.152 *

0 0 0.001 0 0.732 0.485 0 0 0 0.028

Temperature
0.410 ** 0.161 * −0.546 ** 0.318 ** 0.286 ** 0.048 1 0.574 ** 0.041 0.299 ** −0.032

0 0.019 0 0 0 0.485 0 0.554 0 0.648

Lockdown
0.671 ** 0.282 ** −0.865 ** 0.717 ** 0.208 ** −0.265 ** 0.574 ** 1 0.372 ** 0.629 ** 0.045

0 0 0 0 0.002 0 0 0 0 0.512

Medical
Resources

0.762 ** 0.574 ** −0.439 ** 0.848 ** −0.711 ** −0.509 ** 0.041 0.372 ** 1 0.839 ** 0.198 **

0 0 0 0 0 0 0.554 0 0 0.004
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Table 3. Cont.

Technology
Used Event Procedure Experience Density Family

Number Temperature Lockdown Medical
Resources

Economy
Resources

Daily
COVID-19

Cases

Economic
Resources

0.931 ** 0.339 ** −0.676 ** 0.901 ** −0.356 ** −0.645 ** 0.299 ** 0.629 ** 0.839 ** 1 0.253 **

0 0 0 0 0 0 0 0 0 0

Daily
COVID-19

Cases

0.235 ** 0.088 −0.270 ** 0.041 −0.245 ** −0.152 * −0.032 0.045 0.198 ** 0.253 ** 1

0.001 0.204 0 0.558 0 0.028 0.648 0.512 0.004 0

** Correlation is significant at the 0.01 level (two-tailed). * Correlation is significant at the 0.05 level (two-tailed).

Table 3 shows that there exist five variables (Technology Used, Procedure, Density,
Medical Resources, and Economic Resources) that are correlated with the daily cases at a
0.01 level of significance, while only one variable (Family number) is correlated to the daily
cases with 0.05 level of significance. Because 6 out of 10 variables are significantly correlated
to the daily cases of COVID-19, and since we are trying to assess and detect the factors that
most contribute to the daily infections, path analysis is the right methodology to use. Most
variables are correlated to each other which creates dependencies and associations among
the independent variables; thus, mediators (variables carrying the indirect effects) have
high correlations with the independent ones.

3.2. Evaluation of Path Analysis

First, we present the necessary indices that validate our path model. One of the most
used fit indices worldwide is the Chi-square goodness of fit resulting from maximum
likelihood estimation (MLE). In fact, the smaller χ2

GOF is, the better the fit model. In our
model, a minimum Chi-square of 83.1 was reached after 11 iterations. The probability
level obtained was equal to 0, verifying the significance of the model. We consider two
other goodness-of-fit indices: Akaike’s information criterion (AIC) and Schwarz Bayesian
information criterion (BIC). These indices are not used to test the model in the sense of
hypothesis testing, but for model selection. Given a data set, a researcher chooses either
the AIC or BIC, and computes it for all models under consideration. Then, the model with
the lowest index is selected. Note that both the AIC and BIC combine absolute fit with
model parsimony [34]. The lowest AIC and BIC found are 157.1 and 280.943, respectively.
The corrected Akaike’s information criterion (CAIC) = 317.943 The goodness-of-fit index
(GFI), the proportion of variance accounted for by the estimated population covariance, is
equal to 0.934. It is categorized as an absolute fit index (AFI) which examines the level of
correspondence between the proposed model and the observed data.

The following indices, called incremental fit indices, permitted us to evaluate the
contribution of the estimated model with respect to the reference model (null model).
These indices suggested improvements in the fit of the model. The comparative fit index
(CFI), comparing the fit of a target model to the fit of an independent or null model, was
equal to 0.978 for our model. The Tucker–Lewis index (TLI), used to measure a relative
reduction in misfit per degree of freedom [35], was equal to 0.944. The normed fit index
(NFI) which reflects the proportion by which a researcher’s model improves fit compared
to the null model (uncorrelated measured variables) [36] was equal to 0.97. The relative fit
index (RFI) is equal to 0.93 and the incremental fit index (IFI) is equal to 0.978.

The better the model the more the above indices are close to 1. In our study, all the
incremental fit indices were greater than 0.9 (cut-off value) [37], which verified that the
model exists and is significant. The root mean square error of approximation (RMSEA),
which is a supplementary statistic used to determine the fit to the Rasch model with a large
sample size, was equal to 0.132. This was due to the small sample size of only 210 days.

In our study, the number of measured variables (k) = 10, number of distinct sample
moments = (k×(k+1))

2 = 55, and number of distinct parameters to be estimated = 37. The
degree of freedom (df) = number of distinct sample moments − number of estimated
parameters = 55 − 37 = 18 > 0 (overestimated). Thus, our hypothesis of whether the socio-
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economic and mitigation measure factors influenced daily COVID-19 infections could be
tested via path analysis.

The dependent variable was the daily COVID-19 infections. The exogenous variables
were family number, procedure, special events, density, and previous experience. The
endogenous variables were lockdown, medical resources, economic resources, and tech-
nology used. Error terms were considered as unobserved exogenous variables connected
to the endogenous variables. Multicollinearity problems were absent since all bivariate
correlations presented in Table 4 were below 0.8 [33]. Path coefficients (parameter estimates)
were calculated based on the hypothesized model and the results are presented in Table 6.

Table 4. Correlation estimates between exogenous variables.

Correlation Estimate

Procedure <–> Experience −0.593

Density <–> Experience −0.340

Family Number <–> Experience −0.396

Family Number <–> Event 0.415

Event <–> Density −0.597

Event <–> Procedure −0.426

Event <–> Experience 0.521

Family Number <–> Density 0.024

As we expected, all factors had direct and indirect impact on the daily COVID-19
infections of varying strengths. However, there was an absence of significant causal effect
from medical resources and economic resources to daily infections.

Table 5 shows that it is estimated that the predictors of medical resources explain 97.2%
of its variance. In other words, the error variance of medical resources is approximately
2.8% of the variance of medical resources itself. Also, it is estimated that the predictors of
lockdown explain 90.3% of its variance. In other words, the error variance of lockdown is
approximately 9.7% of the variance of lockdown itself. The same interpretation applies for
economic resources and technology used variables.

Table 5. Squared multiple correlations.

Dependent Variable Estimate (R2)

Medical Resources 0.972

Lockdown 0.903

Economic Resources 0.908

Technology Used 0.864

Table 6 shows that approximately all causal effects are significant with 95% confidence
level. Although the causal relation between medical resources and lockdown is slightly not
statistically significant, we still consider this relation in our model.

Table 7 shows that due to the direct (unmediated) effect of procedure on daily Covid-
19 cases, when procedure goes up by 1 standard deviation, daily covid-19 cases go down
by 0.823 standard deviations (95% CI = −1.175 to −0.541; p < 0.05). Due to the direct
(unmediated) effect of lockdown on daily covid-19 cases, when lockdown goes up by
1 standard deviation, daily covid-19 cases go down by 0.775 standard deviations (95%
CI = −1.051 to −0.497; p < 0.05). Due to the direct (unmediated) effect of technology used
on daily covid-19 cases, when technology used goes up by 1 standard deviation, daily
covid-19 cases goes up by 0.17 standard deviations (95% CI = 0.015 to 0.287; p < 0.05).
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Table 6. Estimated parameters for all factors. *** p-Value < 0.001.

Dependent Variable Independent
Variable

Standardized
Parameter Estimate p-Value

Medical Resources <— Family
Number −0.366 ***

Medical Resources <— Event 0.229 ***

Medical Resources <— Density −0.449 ***

Medical Resources <— Experience 0.418 ***

Lockdown <— Medical
Resources −0.175 0.052

Lockdown <— Event 0.145 ***

Lockdown <— Density 0.346 ***

Lockdown <— Procedure −0.532 ***

Lockdown <— Experience 0.552 ***

Economic Resources <— Family
Number −0.331 ***

Economic Resources <— Density −0.143 ***

Economic Resources <— Procedure −0.410 ***

Economic Resources <— Experience 0.589 ***

Economic Resources <— Lockdown −0.181 0.007

Technology Used <— Lockdown 0.149 ***

Technology Used <— Economic
Resources 0.837 ***

Daily COVID-19 Cases <— Technology
Used 0.170 0.035

Daily COVID-19 Cases <— Lockdown −0.775 ***

Daily COVID-19 Cases <— Procedure −0.823 ***

Table 7. Path Analysis on socio-economic and mitigation measure determinants of COVID-19 daily
infections.

Dependent
Variable

Independent
Variable

Standardized
Effect

Estimate
L.B U.B p-Value

Indirect Effect 95% CI

Daily COVID-19
Cases <— Procedure 0.355 0.190 0.602 0.003

Daily COVID-19
Cases <— Lockdown −0.001 −0.031 0.050 0.976

Daily COVID-19
Cases <— Experience −0.288 −0.475 −0.122 0.003

Daily COVID-19
Cases <— Family

Number −0.097 −0.155 −0.023 0.022

Daily COVID-19
Cases <— Density −0.35 −0.493 −0.231 0.003
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Table 7. Cont.

Dependent
Variable

Independent
Variable

Standardized
Effect

Estimate
L.B U.B p-Value

Indirect Effect 95% CI

Daily COVID-19
Cases <— Event −0.081 −0.215 0.022 0.120

Daily COVID-19
Cases <— Medical

Resources 0.136 −0.050 0.274 0.110

Daily COVID-19
Cases <— Economic

Resources 0.142 0.011 0.236 0.034

Direct Effect

Daily COVID-19
Cases <— Technology

Used 0.17 0.015 0.287 0.031

Daily COVID-19
Cases <— Lockdown −0.775 −10.051 −0.497 0.006

Daily COVID-19
Cases <— Procedure −0.823 −10.175 −0.541 0.004

Total Effect = Direct Effect + Indirect Effect

Daily COVID-19
Cases <— Lockdown −0.776 −10.060 −0.486 0.005

Daily COVID-19
Cases <— Procedure −0.468 −0.649 −0.314 0.003

The indirect effects of medical resources, special events, and lockdown with p-values
respectively equal to 0.11, 0.12, and 0.976 are not statistically significant. Moreover, the
confidence intervals (CIs) for the non-significant indirect effects contain zeros, which
is strong evidence of the non-significance of these effects. Meanwhile, all other CIs do
not contain zeros, which is strong evidence of their estimates’ significance. Due to the
indirect (mediated) effect of experience on daily covid-19 cases, when experience goes
up by 1 standard deviation, daily covid-19 cases go down by 0.288 standard deviations
(95% CI = −0.475 to −0.122; p < 0.05). Due to the indirect (mediated) effect of procedure on
daily covid-19 cases, when procedure goes up by 1 standard deviation, daily covid-19 Cases
go up by 0.355 standard deviations (95% CI = 0.19 to 0.602; p < 0.05). Due to the indirect
(mediated) effect of density on daily covid-19 cases, when density goes up by 1 standard
deviation, daily covid-19 cases go down by 0.35 standard deviations (95% CI = −0.493 to
−0.231; p < 0.05). Due to the indirect (mediated) effect of family number on Daily covid-19
cases, when family number goes up by 1 standard deviation, daily covid-19 cases go down
by 0.097 standard deviations (95% CI = −0.155 to −0.023; p < 0.05). Due to the indirect
(mediated) effect of economic resources on daily covid-19 cases, when economic resources
go up by 1 standard deviation, daily covid-19 cases go up by 0.142 standard deviations (95%
CI = 0.011 to 0.236; p < 0.05). Due to both direct (unmediated) and indirect (mediated) effects
of procedure on daily covid-19 cases, when procedure goes up by 1 standard deviation,
daily covid-19 cases go down by 0.468 standard deviations (95% CI = −0.649 to −0.314;
p < 0.05). Due to both direct (unmediated) and indirect (mediated) effects of lockdown on
daily covid-19 cases, when lockdown goes up by 1 standard deviation, daily covid-19 cases
go down by 0.776 standard deviations (95% CI = −1.060 to −0.486; p < 0.05). From Table 7
and Figure 4, we can see that only lockdown and procedure have both direct and indirect
effects. All other variables only have either a direct or indirect effect.
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3.3. Path Diagram Layers

The path diagram presented in Figure 4 can be divided into five layers. Each layer
consists of exogenous and endogenous variables. The five layers are constructed as follows:

• Layer 1 (L1) consists of family number, event, density, experience as exogenous
variables, and medical resources as an endogenous variable.

• Layer 2 (L2) consists of family number, procedure, density, and experience as exoge-
nous variables and economic resources as an endogenous variable.

• Layer 3 (L3) consists of event, procedure, density, experience as exogenous variables
and lockdown as endogenous variable.

• Layer 4 (L4) consists of lockdown and economic resources as exogenous variables and
technology used as an endogenous variable.

• Layer 5 (L5) consists of lockdown and technology used as exogenous variables and
daily COVID-19 cases as an endogenous variable.

We divided the path diagram into five layers to better understand the indirect effects
of all factors on daily COVID-19 infections.

For all endogenous variables, total effects are calculated as the sum of direct and
indirect effects:

Total effect = direct effect + indirect effect

All results obtained in Table 8 are calculated by the sum of results from Tables 9 and 10.
The medical resources, lockdown, economic resources, and technology used are

considered as both endogenous and intermediate variables.
Tables 8–10 represent the total, direct, and indirect effects of exogenous variables on

intermediate variables, respectively.
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Table 8. Standardized total effects of exogenous variables on endogenous variables.

Experience

Procedure

D
ensity

Event

Fam
ily

N
um

ber

M
edicalR

esources

Lockdow
n

Econom
ic

R
esources

Technology
U

sed

Medical
Resources 0.418 0.000 −0.449 0.229 −0.366 0.000 0.000 0.000 0.000

Lockdown 0.479 −0.532 0.425 0.105 0.064 −0.175 0.000 0.000 0.000

Economic
Resources 0.503 −0.314 −0.220 −0.019 −0.342 0.032 −0.181 0.000 0.000

Technology
Used 0.492 −0.342 −0.121 0.000 −0.277 0.000 −0.003 0.837 0.000

Table 9. Standardized direct effects of exogenous variables on endogenous variables.
Experience

Procedure

D
ensity

Event

Fam
ily

N
um

ber

M
edicalR

esources

Lockdow
n

Econom
ic

R
esources

Technology
U

sed

Medical
Resources 0.418 0.000 −0.449 0.229 −0.366 0.000 0.000 0.000 0.000

Lockdown 0.552 −0.532 0.346 0.145 0.000 −0.175 0.000 0.000 0.000

Economic
Resources 0.589 −0.410 −0.143 0.000 −0.331 0.000 −0.181 0.000 0.000

Technology
Used 0.000 0.000 0.000 0.000 0.000 0.000 0.149 0.837 0.000

Table 10. Standardized indirect effects of exogenous variables on endogenous variables.

Experience

Procedure

D
ensity

Event

Fam
ily

N
um

ber

M
edicalR

esources

Lockdow
n

Econom
ic

R
esources

Technology
U

sed

Medical
Resources 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Lockdown −0.073 0.000 0.079 −0.040 0.064 0.000 0.000 0.000 0.000

Economic
Resources −0.087 0.096 −0.077 −0.019 −0.012 0.032 0.000 0.000 0.000

Technology
Used 0.492 −0.342 −0.121 0.000 −0.277 0.000 −0.151 0.000 0.000
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4. Discussion

Daily COVID-19 infections are associated with the social and economic situation in
each country and with level of each individual’s participation in society. Commitment
to mitigation measures may have an impact as well. The framework of predicting daily
COVID-19 cases is wide. A previous study showed that the number of diagnostic tests
conducted positively affect the confirmed daily cases of COVID-19 [38]. Moreover, a path
analysis was done on geographical determinants of COVID-19 daily infections in the
U.S. [39]. Some studies tried to predict daily infections (dependent) using multiple linear
regression on positive, deceased, and recovered cases (independent) [40]. Another study
conducted in Italy showed that the mobility of citizens affected the recorded daily cases
using multiple linear regression models [41]. Until now, no path analysis has been con-
ducted to detect or assess the determinants of COVID-19 daily infections. Path analysis was
used in this study to test a hypothesized model of daily COVID-19 cases in four different
countries with different times to guide practice and provide directions for future research.
Path analysis is superior to ordinary regression analysis as it provides an explanation of
both the casual relation and the relative importance of alterative paths of influence [30].
We found that only lockdown and procedure have both direct and indirect effects on the
rate of daily COVID-19 infections.

4.1. Direct Effects

The path coefficients showed that lockdown, technology used, and procedure have
direct effects on COVID-19 daily infections. The largest impact is for the procedure and
lockdown variables. An increase of 1 standard deviation in procedure degree leads to a
decrease of 0.823 standard deviations in the COVID-19 daily infections and an increase of
1 standard deviation in lockdown degree produce a decrease of 0.776 standard deviations
in COVID-19 daily infections. This highlights the importance of the commitment of every
individual to the mitigation measures set in place by the authorities. The results also
support the wearing of masks and social distancing, which help reduce the spread of
COVID-19, thus reducing the daily confirmed cases. In terms of technology, COVID-19
daily infections increase by 0.17 standard deviations with the increase of 1 standard devia-
tion in the used technology. This model shows that mitigation measures directly reduce
the spread of COVID-19. The lack of direct effects from medical resources, experience,
economic resources to COVID-19 daily cases are an unexpected, unique finding in this
study. Future models could include other factors to assess and incorporate with the current
model such as citizen movements in terms of foreign flights and local transportation.

4.2. Indirect Effects

From the results obtained in Tables 7–10, all exogenous variables except technology
used have indirect effects on daily COVID-19 infections from different patterns and routes.
Moreover, all factors affect the daily cases indirectly through all intermediate variables
except procedure. Procedure has an indirect effect on daily cases through lockdown,
economic resources, and technology used, whereas all remaining exogenous variables
include medical resources in their intermediate variables list.

The final model shows that experience, special events, family number, and density
have a significantly negative indirect effect on COVID-19 daily cases through their effects
on lockdown. Lockdowns appear to be most strongly affected by procedure among the
other exogenous variables. Medical and economic resources have significantly positive
indirect effects on COVID-19 daily cases through their effects on technology used and
lockdown degree. Technology used appears to be most strongly affected by economic
resources and experience.

5. Conclusions

This study aimed to identify and assess the different socio-economic and mitigation
measure determinants on COVID-19 daily cases. The study helped us detect some impor-
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tant factors to build an international effective strategy in the war against the COVID-19
pandemic. The findings, through the above analysis, indicate that implementing full
lockdowns and the commitment to wearing masks and social distancing are essential for
reducing daily COVID-19 infection rates. All other factors used in the study still have
significant effects with different strengths and proportions.

There are still some limitations to this study. The data used comes from the beginning
of the pandemic, which may not reflect today’s reality. Moreover, the data are a combination
of several countries grouped together, which in turn differ in terms of area, population,
economic, technological, and cultural capabilities. The limitations mentioned above reduce
the generalizability of the findings in this study.

Future studies can conduct path analysis on the determinants of the death rate caused
by COVID-19 to help limit deaths and save more lives.
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