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Abstract

Epstein-Barr virus (EBV) is transmitted by saliva and is a major cause of cancer, particularly

in people living with HIV/AIDS. Here, we describe the frequency and quantity of EBV detec-

tion in the saliva of Ugandan adults with and without HIV-1 infection and use these data to

develop a novel mathematical model of EBV infection in the tonsils. Eligible cohort partici-

pants were not taking antiviral medications, and those with HIV-1 infection had a CD4 count

>200 cells/mm3. Over a 4-week period, participants provided daily oral swabs that we ana-

lysed for the presence and quantity of EBV. Compared with HIV-1 uninfected participants,

HIV-1 coinfected participants had an increased risk of EBV detection in their saliva (IRR =

1.27, 95% CI = 1.10–1.47) and higher viral loads in positive samples. We used these data to

develop a stochastic, mechanistic mathematical model that describes the dynamics of EBV,

infected cells, and immune response within the tonsillar epithelium to analyse potential factors

that may cause EBV infection to be more severe in HIV-1 coinfected participants. The model,

fit using Approximate Bayesian Computation, showed high fidelity to daily oral shedding data

and matched key summary statistics. When evaluating how model parameters differed

among participants with and without HIV-1 coinfection, results suggest HIV-1 coinfected indi-

viduals have higher rates of B cell reactivation, which can seed new infection in the tonsils

and lower rates of an EBV-specific immune response. Subsequently, both these traits may

explain higher and more frequent EBV detection in the saliva of HIV-1 coinfected individuals.
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Author summary

Epstein-Barr virus (EBV) is a ubiquitous infection worldwide associated with the develop-

ment of several kinds of cancer, including B cell lymphoma and nasopharyngeal carci-

noma. Rates of EBV replication and disease are higher in individuals who are coinfected

with HIV-1. HIV-1 infection is associated with increased B cell activation as well as

immunodeficiency resulting from loss of T cells; however, whether these factors contrib-

ute to higher rates of EBV replication during coinfection, and by how much, has remained

unknown. We analysed oral EBV shedding data from a cohort of Ugandan adults taken at

multiple time points and found that participants coinfected with HIV-1 maintained

higher quantities of EBV in their saliva. To better understand this finding, we developed a

mathematical model to describe the dynamics of EBV infection within the tonsils. By rig-

orously matching our model to our participant data, we determined that both high rates

of infected B cell activation and worse cellular immune control of EBV may cause higher

EBV loads in saliva during HIV-1 coinfection. These results help explain the impact of

HIV-1 on EBV and suggest potential therapeutic targets to prevent EBV-related malig-

nancy in people who are coinfected with HIV-1.

Introduction

Epstein-Barr virus (EBV) infection is associated with the development of approximately

200,000 malignancies per year worldwide, including B cell lymphomas and nasopharyngeal

carcinoma [1]. The risk of EBV-associated malignancies is significantly higher in people coin-

fected with HIV-1. For example, the risk of non-Hodgkin lymphoma, an AIDS-defining can-

cer, in the U.S. is 10-fold higher among HIV-1 coinfected individuals than in the general

population [2]. Individuals with EBV/HIV-1 coinfection tend to have higher EBV viral loads

in saliva and blood [3–5]. Uncovering the mechanisms by which HIV-1 may impair the con-

trol of EBV infection could provide clues relevant to the prevention of EBV-related disease as

well as insights into basic EBV pathobiology.

EBV infection is primarily transmitted via saliva and is nearly universal, acquired during

early childhood in developing countries and before reaching young adulthood in developed

countries [6–8]. During primary infection, EBV is thought first to infect oral epithelial cells

overlying the lymphoid tissue known as Waldeyer’s ring [9]. This area consists of the tubal,

adenoid, palatine and lingual tonsils [9]. Infected epithelial cells produce large numbers of

infectious virions [10], facilitating latent infection of naïve B cells in the underlying lymphoid

tissue. EBV drives these naïve B cells to mature into resting memory B cells and circulate

throughout the body through the expression of only a small number of latent gene products

[11, 12]. Viral shedding is highest during primary EBV infection but remains frequent

throughout chronic infection [5]. During chronic infection, B cells latently infected with EBV

can return to Waldeyer’s ring, encounter cognate antigen, and become activated to mature

into plasma cells, triggering lytic reactivation and production of infectious virions [13–15].

This process initiates a new round of epithelial infection in the tonsils and viral shedding in

the saliva.

The dynamics of chronic herpes group virus infections in humans can be studied by longi-

tudinally swabbing mucosal surfaces and sampling blood, helping to reveal the patterns of

latency, reactivation, and dissemination, as well as giving insight into viral pathogenesis and

host-pathogen interactions [16, 17]. Here, we present and analyse new oral EBV shedding data

from a cohort of 85 Ugandan adults with and without HIV-1 coinfection. These data capture
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EBV shedding dynamics in unprecedented detail, with saliva swabs being collected from par-

ticipants daily and analysed for EBV presence and copy number. Although others have done

such studies in developed countries, none exist with such a high degree of time resolution in

Uganda, a country where EBV is often acquired much earlier in life than in developed coun-

tries [6–8]. Furthermore, while several previous studies have examined EBV mucosal shedding

patterns in both HIV-1 uninfected and HIV-1 coinfected participants [5, 18–22], the majority

have been in the setting of advanced HIV-1 infection or in participants receiving highly active

antiretroviral therapy (HAART) [20–22]. Our data represent EBV shedding in HIV-1 coin-

fected individuals who are not receiving antiretroviral therapy and whose HIV-1 infection has

not progressed to AIDS. Thus, our cohort participants maintain a relatively preserved immune

system.

Using these data, we constructed and fit a new, stochastic mechanistic mathematical model

describing infection dynamics within the crypts of the tonsillar epithelium. While some math-

ematical models of the within-host dynamics of EBV infection exist [10, 23–27], ours is the

first implemented stochastically and the first fit to longitudinal data of EBV shedding. To fit

these time series data, we present new methods based on the principles of Approximate Bayes-

ian Computation. Furthermore, we uniquely use our model to examine how HIV-1 coinfec-

tion may influence EBV shedding patterns in the saliva. Previously, it has been hypothesised

that increased EBV shedding with HIV-1 coinfection may be due to more frequent activation

of EBV-infected B cells, leading to increased viral seeding of oral tissue and/or impaired T cell-

mediated immune control of EBV replication, prolonging or inhibiting the clearance of

infected epithelial cells [28–30]. To observe how these two mechanisms may influence EBV

shedding, our model is fit to participant data, allowing the parameters controlling these mech-

anisms to vary. Thus, we estimated how both B cell reactivation and immune cell control con-

tribute to EBV shedding patterns and examined how these parameters differ between

individuals with and without HIV-1 coinfection. To verify these results, we repeated fitting

using data collected from a similar cohort of 26 individuals from Seattle, Washington. Finally,

we correlated model results to measures of HIV-1 loads, B cell activation factors, and CD4 T

cell counts to further understand the relationship between model parameters and the impact

of HIV-1 coinfection on EBV shedding.

Results

HIV-1 infection is associated with increased frequency and quantity of oral

EBV shedding

Among our Ugandan cohort of 85 participants, 43 (51%) participants were HIV-1 seropositive.

32 participants (38%) were female and 53 (62%) were male, with a median age of 32 years

(range 18–60 years). We collected a total of 2264 daily oral swabs, with a median of 29 swabs

per participant (range 1–32). We show data on the EBV loads within these swabs for the first

time here; however, additional details of the cohort have been previously published [31]. Other

new data from this cohort, including EBV loads in genital swabs and plasma samples, can be

found in S1 Text. Longitudinal EBV shedding in the saliva of all participants is shown in Fig 1.

These data reveal the highly stochastic nature of EBV shedding in the saliva. While some par-

ticipants transition between periods of continuous viral shedding to periods of no detectable

shedding, others sustain detectable shedding throughout the entire time of observation. Fur-

thermore, while HIV-1 coinfected participants generally have higher EBV viral loads than

HIV-1 uninfected participants, some HIV-1 coinfected participants have uncharacteristically

low viral loads and vice-versa, making it difficult to predict a participant’s HIV-1 infection sta-

tus from this data alone.
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Fig 1. Viral shedding patterns of study participants. Viral loads in the saliva of study participants were measured daily via qPCR for a median

of 29 days. Swabs up to 30 days post initiating observation are shown. Each plot represents the shedding pattern of a separate participant.

Patients are arranged according to their median viral load. The grey horizontal line represents the threshold of EBV detection (150 EBV copies/

ml).

https://doi.org/10.1371/journal.pcbi.1009072.g001
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We examined whether HIV-1 infection status affected the frequency of EBV detection in

the saliva. We found that HIV-1 infection was significantly associated with EBV detection in

oral swabs, increasing the frequency of observation 1.27-fold (CI = 1.10–1.47, p-value = 0.001,

Fig 2A) and increasing the median log10 genome copies of EBV detected in oral swabs by 1.61

(CI = 1.29–1.93, p-value <0.001, Fig 2B). We also saw large variability in participants’ viral

loads over time, sometimes varying over 4 orders of magnitude in an individual participant

(Fig 2C).

In addition to collecting data on EBV viral loads from participants, 72 participants had B

cell activation factor (BAFF) levels in their serum measured, and all HIV-1 coinfected individ-

uals had blood CD4+ T cell counts and HIV-1 RNA levels measured (Fig 2D). Mean BAFF lev-

els were significantly higher in HIV-1 coinfected individuals than HIV-1 uninfected

individuals (T-test, p = 0.01). Following linear regression, CD4+ T cell counts showed moder-

ate negative correlation, and HIV-1 RNA showed strong positive correlation with median

EBV viral loads in the saliva of HIV-1 coinfected individuals. BAFF levels showed moderate

positive correlation with EBV viral loads in the saliva for HIV-1 uninfected individuals, and

no correlation for HIV-1 coinfected individuals. Equations and correlation coefficients for this

regression analysis are shown in Fig 2D.

Mathematical model of EBV shedding in the tonsils

To obtain mechanistic insights into oral EBV shedding and to better understand the drivers of

higher replication in HIV-1 coinfected individuals, we constructed a novel mathematical

model that captures the relevant anatomic, virologic, and immunologic features of oral EBV

infection. We built this model based on the structure of the oral tonsillar tissue where EBV is

shed, known as Waldeyer’s ring. In chronically infected individuals, EBV is shed in all areas of

Waldeyer’s ring, including the palatine, lingual, tubal tonsils, and adenoids [9]. Most of the

tonsillar area is composed of stratified squamous epithelium or ciliated pseudostratified

columnar epithelium, arranged into a series of crypts or folds, allowing for a large surface area

[32]. The epithelium is often only one cell thick, allowing EBV to easily transcytose to reach

the underlying lymphoid tissue where B cells and germinal centres are found [33]. The palatine

tonsils have an estimated surface area of 295 cm2, arranged into approximately 20 crypts [32],

while the lingual tonsil area is composed of 35–100 crypts, and the adenoids are composed of a

series of folds in lymphoid tissue [34]. By estimating that each palatine tonsil is approximately
1

12
of the entire surface area of Waldeyer’s ring, a series of 240 crypts, each serving as sites

where EBV infection may occur, can represent the entire region. We assumed that the dynam-

ics of each crypt are independent of each other and explicitly modelled the dynamics of

infected epithelial cells, the immune response, and viral load within each crypt. In exploring

this assumption of spatial independence, we found that having many spatially independent

crypts was essential for reproducing the stochastic and highly variable nature of the partici-

pants’ viral loads. In simulations without this spatial separation, viral loads and levels of

immune surveillance within an individual’s tonsils often equilibrated over time and no longer

matched the stochastic nature of the data.

The dynamics within each crypt are shown in Fig 3. We assumed that latently infected B

cells that are circulating throughout the body return to Waldeyer’s ring, reactivate, and infect

the tonsillar epithelium at a constant rate b. Infected epithelial cells, I, infect other epithelial

cells through cell-to-cell contact at a constant per-capita rate β, making the simplifying

assumption that target cell number is not limiting. This assumption can be justified because of

the large number of epithelial cells that are expected to make up Waldeyer’s ring. Assuming

the tissue composition across the tonsils is similar to that in the palatine tonsils where the most
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Fig 2. Impact of HIV-1 coinfection on oral EBV replication. A. Percentages of saliva samples that tested positive for EBV for each participant.

Black dots indicate the percentage of samples that tested positive for EBV when pooling participant samples. In HIV-1 uninfected participants, the

median percentage of swabs positive for EBV was 86% (range 0–100%, interquartile range (IQR) 33%), while in HIV-1 coinfected participants, the

median percentage of swabs positive for EBV was 100% (range 27–100%, IQR 0%). B. Median EBV viral loads/ml in oral swabs testing positive for

EBV for each participant. All graphs stratify participants by HIV-1 infection status. Coloured dots show the median value of the statistic for each

participant, while bars and whiskers show the spread across participants. C. Distributions of participants’ oral swab viral loads. Each box and

whisker represents the viral loads of EBV-positive oral swabs for an individual participant. The percentage of oral swabs that tested positive for

EBV for each participant is indicated by the colour of the box. Of swabs that tested positive for EBV, viral loads varied over time by a median of

3.49 orders of magnitude (range 0.34–5.27, IQR 1.32) within individual HIV-1 uninfected participants and a median of 2.30 orders of magnitude

(range 0.95–5.93, IQR 1.15) within individual HIV-1 coinfected participants. The red horizontal line represents the threshold of EBV detection

(150 EBV copies/ml). D. Participants’ BAFF levels, CD4+ T cell counts, and HIV-1 RNA loads correlated against median EBV copies/ml of saliva.

https://doi.org/10.1371/journal.pcbi.1009072.g002
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detailed information about Waldeyer’s ring is known, the total surface area of Waldeyer’s ring

would be 3540 cm2. While epithelial cell densities within tonsils have not been measured, a

previous estimate of epithelial cell densities in the genital tract where herpes simplex lesions

can form is 1.7 × 106/cm2 [35]. Assuming similar cell densities in the tonsils, this would indi-

cate that a total of 6.1 × 109 epithelial cells are present in Waldeyer’s ring. With the production

rate of virions per day per cell likely around 104 [10, 24], and maximum viral loads seen in

cohort participants being just under 1010 (Fig 1), this would indicate that at most, 106 infected

cells would be needed to produce the viral loads seen in participants. As our estimates for the

total number of epithelial cells within Waldeyer’s ring are multiple orders of magnitude larger

than this, it is unlikely target cell number would ever be a limiting factor.

Epithelial infection causes the recruitment and proliferation of EBV-specific cytotoxic T

cells, T, at a per-capita rate θI. Cytotoxic T cells kill infected epithelial cells following the law of

Fig 3. Description of single crypt dynamics. Waldeyer’s ring is represented as a series of 240 individual crypts in

which infection dynamics occur. Within each crypt, the population dynamics of infected epithelial cells (I), cytotoxic T

cells (T) and EBV (V) are described. The viral load detected in saliva is represented by the total virus aggregated across

all crypts.

https://doi.org/10.1371/journal.pcbi.1009072.g003
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mass action at a rate fIT. We assumed that cytotoxic T cells die or leave the tonsils at a per-cap-

ita rate δ. Independent of infection, we assumed a constant number of EBV-specific cytotoxic

T cells, α, are tissue-resident. Like T, these cells can kill infected epithelial cells and stimulate

the proliferation of new EBV-specific cytotoxic T cells; however, while population T leaves the

system over time, these tissue-resident T cells remain within the tissue and do not recirculate

[36, 37]. Including these tissue-resident T cells in the model means there are always immune

cells present to respond to new infection, and tissue is never entirely unprotected, allowing for

faster control of infection. EBV virions, V, are produced by infected epithelial cells, enter saliva

at a per-capita rate p and are cleared at a per-capita rate c. In this model, we assumed the main

contributors to virus in the saliva are infected epithelial cells. Thus, we did not directly model

virions produced by infected B cells [10]. With the propagation of EBV infection shown to be

800-fold more efficient through cell-to-cell contact rather than through free virus, we also

chose to assume all new epithelial cell infection is caused by cell-to-cell contact [10, 38].

The concentration of EBV detected in the saliva of participants was highly variable, and fre-

quently undetectable. Therefore, we chose to implement our model in a stochastic framework

in order to capture these traits (Methods). Our model assumptions were used to build a chemi-

cal master equation system [39] that describes all system reactions within a single crypt, as fol-

lows:

I ! I þ 1 with rate bþ bI ð1Þ

I ! I � 1 with rate fIðT þ aÞ ð2Þ

T ! T þ 1 with rate yIðT þ aÞ ð3Þ

T ! T � 1 with rate dT ð4Þ

V ! V þ 1 with rate pI ð5Þ

V ! V � 1 with rate cV: ð6Þ

By implementing this model stochastically, we also allow for infection to potentially die out

in a crypt. With the seeding of infection by EBV-infected activated B cells, CD8 T cells will

quickly proliferate and begin to control infection within the developing plaque. If enough CD8

T cells are present, infection may be cleared within this crypt. This crypt may then remain

clear of infection until EBV-infected B cells are stochastically chosen to reactivate and seed

new infection.

When considering the parameters of this model, many could potentially show small varia-

tions between individuals; however, most would likely not change based on HIV-1 infection

status. Thus, to simplify the fitting of our model, we fixed many of these parameters to set val-

ues based on those found in the literature. While more cells may become infected with EBV if

an individual has HIV-1 coinfection, once a cell becomes infected, it is unlikely that the rate at

which that cell produces EBV (p) would change based on HIV-1 infection status. Similarly,

EBV that is released by an infected cell and enters saliva likely maintains a constant clearance

rate (c). While HIV-1 infection is known to impact innate immunity in the oral mucosa, which

could impact how long a virus survives outside the cell, the overall phenomenon is poorly

understood, and we assume this impact is small [40]. The natural death rate of EBV-cytotoxic

T cells (δ), the ability of each of these cells to target and kill an infected cell (f), and the number

of these cells that remain tissue-resident are again likely not impacted by HIV-1 infection
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status. Thus, these parameters remained fixed throughout our fitting and analysis. However,

based on previous studies [28–30], we hypothesized that coinfection is likely to influence the

rate at which infected B cells reactivate since HIV-1 antigen could stimulate this reactivation.

Similarly, since HIV-1 coinfection often leads to a dampened ability to control other infec-

tions, HIV-1 coinfection could influence the rate at which EBV-specific cytotoxic cells are

recruited and proliferate at the site of infection. Thus, we assumed one or both of these pro-

cesses were responsible for the differences seen in EBV shedding patterns in individuals of dif-

ferent HIV-1 coinfection statuses. To determine which of these two processes is most

important to the phenomenon, or whether both contribute, parameters b or parameter θ were

left free to be fit to participants data, while other parameters remained fixed.

A sensitivity analysis for all parameters was initially performed (Fig A in S2 Text). As a

result, fixed parameter values in the model were set to β = 50 day−1, f = 0.1 day−1cell−1, α = 200

cells, δ = 0.1 day−1, p = 104 virions day−1 ml−1 cell−1, and c = 6 day−1. Examples of model simu-

lation trajectories with these fixed values and different values of b and θ are shown in Fig 4.

Low viral loads in the saliva are achieved with a high value of θ and a low value of b, while

high, sustained viral loads are acheived with a low value of θ and a high value of b. High values

of b also allow for a more constant level of virus to be detected in saliva while lower values of b
create more variance in viral load due to less frequent reactivation of latently-infected B cells

and seeding of new infection within the tonsils.

To determine what pairings of b and θ produce simulations that best reproduce each par-

ticipant’s data, parameters b and θ were fit to each participant’s data through Approximate

Bayesian Computation. Briefly, we first selected a participant and calculated summary

Fig 4. The impact of varying b and θ on model simulation trajectories. Model simulations for different pairings of values for parameters b and θ are

shown (units of cell day−1 and day−1 respectively). Simulations reproduce the stochastic nature of the data and are able to capture a wide variety of EBV

shedding traits. For all simulations, β = 50 day−1, f = 0.1 day−1cell−1, α = 200 cells, δ = 0.1 day−1, p = 104 virions day−1 ml−1 cell−1, and c = 6 day−1. The

grey horizontal line represents the qPCR threshold of detection. All simulated viral loads below this threshold were set to zero to match with participant

data.

https://doi.org/10.1371/journal.pcbi.1009072.g004
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statistics capturing the nature of their EBV shedding patterns. Varying parameters b and θ
and running model simulations, we identified what values of b and θ best reproduced the

summary statistics of the participant’s data. The parameter values lending to good fits were

used to build a posterior distribution for parameters b and θ for the selected participant. This

process was repeated for each participant, leading to different distributions of parameters b
and θ for each participant. These distributions were then combined using importance sam-

pling to infer how parameters of different groups of individuals varied. Further details on

these analyses can be found in the Methods and S2 Text. Examples showing how well simula-

tion runs fit to participant data can be found in Fig B in S2 Text. Among all 85 participants’

data, we were able to fit parameters to 82. Of the 3 participants whose data could not be fit, 2

participants had no EBV detected in any of their saliva swabs, and 1 participant had only 1

swab collected.

Greater oral EBV shedding with HIV-1 coinfection is due to both increased

B cell reactivation and weaker cellular immune response

Once all participant data was fit to our model, we examined how the cumulative distributions

of parameters b (rate of B cell reactivation causing new lytic epithelial infection) and θ (rate of

EBV-specific cytotoxic T cell proliferation and recruitment) differed between individuals.

Parameter distributions stratified by HIV-1 infection status and median EBV viral load in

saliva are shown in Fig 5.

A randomly selected HIV-1 coinfected individual is expected to have a higher b than a ran-

domly selected HIV-1 uninfected individual with probability 0.76, and overall the median

value of b is 2.9 times higher in HIV-1 coinfected individuals than in HIV-1 uninfected indi-

viduals. Similarly, an HIV-1 coinfected individual has a lower θ than an HIV-1 uninfected

individual with probability 0.74, and the median value of θ is 19.7 times lower in HIV-1 coin-

fected individuals.

While these results indicate both b and θ differ based on HIV-1 infection status, there is

substantial overlap in these distributions due to the wide variety of shedding patterns

observed across participants and the sometimes similar shedding patterns seen between

HIV-1 uninfected and coinfected participants. Thus, we stratified b and θ by participants’

median EBV viral load in saliva to better reveal a pattern. When stratified in this way, differ-

ences in the distributions of b and θ for each group become clearer, with individuals belong-

ing to a specific median viral load group having distinct b and θ values. This result indicates

that the values of parameters b and θ may be better explained by an individual’s EBV viral

load rather than their HIV-1 infection status. Details on these distributions are shown in Fig

5C and 5D.

Because both b and θ appear to explain differences between groups of individuals, we

sought to quantify the correlation between these two parameters (Fig 6). When looking at the

within-group correlation of participants with similar median viral loads, the b and θ values

selected during fitting have a moderate positive correlation, indicating that b and θ can

counter-balance to produce similar viral loads. However, when observing all data, fit b and θ
values are moderately negatively correlated, indicating the individuals with the highest viral

loads are those whose parameters feature high b and low θ values. It can also be noted that

some individuals with median viral loads of 102 − 104 have higher b values than is strictly pre-

dicted from these trends. This cluster on the graph comes from individuals who are HIV-1

coinfected with low viral loads (thus a high θ) but a high frequency of positive swabs

(higher b).
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EBV infection within tonsillar crypts behaves differently in HIV-1

coinfected and HIV-1 uninfected individuals

Using the results of our model, we next examined how simulations predicted the distribution

of infected cells throughout the different tonsillar crypts of our cohort participants (Fig 7).

The cumulative distributions for the median number of crypts with an active infection at

any given time for HIV-1 coinfected and HIV-1 uninfected individuals are shown in Fig 7A.

Despite all crypts within an individual being governed by the same set of parameters, crypt

dynamics are not uniform, with usually only a few crypts producing virus at any given time.

Over time, an HIV-1 coinfected person will have a higher median number of actively infected

crypts than an HIV-1 uninfected person with probability 0.68 (Fig 7A). While these distribu-

tions have large variance (IQR of 1 and 4 for HIV-1 uninfected and HIV-1 coinfected individ-

uals, respectively), over time HIV-1 uninfected participants are expected to have a median of 1

crypt within their tonsils actively producing virus, while HIV-1 coinfected individuals are

Fig 5. Cumulative distribution of parameters b and θ, stratified by HIV-1 status and median EBV viral load in saliva. Fitting our mathematical

model to participant data revealed that parameter b is usually greater in HIV-1 coinfected participants (A) and increases with median EBV viral load

(B). Parameter θ is usually lower in HIV-1 coinfected participants (C) and decreases with median saliva EBV viral load (D). Directional arrows and

numbers by figure legends indicate the probability that a randomly selected individual of one group has a higher parameter value (be it b or θ) than a

randomly selected individual in a second group. Arrows show the direction of comparison.

https://doi.org/10.1371/journal.pcbi.1009072.g005

PLOS COMPUTATIONAL BIOLOGY A mathematical model of EBV shedding in the tonsils and the impact of HIV-1 coinfection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009072 June 21, 2021 11 / 25

https://doi.org/10.1371/journal.pcbi.1009072.g005
https://doi.org/10.1371/journal.pcbi.1009072


expected to have 2. Thus, our results indicate that rather than all crypts always actively infected

and generating low amounts of virus, the viral loads seen in saliva are more often generated by

only a few actively infected crypts, each producing higher amounts of virus. These results

match well with previous estimates that indicate individuals have� 3 independent plaques of

oral epithelial infection at any given time [10].

Our results also suggest that infected crypts within an HIV-1 coinfected individual produce

more virus than the crypts of an HIV-1 uninfected individual. Over time, an HIV-1 coinfected

individual is expected to have a higher median viral load within their actively infected crypts

than an HIV-1 uninfected individual with probability 0.65 (Fig 7C). Our simulations predict a

Fig 6. Correlation between parameters b and θ. Obtained densities of parameters b and θ are plotted, stratified by

HIV-1 infection status and median oral EBV viral load group. Across all participants, or when stratifying by HIV-1

infection status, b and θ are negatively correlated (grey lines in top plots and blue line in bottom plot). However, since

b and θ have opposite effects on viral load, positive correlations are seen within each viral load group (grey lines, lower

plot).

https://doi.org/10.1371/journal.pcbi.1009072.g006
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median of 798 EBV DNA copies per active crypt in HIV-1 coinfected individuals and 389 EBV

DNA copies per active crypt in HIV-1 uninfected individuals. These distributions again have

large variance, leading to overlap (IQR of 753 and 1472 for HIV-1 uninfected and HIV-1 coin-

fected individuals, respectively).

We also examined the behaviour of traits when stratifying our simulations according to par-

ticipants’ median viral loads in the saliva. Higher median EBV viral loads detected in saliva

correlate well with higher numbers of actively infected crypts (Fig 7B) and higher viral loads

per actively infected crypt (Fig 7D). Together, these results indicate that high EBV loads in the

saliva are caused by more frequent and extensive infection in tonsillar crypts.

Fig 7. Predicted numbers of active crypts and viral load per active crypt. Cumulative distributions of the median number of crypts actively

producing EBV (A and B) and the median EBV viral load produced by an active crypt at any given time (C and D) are shown stratified by participant

HIV-1 status and EBV median viral load in the saliva. Increases in median salivary EBV viral load are caused by a higher number of crypts having active

(B) and more extensive (D) infection. This trend translates to HIV-1 coinfected participants having more infected crypts infected, and each infected

crypt producing more virus. We see that HIV-1 uninfected individuals usually have more actively infected crypts and more virus per active crypt than

HIV-1 coinfected individuals. Similarly, we see that individuals with higher median viral loads in their saliva usually have more actively infected crypts

and more virus per active crypt than individuals with lower median viral loads. Directional arrows and numbers by figure legends indicate the

probability that a randomly selected individual of one group has a higher parameter value (be it the number of active crypts or the viral load per active

crypt) compared with a randomly selected individual in a second group. Arrows show the direction of comparison.

https://doi.org/10.1371/journal.pcbi.1009072.g007
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Validating model results using participant biological data

Because our model predicted that increased EBV loads are caused by both increased B cell

reactivation and decreased immune control within tonsillar crypts, we wanted to evaluate

whether these predictions could be directly validated by laboratory data. Thus, we assessed

whether the CD4+ T cell count and HIV-1 RNA copy number in HIV-1 coinfected partici-

pants and the level of BAFF present in the blood of all participants matched our model’s pre-

dictions. While none of these values directly correspond to parameters within our

mathematical model, CD4+ T cell count should relate to parameter θ, while BAFF levels

should relate to parameter b. When looking at the relationship between these values and

parameters θ and b, in all scenarios these values correlated in the expected direction, further

supporting results (Table 1). A generalized linear model (Methods) revealed that each log10

increase in HIV-1 RNA copies/ml significantly decreased the predicted value of θ but did not

significantly affect b. Each 100-cell/mm3 increase in CD4+ count significantly changed the

value of θ and b, increasing θ and decreasing b. Lastly, each 100 pg/ml increase in BAFF caused

a nearly-significant change in the value of b, increasing its value, while causing a non-signifi-

cant decrease in θ.

We repeated this analysis to observe whether CD4+ T cell counts, HIV-1 plasma RNA lev-

els, and BAFF levels correlated with the median amount of virus detected in positive swabs

(Table 1). CD4+ T cell count and BAFF levels significantly correlated with the amount of EBV

detection in oral swabs. Each additional 100-cell/mm3 increase in CD4+ count was associated

with a 68% reduction in the amount of virus detected, consistent with cell-mediated immunity

conferring partial but incomplete control of EBV replication. Each 100 pg/ml increase in

BAFF was associated with a 71% increase in the amount of virus detected, supporting our

hypothesis that higher B cell activation increases EBV shedding. HIV-1 viral loads significantly

correlated with the amount of virus detected in samples, with each log10 increase in HIV-1

RNA correlating with a 569% increase in the amount of EBV detected in saliva swabs.

Application of our model to an independent data set from a North

American cohort

To test its generalizability, we applied our model to a previously described set of data from a

cohort of 26 participants in Seattle, Washington, who underwent daily oral EBV sampling and

Table 1. Effects of plasma HIV-1 load, CD4+ T cell count and BAFF amount on the Ugandan cohort participants’

median viral load and median values of parameters b and θ. In cohort participants, median viral load detected via

qPCR and values of parameters b and θ are influenced by the CD4+ T cell count, HIV-1 plasma viral load, and the

amount of BAFF in serum. The fold-change (FC) in participants’ median viral load, or model-fit b and θ values for

every log10 increase in HIV-1 RNA copies/mL, every 100 CD4+ T cell/mm3 increase, and every 100 pg/ml increase in

BAFF is shown. Note that data on CD4+ T cell count and HIV-1 RNA was only available for HIV-1 coinfected

participants.

Trait 1 Trait 2 FC 95% CI p-value

HIV-1 RNA viral load 6.69 2.53–17.71 <0.001

θ 0.16 0.06–0.42 <0.001

b 1.21 0.89–1.63 0.226

CD4+ T cell viral load 0.42 0.24–0.73 0.004

θ 1.84 1.05–3.22 0.040

b 0.80 0.69–0.92 0.004

BAFF viral load 1.71 0.92–3.20 0.096

θ 0.62 0.33–1.19 0.156

b 1.22 0.99–1.49 0.061

https://doi.org/10.1371/journal.pcbi.1009072.t001
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testing using the same methods as the Ugandan cohort described above [19]. A total of 1323

swabs were collected during the 8-week period of the study, with a median of 55 swabs per par-

ticipant (3–61 swabs). Of these participants, 16 (62%) were HIV-1 coinfected and, if on

HAART, were required to remain on a stable regimen throughout the study. None were

receiving other antiviral drugs at the time of enrollment. While the objective of the Seattle

study was to analyze the effects of valganciclovir on daily EBV oral shedding, we restricted our

analysis to the data from the eight-week period when participants received a placebo.

Participants of the Seattle cohort showed significantly lower oral EBV viral loads than those

of the Uganda cohort. Among Seattle cohort participants, HIV-1 uninfected participants had a

mean of 1.4 log10-lower EBV viral loads in their positive swabs than participants who were

HIV-1 uninfected in the Uganda cohort (p-value<0.001). HIV-1 coinfected participants in the

Seattle cohort had a mean of 2.0 log10-lower viral loads in their positive swabs than those who

were HIV-1 coinfected in the Uganda cohort (p-value<0.001). Nonetheless, both studies pro-

vide robust assessments of EBV shedding, and we expect the host-pathogen interactions occur-

ring within the tonsils to be the same. Our mathematical model fit the Seattle cohort data

again with high fidelity (Fig B in S3 Text) and produced similar results in terms of the number

of infected crypts, virus produced by crypts, and the values for parameters b and θ when strati-

fied by HIV-1 status and median EBV load (Figs C and D in S3 Text). We give full details in S3

Text. Thus, the Seattle cohort data supports our modelling approach and findings from the

Uganda cohort.

Discussion

By capturing the replication patterns of EBV in the saliva of HIV-1 coinfected and uninfected

Ugandan cohort participants, we were able to develop a novel stochastic mathematical model

of EBV infection in the tonsils and use it to evaluate potential explanations for why individuals

with HIV-1 coinfection have higher EBV viral loads and are more susceptible to EBV-related

malignancies. Specifically, our model indicates that increased oral EBV shedding with HIV-1

coinfection is due to both greater reactivation of EBV-infected B cells as well as impaired EBV-

specific cytotoxic T cell immune control.

Previous literature has reported that individuals infected with HIV-1 have higher oral EBV

shedding than HIV-1 uninfected individuals [3, 4, 20–22, 41, 42]. However, few data sets pres-

ent as detailed a representation of the dynamics of oral EBV shedding as we have shown here

or show how EBV shedding behaves in adults not receiving any antiviral or antiretroviral treat-

ment. From our analysis of the data, we found that HIV-1 infection is associated with a signifi-

cant increase in both the frequency and quantity of oral EBV shedding in Ugandan adults with

chronic EBV infection. Further, there was a statistically significant association between higher

CD4+ T cell counts in the blood of HIV-1 coinfected participants and a lower frequency of

EBV shedding in their saliva.

While previous mathematical models have examined the within-host dynamics of EBV

infection [10, 23–26], none have examined the differences between HIV-1 coinfected and

HIV-1 uninfected individuals [35, 43–45]. Strengths of our approach include the incorpo-

ration of granular quantitative EBV shedding measurements from two independent cohorts,

each made up of HIV-1 coinfected and uninfected individuals, and the inclusion of CD4+ T

cell counts and HIV-1 plasma viral load data from coinfected participants, as well as measure-

ments of the B cell activation marker BAFF in the blood of all participants. Limitations include

the lack of data on EBV-specific T cell responses.

Our novel mathematical model is based on representing the tonsillar epithelium as a series

of crypts, each serving as a potential site of epithelial infection and viral shedding. In this way,

PLOS COMPUTATIONAL BIOLOGY A mathematical model of EBV shedding in the tonsils and the impact of HIV-1 coinfection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009072 June 21, 2021 15 / 25

https://doi.org/10.1371/journal.pcbi.1009072


a single tonsillar crypt behaves similarly to how individual herpes simplex virus (HSV)-2

lesions have been modelled in the past, with reactivation of EBV-infected B cells being analo-

gous to the release of HSV-2 from infected neurons, sparking new epithelial lesions [35, 43–

45]. These previous models all captured the stochastic patterns of HSV-2 shedding well, which

appear similar to the patterns of oral EBV shedding. Our model assumes that all tonsillar

crypts are independent of one another. In reality, virus from one infected crypt may spill over

and seed infection in a neighbouring crypt, rather than EBV entering an uninfected crypt

purely via the reactivation of B cells as we assume in our model. By not accounting for this, our

predicted B cell reactivation rates are likely higher than their true biological values. However,

assuming the amount of viral spill-over into neighbouring crypts is proportional to the viral

load, our qualitative comparison remains valid. Furthermore, modelling the tonsillar crypts as

multiple, segregated sites of infection was essential for simulating the high variability in viral

load seen over time in cohort data. When the tissue was treated as one well-mixed region, viral

loads and immune cell counts would equilibrate and lose the high variability seen in partici-

pant data. This result indicates that while virus and immune cells may travel between crypts,

this effect is likely minimal. While a fully spatial model including the mobility of virus and

immune cells throughout the tonsils would have been ideal, we could only have parameterized

it speculatively, and it would be computationally intensive. Our strategy of a crypt-level simu-

lation is simple enough to be computationally feasible but complex enough to retain the inher-

ent stochasticity and spatial diversity of EBV infection dynamics within the tonsils.

Our mathematical model was fit explicitly, assuming that differences in EBV shedding pat-

terns were either due to changes in the rate of B cell activation, the rate of immune cell prolifer-

ation and recruitment within tonsillar crypts, or both. While some may consider it preferable

to have a model where all parameters are rigorously fit, the large number of parameters in our

model prevents this when using a stochastic model. Further, most parameters would likely

remain unaffected by HIV-1 coinfection. We specifically chose to fit the two parameters most

likely to be influenced by HIV-1 infection status. Indeed, B cell activation and plasma cell dif-

ferentiation have been shown to induce EBV reactivation [12] and increased B cell activation

is associated with HIV-1 infection [30, 46]. Further, HIV-1 has long been known to hinder

immune control of coinfections. By explicitly focusing on these two factors, we were able to

determine if they alone could explain the differences seen between HIV-1 uninfected and

HIV-1 coinfected EBV shedding patterns. The good fits between the model and data indicate

that indeed they can. We found that both factors contribute to higher EBV viral loads in HIV-

1 coinfected individuals, and were able to determine distributions for these parameters, which

have previously never been calculated for EBV. However, it is difficult to discern from our

model whether the effects of HIV-1 infection on B cell activation or the immune response are

more important in determining EBV shedding dynamics as both showed similar changes

based on HIV-1 infection status. As such, further experimental work or study of cohort partici-

pants is needed to address this question.

Our model also revealed interesting predictions on how infection is distributed amongst

the crypts of the tonsils. Our model predicts that HIV-1 coinfected individuals have more

actively infected crypts that each produce more EBV at any given time than HIV-1 uninfected

individuals. These results are consistent with previous observations that cellular immune con-

trol of EBV infection in HIV-1 coinfected individuals is impaired [47].

While our mathematical model describes within-host EBV infection dynamics, it does not

provide information on how HIV-1 coinfection may affect the transmission rate of EBV

among a population. Theoretically, higher EBV loads caused by HIV-1 coinfection should lead

to greater risks of transmission. Future work aimed at linking our model to an epidemiological

one describing EBV spread within a population could help elucidate how dampened immune
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responses or greater activation of latently infected B cells caused by HIV-1 coinfection affect

transmission and further strengthen the importance of understanding these within-host

dynamics.

Importantly, our results have implications for strategies to prevent EBV infection and dis-

ease. EBV-specific cellular immunity is recognized as critical for controlling EBV replication

and preventing EBV-associated malignancies. [47–52]. Independent of restoring EBV-specific

cellular immune responses, strategies to reduce B cell reactivation in EBV-infected participants

might limit viral replication, transmission, and related malignancies [53, 54].

Methods

Ethics statement

All participants within the Seattle Cohort provided written informed consent for study partici-

pation. Participants within the Uganda cohort provided either written or verbal informed con-

sent, with verbal consent being obtained in place of written consent when participants were

unable to read or understand the consent form. Verbal consent was documented via a thumb-

print from the participant on the oral consent form along with a signature from the person

obtaining consent. Study procedures for both human participant cohorts, including written

and verbal consent procedures, were approved by the University of Washington Human Sub-

jects Review Board (UW IRB no. 27014 and UW IRB no. 02–1500-B 04 for the Uganda and

Seattle cohort, respectively). Additional approval for the Ugandan cohort study was given by

the Makerere University Research and Ethics Committee and the Uganda National Council

for Science and Technology.

Cohorts and samples

Men and women aged 18 to 65 were enrolled in the Uganda cohort as previously described

and were followed for four weeks [31]. Eligible HIV-1 seropositive participants had a CD4+ T

cell count greater than 200 cells/mm3 and were not taking antiretroviral therapy, following the

WHO guidelines at that time [55]. Men aged 24 to 66 were enrolled in the Seattle cohort as

previously described [18, 19]. As the Seattle cohort shedding data was obtained from a ran-

domized placebo-controlled cross-over trial of valganciclovir, only data collected while partici-

pants were receiving placebo were used for this study. Both participants and pill

administrators were unaware of group assignments. Participants of both cohorts did not take

any drugs with anti-herpesvirus activity during the study period. Self-collected daily oropha-

ryngeal swabs for both cohorts were collected by swabbing the oral mucosa and pharynx with

a Dacron swab and were then placed in a vial containing 1 ml of 1X digestion buffer, stored at

room temperature, and returned at weekly (Ugandan cohort) or bi-weekly (Seattle cohort)

clinical visits. In the Uganda cohort, focused physical exams and collection of genital and

plasma samples were performed at weekly clinic visits. These data are described in the S1 Text.

All data collected and used in this study is stored in the Dryad data repository: https://doi.org/

10.5061/dryad.w6m905qkh [56].

Laboratory testing

Commercially available immunoassays were used to ascertain HIV-1 and EBV serostatus

(Inverness Medical Innovations, Inc and Wampole1 for the Ugandan cohort and Abbott Lab-

oratories for the Seattle Cohort [19]). For the Ugandan cohort, CD4+ T cell counts and plasma

HIV-1 RNA levels were determined in HIV-1-infected participants at the Makerere Univer-

sity-John Hopkins University laboratory using standard cell sorting techniques and the
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Amplicor HIV-1 monitor test (Roche, version 1.5), respectively. For both cohorts, DNA was

extracted from mucosal swabs and plasma [57], and real-time quantitative polymerase chain

reaction (qPCR) was performed using specific primers to detect EBV [58], with positive and

negative controls as previously described [16, 57]. Mucosal samples with greater than 150 cop-

ies/ml and plasma samples with greater than 50 copies/ml herpesvirus DNA/ml were consid-

ered positive [59]. Following these tests, 72 participants had enough plasma remaining (0.5

ml) to have levels of soluble B cell activating factor (BAFF) measured using the Human BAFF

DuoSet enzyme-linked immunosorbent assay (ELISA) kit (R&D systems). ELISAs were per-

formed using the sandwich technique and done in duplicate with the averages used in the

analysis.

Statistical analyses of data

The frequency of mucosal shedding and viremia was defined as the proportion of samples test-

ing positive for EBV. The frequency of mucosal shedding was first compared in HIV-1 coin-

fected and uninfected participants. To do this, we used generalized estimating equations

(GEE) and assumed frequencies followed a Poisson distribution. Frequencies of mucosal shed-

ding and viremia were also modelled with GEE allowing for continuous adjustment for each

100 cell/mm3 increase in CD4+ T cell count, each log10 increase in HIV-1 RNA, and each 100

pg/ml increase in BAFF. Again, we assumed that the frequency of shedding follows a Poisson

distribution. For these models, BAFF measurements were available for all participants, while

CD4+ T cell counts and HIV-1 RNA loads were only available for HIV-1 infected participants.

Thus, when modelling the frequency of EBV mucosal shedding and viremia as a function of

BAFF, we corrected for HIV-1 status, including this as a term in the GEE. Finally, GEE were

used to compare the quantities of virus shed in mucosal samples in HIV-1 coinfected and

HIV-1 uninfected participants assuming a Gaussian distribution. In all tests, two-sided p-val-

ues�0.05 were considered statistically significant.

Mathematical model simulations

Based on the reactions of the model, we applied the tau leaping algorithm to stochastically sim-

ulate the dynamics of each crypt [60]. With this algorithm, a small, constant-sized time step is

taken, and the number of occurrences of each reaction is stochastically chosen following a

Poisson or Multinomial distribution depending on the independence of the reaction. The pop-

ulation sizes of T, I and V are updated accordingly. For our simulations, we allowed the model

to progress through time steps equal to 0.01 days, or 14.4 minutes. One long simulation is per-

formed, which is then divided into 240 sections to represent the dynamics of each of the 240

crypts. Specifically, the simulation is run out to a time of

Winit þ 240ðLi þWcryptÞ ð7Þ

and crypt c’s dynamics are taken from the time interval

t 2 ½Winit þ ðc � 1ÞðLi þWcryptÞ;Winit þ cLi� ð8Þ

where Winit represents the time necessary to remove the effects of the initial conditions on the

simulation, Li represents the duration of which participant i had oral swabs taken, and Wcrypt

represents the time necessary to make the dynamics of one crypt quasi-independent of the

next. With immune cell decay (δT) acting as the slowest rate in the model (δ = 0.1/(day-cell)),

we let both Wcrypt and Winit equal 120 days, so that if infection in one crypt occurred, only an

expected 1/106 of the responding immune cells would carry on to the next crypt’s dynamics.
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At the beginning of a simulation, initial conditions were set to describe an infection-free state

where V = 0, T = 0 and I = 0.

Viral loads from each crypt are added together to get the model-predicted amount of virus

seen in the saliva over time. As the qPCR threshold of detection was 150 copies/ml for the data

used, whenever the total simulated viral load in the saliva dropped below 150 copies/ml, we set

the output to zero.

Model fitting using Approximate Bayesian Computation

We next fit parameters to daily quantitative oral EBV shedding data from our cohort partici-

pants. We used Approximate Bayesian Computation (ABC), where summary statistics of the

data and model simulations are compared to determine which parameters allow the model to

fit the data best. Fitting was performed separately for each set of participants’ data. We used

the R package EasyABC to execute sequential ABC, following Lenormand’s algorithm [61].

Here, uniform priors for each parameter are set, and an initial n number of simulations are

run, each with a different set of parameters randomly chosen from the priors. The algorithm

calculates summary statistics, chosen by the user, for each parameter set (D̂) and compares

how well they match with the summary statistics of the data (D) by calculating a distance mea-

sure, rðD; D̂Þ. The best-matching ϕ percent of these simulations are kept, with the parameters

of the chosen simulations used to build new priors. This process repeats until the distance

between the summary statistics of the data and simulations is minimized. We executed this

algorithm for the data of each individual participant. We chose to capture the trends of the

data using 5 summary statistics: the frequency of positive swabs, the median, maximum, and

variance of detectable viral loads, and the number of peaks in viral loads, with a peak defined

as when the directly preceding and following time points have lower viral loads. While more

summary statistics could be considered desirable, too many can overwhelm the algorithm,

leading to poor convergence to a posterior distribution. With these 5 summary statistics, the

associated ρ value for participant i and parameter set j (ρi,j) is defined as

ri;j ¼
1

5

X5

k¼1

j
Di;k � D̂j;k

Di;k
j ð9Þ

where Di,k is the kth summary statistic for the data of participant i and D̂j;k is the kth summary

statistic for parameter set j. Using the Lenormand algorithm, 1000 parameter sets that mini-

mize ρi,j were selected for each participant. During this fitting, we fixed all parameters except b
and θ as these are the two parameters that are likely most affected by HIV-1 infection. For each

chosen parameter set, we also calculated the median number of actively infected crypts and the

median amount of virus produced by an actively infected crypt so we could later compare how

these traits differ between participant groups.

Since we lack information on immune cell presence in tonsillar crypts and can only fit the

model to data on viral load, we had to censor simulations where the cytotoxic T cell level

became unrealistically high. Whenever a parameter set led to a simulation where cytotoxic T

cell count within a tonsillar crypt was greater than 1.475 × 106 cells (equivalent to 105 cells/cm2

which is the estimated maximum density in the genital tract during HSV-2 infection [62]), we

prevented it from being selected by the ABC algorithm, ensuring only biologically relevant

simulations were considered.
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Determining the posterior distribution of parameters and differences

between participant groups

We combined the results of our ABC fitting algorithm to compare how the posterior distribu-

tions of parameters b and θ, the number of actively infected crypts, and the amount of virus

produced vary between different participant groups.

As some parameter values selected by the ABC fitting algorithm fit the data better than oth-

ers (i.e. have lower ρ values), we approximated the posterior distributions of our parameter

sets by performing importance sampling on the raw posterior distributions [63, 64]. To do

this, we weighted each output parameter set by the reciprocal of its ρ value. By weighting

inversely to ρ, we assume our model is a correct representation of viral dynamics in the tonsils

and put greater importance on those parameter sets that fit the data well.

To determine the posterior distributions of parameters in HIV-1 coinfected and uninfected

groups (XA and XB respectively), the probability of each parameter set (x( i, j)) serving in each

posterior is set to

PðXA ¼ xi;jÞ ¼ Pði 2 AÞ
1

ri;j

1

qA
ð10Þ

PðXB ¼ xi;jÞ ¼ Pði 2 BÞ
1

ri;j

1

qB
ð11Þ

where A and B are the sets of indices of participants who are HIV-1 uninfected and coinfected,

respectively, and we define the normalization factors

qA ¼
X

8i2A

X

8j

1

ri;j
and qB ¼

X

8i2B

X

8j

1

ri;j
: ð12Þ

Note that
X

8i

X

8j

PðXA ¼ xi;jÞ ¼ 1 and
X

8i

X

8j

PðXB ¼ xi;jÞ ¼ 1: ð13Þ

We took 105 draws from each distribution and plotted the resulting data to obtain graphical

representations of the posterior parameter distributions for parameters b and θ, the number of

actively infected crypts, and the virus produced, for HIV-1 coinfected and uninfected partici-

pants. The above process was repeated where instead of stratifying by HIV-1 status, partici-

pants were stratified by median EBV load in order to produce similar plots.

We also performed importance sampling on the raw posterior distributions for individual

participants. Using these, we were able to calculate the mean parameter values for b and θ for

each participant. Means of parameters b and θ in HIV-1 coinfected participants were then

modelled as functions of the participants’ CD4+ T cell count and HIV-1 RNA load. This was

done using GLM, allowing for continuous adjustment for each 100 cell/mm3 increase in CD4

+ T cell count and each log10 increase in HIV-1 RNA. Parameters b and θ were assumed to fol-

low a Gaussian distribution. In these tests, two-sided p-values�0.05 were considered statisti-

cally significant.

Sensitivity analysis of model parameters

We performed two sensitivity analyses to evaluate how changes in parameter values affect the

results of the model. First, to initially determine acceptable values for parameters, we per-

formed a univariate analysis, starting with an initial set of parameters, varying one parameter
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at a time, and running 100 simulations for each parameter set to gain a representation of how

EBV viral dynamics behave. From this analysis, we selected parameter values for β, f, α, δ, p,

and c which would remain fixed throughout the ABC data fitting process while leaving the

parameters of most interest, b and θ, free.

After completing ABC, we performed another univariate analysis to observe whether our

choices for fixed parameter values were correct. By letting b and θ equal values selected by the

ABC algorithm and then individually varying the parameters that were fixed, we checked

whether different values of our fixed parameters would have improved the model’s fit. Results

of these sensitivity analyses are found in S2 Text.

Supporting information

S1 Text. Analysis of Uganda cohort’s genital swabs and plasma samples.

(PDF)

S2 Text. Mathematical model parameter estimation and goodness of fit.

(PDF)

S3 Text. Validation of the mathematical model using a North American cohort.

(PDF)

Acknowledgments

This work was enabled in part by support provided by WestGrid and Compute Canada.

Author Contributions

Conceptualization: Catherine M. Byrne, Christine Johnston, Jackson Orem, Fred Okuku,

Anna Wald, Lawrence Corey, Corey Casper, Daniel Coombs, Soren Gantt.

Data curation: Catherine M. Byrne, Christine Johnston, Meei-Li Huang, Anna Wald.

Formal analysis: Catherine M. Byrne, Christine Johnston, Meei-Li Huang, Daniel Coombs.

Funding acquisition: Catherine M. Byrne, Christine Johnston, Anna Wald, Lawrence Corey,

Corey Casper, Daniel Coombs, Soren Gantt.

Investigation: Catherine M. Byrne, Christine Johnston, Jackson Orem, Fred Okuku, Meei-Li

Huang, Habibur Rahman, Anna Wald, Lawrence Corey, Corey Casper, Daniel Coombs,

Soren Gantt.

Methodology: Catherine M. Byrne, Christine Johnston, Jackson Orem, Fred Okuku, Meei-Li

Huang, Habibur Rahman, Anna Wald, Lawrence Corey, Joshua T. Schiffer, Corey Casper,

Daniel Coombs, Soren Gantt.

Project administration: Catherine M. Byrne, Christine Johnston, Jackson Orem, Fred Okuku,

Anna Wald, Lawrence Corey, Corey Casper, Daniel Coombs, Soren Gantt.

Resources: Catherine M. Byrne, Christine Johnston, Anna Wald, Lawrence Corey, Daniel

Coombs, Soren Gantt.

Software: Catherine M. Byrne, Daniel Coombs.

Supervision: Christine Johnston, Anna Wald, Joshua T. Schiffer, Daniel Coombs, Soren

Gantt.

Validation: Catherine M. Byrne, Christine Johnston, Soren Gantt.

PLOS COMPUTATIONAL BIOLOGY A mathematical model of EBV shedding in the tonsils and the impact of HIV-1 coinfection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009072 June 21, 2021 21 / 25

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009072.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009072.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009072.s003
https://doi.org/10.1371/journal.pcbi.1009072


Visualization: Catherine M. Byrne.

Writing – original draft: Catherine M. Byrne, Christine Johnston, Daniel Coombs, Soren

Gantt.

Writing – review & editing: Catherine M. Byrne, Christine Johnston, Meei-Li Huang, Anna

Wald, Lawrence Corey, Joshua T. Schiffer, Corey Casper, Daniel Coombs, Soren Gantt.

References
1. Cohen JI, Fauci AS, Varmus H, Nabel GJ. Epstein-Barr virus: an important vaccine target for cancer

prevention. Science Translational Medicine. 2011; 3(107):107fs7. https://doi.org/10.1126/scitranslmed.

3002878 PMID: 22049067

2. Shiels MS, Engels EA. Evolving epidemiology of HIV-associated malignancies. Current Opinion in HIV

and AIDS. 2017; 12(1):6–11. https://doi.org/10.1097/COH.0000000000000327 PMID: 27749369

3. Ferbas J, Rahman MA, Kingsley LA, Armstrong JA, Ho M, Zhou SY, et al. Frequent oropharyngeal

shedding of Epstein-Barr virus in homosexual men during early HIV infection. AIDS. 1992; 6(11):1273–

1278. https://doi.org/10.1097/00002030-199211000-00006 PMID: 1335273

4. Diaz-Mitoma F, Ruiz A, Flowerdew G, Houston S, Romanowski B, Kovithavongs T, et al. High levels of

Epstein-Barr virus in the oropharynx: a predictor of disease progression in human immunodeficiency

virus infection. Journal of Medical Virology. 1990; 31(2):69–75. https://doi.org/10.1002/jmv.

1890310202 PMID: 2167351

5. Matrajt L, Gantt S, Mayer BT, Krantz EM, Orem J, Wald A, et al. Virus and host-specific differences in

oral human herpesvirus shedding kinetics among Ugandan women and children. Scientific Reports.

2017; 7(1):13105–017–12994–0. https://doi.org/10.1038/s41598-017-12994-0 PMID: 29026166

6. Ghebrekidan H, Ruden U, Cox S, Wahren B, Grandien M. Prevalence of herpes simplex virus types 1

and 2, cytomegalovirus, and varicella-zoster virus infections in Eritrea. Journal of Clinical Virology.

1999; 12(1):53–64. https://doi.org/10.1016/S0928-0197(98)00064-6 PMID: 10073414

7. Biggar RJ, Henle W, Fleisher G, Bocker J, Lennette ET, Henle G. Primary Epstein-Barr virus infections

in African infants. I. Decline of maternal antibodies and time of infection. International Journal of Cancer.

1978; 22(3):239–243. https://doi.org/10.1002/ijc.2910220305 PMID: 212369

8. Zheng QY, Huynh KT, van Zuylen WJ, Craig ME, Rawlinson WD. Cytomegalovirus infection in day care

centres: A systematic review and meta-analysis of prevalence of infection in children. Reviews in Medi-

cal Virology. 2019; 29(1):e2011. https://doi.org/10.1002/rmv.2011 PMID: 30306730

9. Laichalk LL, Hochberg D, Babcock GJ, Freeman RB, Thorley-Lawson DA. The dispersal of mucosal

memory B cells: evidence from persistent EBV infection. Immunity. 2002; 16(5):745–754. https://doi.

org/10.1016/S1074-7613(02)00318-7 PMID: 12049725

10. Hadinoto V, Shapiro M, Sun CC, Thorley-Lawson DA. The dynamics of EBV shedding implicate a cen-

tral role for epithelial cells in amplifying viral output. PLoS Pathogens. 2009; 5(7):e1000496. https://doi.

org/10.1371/journal.ppat.1000496 PMID: 19578433

11. Thorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nature Reviews Immunology.

2001; 1(1):75–82. https://doi.org/10.1038/35095584 PMID: 11905817

12. Thorley-Lawson DA. In: Münz C, editor. EBV persistence—introducing the virus. Cham: Springer Inter-

national Publishing; 2015. p. 151–209.

13. Tovey MG, Lenoir G, Begon-Lours J. Activation of latent Epstein-Barr virus by antibody to human IgM.

Nature. 1978; 276(5685):270–272. https://doi.org/10.1038/276270a0 PMID: 213727

14. Takada K. Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma

lines. International Journal of Cancer. 1984; 33(1):27–32. https://doi.org/10.1002/ijc.2910330106

PMID: 6319296

15. Laichalk LL, Thorley-Lawson DA. Terminal differentiation into plasma cells initiates the replicative cycle

of Epstein-Barr virus in vivo. Journal of Virology. 2005; 79(2):1296–1307. https://doi.org/10.1128/JVI.

79.2.1296-1307.2005 PMID: 15613356

16. Pauk J, Huang ML, Brodie SJ, Wald A, Koelle DM, Schacker T, et al. Mucosal shedding of human her-

pesvirus 8 in men. New England Journal of Medicine. 2000; 343(19):1369–1377. https://doi.org/10.

1056/NEJM200011093431904 PMID: 11070101

17. Mark KE, Wald A, Magaret AS, Selke S, Olin L, Huang ML, et al. Rapidly cleared episodes of herpes

simplex virus reactivation in immunocompetent adults. The Journal of Infectious Diseases. 2008; 198

(8):1141–1149. https://doi.org/10.1086/591913 PMID: 18783315

PLOS COMPUTATIONAL BIOLOGY A mathematical model of EBV shedding in the tonsils and the impact of HIV-1 coinfection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009072 June 21, 2021 22 / 25

https://doi.org/10.1126/scitranslmed.3002878
https://doi.org/10.1126/scitranslmed.3002878
http://www.ncbi.nlm.nih.gov/pubmed/22049067
https://doi.org/10.1097/COH.0000000000000327
http://www.ncbi.nlm.nih.gov/pubmed/27749369
https://doi.org/10.1097/00002030-199211000-00006
http://www.ncbi.nlm.nih.gov/pubmed/1335273
https://doi.org/10.1002/jmv.1890310202
https://doi.org/10.1002/jmv.1890310202
http://www.ncbi.nlm.nih.gov/pubmed/2167351
https://doi.org/10.1038/s41598-017-12994-0
http://www.ncbi.nlm.nih.gov/pubmed/29026166
https://doi.org/10.1016/S0928-0197(98)00064-6
http://www.ncbi.nlm.nih.gov/pubmed/10073414
https://doi.org/10.1002/ijc.2910220305
http://www.ncbi.nlm.nih.gov/pubmed/212369
https://doi.org/10.1002/rmv.2011
http://www.ncbi.nlm.nih.gov/pubmed/30306730
https://doi.org/10.1016/S1074-7613(02)00318-7
https://doi.org/10.1016/S1074-7613(02)00318-7
http://www.ncbi.nlm.nih.gov/pubmed/12049725
https://doi.org/10.1371/journal.ppat.1000496
https://doi.org/10.1371/journal.ppat.1000496
http://www.ncbi.nlm.nih.gov/pubmed/19578433
https://doi.org/10.1038/35095584
http://www.ncbi.nlm.nih.gov/pubmed/11905817
https://doi.org/10.1038/276270a0
http://www.ncbi.nlm.nih.gov/pubmed/213727
https://doi.org/10.1002/ijc.2910330106
http://www.ncbi.nlm.nih.gov/pubmed/6319296
https://doi.org/10.1128/JVI.79.2.1296-1307.2005
https://doi.org/10.1128/JVI.79.2.1296-1307.2005
http://www.ncbi.nlm.nih.gov/pubmed/15613356
https://doi.org/10.1056/NEJM200011093431904
https://doi.org/10.1056/NEJM200011093431904
http://www.ncbi.nlm.nih.gov/pubmed/11070101
https://doi.org/10.1086/591913
http://www.ncbi.nlm.nih.gov/pubmed/18783315
https://doi.org/10.1371/journal.pcbi.1009072


18. Casper C, Krantz EM, Corey L, Kuntz SR, Wang J, Selke S, et al. Valganciclovir for suppression of

human herpesvirus-8 replication: a randomized, double-blind, placebo-controlled, crossover trial. The

Journal of Infectious Diseases. 2008; 198(1):23–30. https://doi.org/10.1086/588820 PMID: 18491970

19. Yager JE, Magaret AS, Kuntz SR, Selke S, Huang ML, Corey L, et al. Valganciclovir for the suppression

of Epstein-Barr virus replication. The Journal of Infectious Diseases. 2017; 216(2):198–202. https://doi.

org/10.1093/infdis/jix263 PMID: 28838145

20. Miller CS, Berger JR, Mootoor Y, Avdiushko SA, Zhu H, Kryscio RJ. High prevalence of multiple human

herpesviruses in saliva from human immunodeficiency virus-infected persons in the era of highly active

antiretroviral therapy. Journal of Clinical Microbiology. 2006; 44(7):2409–2415. https://doi.org/10.1128/

JCM.00256-06 PMID: 16825357

21. Griffin E, Krantz E, Selke S, Huang ML, Wald A. Oral mucosal reactivation rates of herpesviruses

among HIV-1 seropositive persons. Journal of Medical Virology. 2008; 80(7):1153–1159. https://doi.

org/10.1002/jmv.21214 PMID: 18461621

22. Yan Y, Ren Y, Chen R, Hu J, Ji Y, Yang J, et al. Evaluation of Epstein-Barr virus salivary shedding in

HIV/AIDS patients and HAART use: a retrospective cohort study. Virologica Sinica. 2018; 33(3):227–

233. https://doi.org/10.1007/s12250-018-0028-z PMID: 29654554

23. Thorley-Lawson DA, Hawkins JB, Tracy SI, Shapiro M. The pathogenesis of Epstein-Barr virus persis-

tent infection. Current Opinion in Virology. 2013; 3(3):227–232. https://doi.org/10.1016/j.coviro.2013.

04.005 PMID: 23683686

24. Huynh GT, Rong L. Modeling the dynamics of virus shedding into the saliva of Epstein-Barr virus posi-

tive individuals. Journal of Theoretical Biology. 2012; 310:105–114. https://doi.org/10.1016/j.jtbi.2012.

05.032 PMID: 22683365

25. Huynh GT, Adler FR. Alternating host cell tropism shapes the persistence, evolution and coexistence of

Epstein-Barr virus infections in human. Bulletin of Mathematical Biology. 2011; 73(8):1754–1773.

https://doi.org/10.1007/s11538-010-9590-8 PMID: 20972716

26. Hawkins JB, Delgado-Eckert E, Thorley-Lawson DA, Shapiro M. The cycle of EBV infection explains

persistence, the sizes of the infected cell populations and which come under CTL regulation. PLoS

Pathogens. 2013; 9(10):e1003685. https://doi.org/10.1371/journal.ppat.1003685 PMID: 24146621

27. Duca K, Shapiro M, Delgado-Eckert E, Hadinoto V, Jarrah A, Laubenbacher R, et al. A virtual look at

Epstein-Barr virus infection: biological interpretations. PLoS Pathogens. 2007; 10(3):1388–1400.

28. Gaidano G, Carbone A, Dalla-Faverat R. Pathogenesis of AIDS-related lymphomas. American Journal

of Pathology. 1998; 152(3):113–153.

29. Righetti E, Ballon G, Ometto L, Cattelan AM, Menin C, Zanchetta M, et al. Dynamics of Epstein-Barr

virus in HIV-1-infected subjects on highly active antiretroviral therapy. AIDS. 2002; 16(1):63–73. https://

doi.org/10.1097/00002030-200201040-00009 PMID: 11741164

30. Petrara MR, Cattelan AM, Zanchetta M, Sasset L, Freguja R, Gianesin K, et al. Epstein-Barr virus load

and immune activation in human immunodeficiency virus type 1-infected patients. Journal of Clinical

Virology. 2012; 53(3):195–200. https://doi.org/10.1016/j.jcv.2011.12.013 PMID: 22209290

31. Johnston C, Orem J, Okuku F, Kalinaki M, Saracino M, Katongole-Mbidde E, et al. Impact of HIV infec-

tion and Kaposi sarcoma on human herpesvirus-8 mucosal replication and dissemination in Uganda.

PloS One. 2009; 4(1):e4222. https://doi.org/10.1371/journal.pone.0004222 PMID: 19156206

32. Perry M, Whyte A. Immunology of the tonsils. Immunology Today. 1998; 19(9):414–421. https://doi.org/

10.1016/S0167-5699(98)01307-3 PMID: 9745205

33. Tugizov SM, Herrera R, Palefsky JM. Epstein-Barr virus transcytosis through polarized oral epithelial

cells. Journal of Virology. 2013; 87(14):8179–8194. https://doi.org/10.1128/JVI.00443-13 PMID:

23698302

34. Lewis DE, Harriman GR, Blutt SE. Organization of the immune system. In: Rich RR, Fleisher TA,

Shearer WT, Schroeder HW, Frew AJ, Weyand CM, editors. Clinical Immunology. 3rd ed. Edinburgh:

Mosby; 2008. p. 17–38.

35. Schiffer JT, Abu-Raddad L, Mark KE, Zhu J, Selke S, Magaret A, et al. Frequent release of low amounts

of herpes simplex virus from neurons: results of a mathematical model. Science Translational Medicine.

2009; 1(7):7ra16. https://doi.org/10.1126/scitranslmed.3000193 PMID: 20161655

36. Woon HG, Braun A, Li J, Smith C, Edwards J, Sierro F, et al. Compartmentalisation of total and virus-

specific tissue-resident memory cd8+ t cells in human lymphoid organs. PLoS Pathogens. 2016; 12(8):

e1005799. https://doi.org/10.1371/journal.ppat.1005799 PMID: 27540722

37. Long HM, Meckiff BJ, Taylor GS. The T-cell response to Epstein-Barr virus-new tricks from an old dog.

Frontiers in immunology. 2019; 10:2193. https://doi.org/10.3389/fimmu.2019.02193 PMID: 31620125

PLOS COMPUTATIONAL BIOLOGY A mathematical model of EBV shedding in the tonsils and the impact of HIV-1 coinfection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009072 June 21, 2021 23 / 25

https://doi.org/10.1086/588820
http://www.ncbi.nlm.nih.gov/pubmed/18491970
https://doi.org/10.1093/infdis/jix263
https://doi.org/10.1093/infdis/jix263
http://www.ncbi.nlm.nih.gov/pubmed/28838145
https://doi.org/10.1128/JCM.00256-06
https://doi.org/10.1128/JCM.00256-06
http://www.ncbi.nlm.nih.gov/pubmed/16825357
https://doi.org/10.1002/jmv.21214
https://doi.org/10.1002/jmv.21214
http://www.ncbi.nlm.nih.gov/pubmed/18461621
https://doi.org/10.1007/s12250-018-0028-z
http://www.ncbi.nlm.nih.gov/pubmed/29654554
https://doi.org/10.1016/j.coviro.2013.04.005
https://doi.org/10.1016/j.coviro.2013.04.005
http://www.ncbi.nlm.nih.gov/pubmed/23683686
https://doi.org/10.1016/j.jtbi.2012.05.032
https://doi.org/10.1016/j.jtbi.2012.05.032
http://www.ncbi.nlm.nih.gov/pubmed/22683365
https://doi.org/10.1007/s11538-010-9590-8
http://www.ncbi.nlm.nih.gov/pubmed/20972716
https://doi.org/10.1371/journal.ppat.1003685
http://www.ncbi.nlm.nih.gov/pubmed/24146621
https://doi.org/10.1097/00002030-200201040-00009
https://doi.org/10.1097/00002030-200201040-00009
http://www.ncbi.nlm.nih.gov/pubmed/11741164
https://doi.org/10.1016/j.jcv.2011.12.013
http://www.ncbi.nlm.nih.gov/pubmed/22209290
https://doi.org/10.1371/journal.pone.0004222
http://www.ncbi.nlm.nih.gov/pubmed/19156206
https://doi.org/10.1016/S0167-5699(98)01307-3
https://doi.org/10.1016/S0167-5699(98)01307-3
http://www.ncbi.nlm.nih.gov/pubmed/9745205
https://doi.org/10.1128/JVI.00443-13
http://www.ncbi.nlm.nih.gov/pubmed/23698302
https://doi.org/10.1126/scitranslmed.3000193
http://www.ncbi.nlm.nih.gov/pubmed/20161655
https://doi.org/10.1371/journal.ppat.1005799
http://www.ncbi.nlm.nih.gov/pubmed/27540722
https://doi.org/10.3389/fimmu.2019.02193
http://www.ncbi.nlm.nih.gov/pubmed/31620125
https://doi.org/10.1371/journal.pcbi.1009072


38. Imai S, Nishikawa J, Takada K. Cell-to-cell contact as an efficient mode of Epstein-Barr virus infection

of diverse human epithelial cells. Journal of Virology. 1998; 72(5):4371–4378. https://doi.org/10.1128/

JVI.72.5.4371-4378.1998 PMID: 9557727

39. Gillespie DT. A rigorous derivation of the chemical master equation. Physica A. 1992; 188:404–425.

https://doi.org/10.1016/0378-4371(92)90283-V

40. Nittayananta W, Tao R, Jiang L, Peng Y, Huang Y. Oral innate immunity in HIV infection in HAART era.

Journal of Oral Pathology & Medicine. 2016; 45(1):3–8. https://doi.org/10.1111/jop.12304 PMID:

25639844

41. Lucht E, Brytting M, Bjerregaard L, Julander I, Linde A. Shedding of cytomegalovirus and herpesviruses

6, 7, and 8 in saliva of human immunodeficiency virus type 1-infected patients and healthy controls.

Clinical Infectious Diseases. 1998; 27(1):137–141. https://doi.org/10.1086/514604 PMID: 9675467

42. Fidouh-Houhou N, Duval X, Bissuel F, Bourbonneux V, Flandre P, Ecobichon JL, et al. Salivary cyto-

megalovirus (CMV) shedding, glycoprotein B genotype distribution, and CMV disease in human immu-

nodeficiency virus-seropositive patients. Clinical Infectious Diseases. 2001; 33(8):1406–1411. https://

doi.org/10.1086/322630 PMID: 11550116

43. Schiffer JT, Swan D, Al Sallaq R, Magaret A, Johnston C, Mark KE, et al. Rapid localized spread and

immunologic containment define Herpes simplex virus-2 reactivation in the human genital tract. eLife.

2013; 2:e00288. https://doi.org/10.7554/eLife.00288 PMID: 23606943

44. Byrne CM, Gantt S, Coombs D. Effects of spatiotemporal HSV-2 lesion dynamics and antiviral treat-

ment on the risk of HIV-1 acquisition. PLoS Computational Biology. 2018; 14(4):e1006129. https://doi.

org/10.1371/journal.pcbi.1006129 PMID: 29698393

45. Schiffer JT, Swan DA, Roychoudhury P, Lund JM, Prlic M, Zhu J, et al. A fixed spatial structure of CD8

(+) T cells in tissue during chronic HSV-2 infection. Journal of Immunology. 2018; 201(5):1522–1535.

https://doi.org/10.4049/jimmunol.1800471 PMID: 30045971

46. Marks MA, Rabkin CS, Engels EA, Busch E, Kopp W, Rager H, et al. Markers of microbial translocation

and risk of AIDS-related lymphoma. AIDS. 2013; 27(3):469–474. https://doi.org/10.1097/QAD.

0b013e32835c1333 PMID: 23169327

47. van Baarle D, Hovenkamp E, Callan MF, Wolthers KC, Kostense S, Tan LC, et al. Dysfunctional

Epstein-Barr virus (EBV)-specific CD8(+) T lymphocytes and increased EBV load in HIV-1 infected indi-

viduals progressing to AIDS-related non-Hodgkin lymphoma. Blood. 2001; 98(1):146–155. https://doi.

org/10.1182/blood.V98.1.146 PMID: 11418474

48. Kersten MJ, Klein MR, Holwerda AM, Miedema F, van Oers MH. Epstein-Barr virus-specific cytotoxic T

cell responses in HIV-1 infection: different kinetics in patients progressing to opportunistic infection or

non-Hodgkin’s lymphoma. Journal of Clinical Investigation. 1997; 99(7):1525–1533. https://doi.org/10.

1172/JCI119315 PMID: 9119996

49. Smets F, Latinne D, Bazin H, Reding R, Otte JB, Buts JP, et al. Ratio between Epstein-Barr viral load

and anti-Epstein-Barr virus specific T-cell response as a predictive marker of posttransplant lymphopro-

liferative disease. Transplantation. 2002; 73(10):1603–1610. https://doi.org/10.1097/00007890-

200205270-00014 PMID: 12042647

50. Heslop HE, Ng CY, Li C, Smith CA, Loftin SK, Krance RA, et al. Long-term restoration of immunity

against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes.

Nature Medicine. 1996; 2(5):551–555. https://doi.org/10.1038/nm0596-551 PMID: 8616714

51. Rooney CM, Smith CA, Ng CY, Loftin S, Li C, Krance RA, et al. Use of gene-modified virus-specific T

lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet. 1995; 345(8941):9–13.

https://doi.org/10.1016/S0140-6736(95)91150-2 PMID: 7799740

52. Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW, Gan Y, et al. Infusion of cytotoxic T cells for the

prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients.

Blood. 1998; 92(5):1549–1555. PMID: 9716582

53. Wilson WH, Young RM, Schmitz R, Yang Y, Pittaluga S, Wright G, et al. Targeting B cell receptor signal-

ing with ibrutinib in diffuse large B cell lymphoma. Nature medicine. 2015; 21(8):922–926. https://doi.

org/10.1038/nm.3884 PMID: 26193343

54. Du W, Goldstein R, Jiang Y, Aly O, Cerchietti L, Melnick AM, et al. A virtual B bell lymphoma model to

predict effective combination therapy. Blood. 2014; 124(21):928–928. https://doi.org/10.1182/blood.

V124.21.928.928

55. Scaling up antiretroviral therapy in resource-limited settings: guidelines for a public health approach.

Executive summary. April 2002. IAPAC Monthly. 2002; 8(6):168–175. PMID: 12154788

56. Byrne C, Johnston C, Orem J, Huang M, Rahman H, Wald A, et al. Data from “Examining the dynamics

of Epstein-Barr virus shedding in the tonsils and the impact of HIV-1 coinfection on daily saliva viral

loads (PLoS Computational Biology)”. 2021; Database: Dryad Digital Repository.

PLOS COMPUTATIONAL BIOLOGY A mathematical model of EBV shedding in the tonsils and the impact of HIV-1 coinfection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009072 June 21, 2021 24 / 25

https://doi.org/10.1128/JVI.72.5.4371-4378.1998
https://doi.org/10.1128/JVI.72.5.4371-4378.1998
http://www.ncbi.nlm.nih.gov/pubmed/9557727
https://doi.org/10.1016/0378-4371(92)90283-V
https://doi.org/10.1111/jop.12304
http://www.ncbi.nlm.nih.gov/pubmed/25639844
https://doi.org/10.1086/514604
http://www.ncbi.nlm.nih.gov/pubmed/9675467
https://doi.org/10.1086/322630
https://doi.org/10.1086/322630
http://www.ncbi.nlm.nih.gov/pubmed/11550116
https://doi.org/10.7554/eLife.00288
http://www.ncbi.nlm.nih.gov/pubmed/23606943
https://doi.org/10.1371/journal.pcbi.1006129
https://doi.org/10.1371/journal.pcbi.1006129
http://www.ncbi.nlm.nih.gov/pubmed/29698393
https://doi.org/10.4049/jimmunol.1800471
http://www.ncbi.nlm.nih.gov/pubmed/30045971
https://doi.org/10.1097/QAD.0b013e32835c1333
https://doi.org/10.1097/QAD.0b013e32835c1333
http://www.ncbi.nlm.nih.gov/pubmed/23169327
https://doi.org/10.1182/blood.V98.1.146
https://doi.org/10.1182/blood.V98.1.146
http://www.ncbi.nlm.nih.gov/pubmed/11418474
https://doi.org/10.1172/JCI119315
https://doi.org/10.1172/JCI119315
http://www.ncbi.nlm.nih.gov/pubmed/9119996
https://doi.org/10.1097/00007890-200205270-00014
https://doi.org/10.1097/00007890-200205270-00014
http://www.ncbi.nlm.nih.gov/pubmed/12042647
https://doi.org/10.1038/nm0596-551
http://www.ncbi.nlm.nih.gov/pubmed/8616714
https://doi.org/10.1016/S0140-6736(95)91150-2
http://www.ncbi.nlm.nih.gov/pubmed/7799740
http://www.ncbi.nlm.nih.gov/pubmed/9716582
https://doi.org/10.1038/nm.3884
https://doi.org/10.1038/nm.3884
http://www.ncbi.nlm.nih.gov/pubmed/26193343
https://doi.org/10.1182/blood.V124.21.928.928
https://doi.org/10.1182/blood.V124.21.928.928
http://www.ncbi.nlm.nih.gov/pubmed/12154788
https://doi.org/10.1371/journal.pcbi.1009072


57. Casper C, Krantz E, Selke S, Kuntz SR, Wang J, Huang ML, et al. Frequent and asymptomatic oropha-

ryngeal shedding of human herpesvirus 8 among immunocompetent men. The Journal of Infectious

Diseases. 2007; 195(1):30–36. https://doi.org/10.1086/509621 PMID: 17152006

58. Kimura H, Morita M, Yabuta Y, Kuzushima K, Kato K, Kojima S, et al. Quantitative analysis of Epstein-

Barr virus load by using a real-time PCR assay. Journal of Clinical Microbiology. 1999; 37(1):132–136.

https://doi.org/10.1128/JCM.37.1.132-136.1999 PMID: 9854077

59. Magaret AS, Wald A, Huang ML, Selke S, Corey L. Optimizing PCR positivity criterion for detection of

herpes simplex virus DNA on skin and mucosa. Journal of Clinical Microbiology. 2007; 45(5):1618–

1620. https://doi.org/10.1128/JCM.01405-06 PMID: 17329447

60. Gillespie DT. Approximate accelerated stochastic simulation of chemically reacting systems. The Jour-

nal of Chemical Physics. 2001; 115(4):1716–1733. https://doi.org/10.1063/1.1378322

61. Lenormand M, Jabot F, Deffuant G. Adaptive approximate Bayesian computation for complex models.

Computational Statistics. 2012; 28(6):2777–2796. https://doi.org/10.1007/s00180-013-0428-3

62. Zhu J, Koelle DM, Cao J, Vazquez J, Huang ML, Hladik F, et al. Virus-specific CD8+ T cells accumulate

near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. The Journal of Experi-

mental Medicine. 2007; 204(3):595–603. https://doi.org/10.1084/jem.20061792 PMID: 17325200

63. Prangle D. Lazy ABC. Statistics and Computing. 2016; 26(1):171–185. https://doi.org/10.1007/s11222-

014-9544-3

64. Tran MN, Kohn R. Exact ABC using importance sampling. ArXiv E-prints. 2015;ArXiv:1509.08076.

PLOS COMPUTATIONAL BIOLOGY A mathematical model of EBV shedding in the tonsils and the impact of HIV-1 coinfection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009072 June 21, 2021 25 / 25

https://doi.org/10.1086/509621
http://www.ncbi.nlm.nih.gov/pubmed/17152006
https://doi.org/10.1128/JCM.37.1.132-136.1999
http://www.ncbi.nlm.nih.gov/pubmed/9854077
https://doi.org/10.1128/JCM.01405-06
http://www.ncbi.nlm.nih.gov/pubmed/17329447
https://doi.org/10.1063/1.1378322
https://doi.org/10.1007/s00180-013-0428-3
https://doi.org/10.1084/jem.20061792
http://www.ncbi.nlm.nih.gov/pubmed/17325200
https://doi.org/10.1007/s11222-014-9544-3
https://doi.org/10.1007/s11222-014-9544-3
https://doi.org/10.1371/journal.pcbi.1009072

