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Abstract
Deep level insect relationships are generally difficult to resolve, especially within taxa of the

most diverse and species rich holometabolous orders. In beetles, the major diversity occurs

in the Phytophaga, including charismatic groups such as leaf beetles, longhorn beetles and

weevils. Bark and ambrosia beetles are wood boring weevils that contribute 12 percent of

the diversity encountered in Curculionidae, one of the largest families of beetles with more

than 50000 described species. Phylogenetic resolution in groups of Cretaceous age has

proven particularly difficult and requires large quantity of data. In this study, we investigated

100 nuclear genes in order to select a number of markers with low evolutionary rates and

high phylogenetic signal. A PCR screening using degenerate primers was applied to 26 dif-

ferent weevil species. We obtained sequences from 57 of the 100 targeted genes.

Sequences from each nuclear marker were aligned and examined for detecting multiple

copies, pseudogenes and introns. Phylogenetic informativeness (PI) and the capacity for

reconstruction of previously established phylogenetic relationships were used as proxies

for selecting a subset of the 57 amplified genes. Finally, we selected 16 markers suitable

for large-scale phylogenetics of Scolytinae and related weevil taxa.

Introduction

In the postgenomic era, obtaining well resolved and highly supportedmolecular phylogenies of
hyper-diverse eukaryotic lineages continues to represent a major challenge. Previous attempts
on investigating phylogenetic relationships in beetles have demonstrated recurrent problems in
resolving deeper relationships such as those between the four beetle suborders, but also much
younger divergences [1–4]. One of the most problematic groups includes the weevils, where
the majority of tribes and subfamilies remain unresolved despite considerable efforts in assem-
bling molecular data [5–8]. Bark and ambrosia beetles in the subfamily Scolytinae represent a
weevil lineage where much effort has been invested in developing molecularmarkers for phylo-
genetic analysis [9, 10]. Nevertheless, resolution betweenmany Cretaceous relationships
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remains rather low [11], emphasizing the scarceness of molecularmarkers to resolve this par-
ticular phylogeny.

So far, the vast majority of phylogenetic studies on beetles were based on markers such as
ribosomal RNAs and mitochondrial cytochrome oxidase I and II genes [8, 12–15]. With the
exception of nuclear ribosomal genes (18s and 28s rRNAs) are most markers useful for the reso-
lution of Cenozoic divergences, showing lack of phylogenetic signal for Cretaceous time frames
[10]. In the last years, a growing number of phylogenetic studies on beetles have started to
include nuclear protein coding genes, especiallyEF-1α, CAD,ArgK, and wingless [11, 16, 17],
which are also widely used in other insect taxa [18–21]. However, a relatively limited amount
of work has been done to discover and select additional nuclear genes for beetle systematics
[22, 23–25], and all studies to date were based on less than 10 molecularmarkers [26, 27].
Therefore, obtaining a high degree of phylogenetic resolution in beetles is difficult; a direct con-
sequence of high species diversity and a limited number of informative markers.

The first studies on the utility of protein coding genes in insect systematics date back to
more than 20 years ago [28–30]. The advancement of insect phylogenies has largely been
driven by the development of newmarkers in Lepidoptera [31]. At present, dozens of nuclear
markers can be chosen to investigate Lepidoptera phylogeny at various ranks [18, 32–36].
Hymenoptera is another group where a consistent number of nuclear markers have been devel-
oped [37–39]. Although similar studies have been carried out in other insect groups such as
Diptera [40–42], the majority of the remaining insect orders present a situation more similar to
Coleoptera with few published markers conserved across different families [43, 44]. Thus,
increasing the number of phylogenetic characters from protein coding nuclear genes is of man-
datory importance for achieving robust phylogenetic hypotheses in beetle systematics.

Recently, the advent of next generation sequencing (NGS) technologies has contributed to
additional ground-breaking advancements in the systematics field, profoundly increasing the
level of resolution compared to previous phylogenies based on single or few genes [45]. Geno-
mic and transcriptomic data obtained from NGS based research has led to predictive insect
phylogenies, which now more clearly reveal key events in insect evolutionary history [46–50].
New developments based on ultra-conservedelements (UCEs) or RAD-sequencingwill
increase resolution also at lower taxonomic ranks in insects [51, 52]. However, the benefits of
NGS are generally counterbalanced by the high cost and computationally demanding analyses
of such high throughput data. The utility of few well-characterizedmarkers should not be
underestimated as they represent a rapid and cost effective approach for resolving small scale
phylogenies.

Bark and ambrosia beetles in the subfamily Scolytinae constitute a group of highly derived,
small wood boring weevils capable of excavating galleries into different parts of dead trees,
shrubs and bushes, as well as in lianas and other plant tissues in different forest habitats
throughout the world [53]. Scolytinae is generally regarded as a well-supported clade of more
than 6000 described species representing approximately 12 percent of the entire diversity in
the family Curculionidae [5, 54, 55]. A tremendous variability in life cycles, reproductive strate-
gies, mating systems, host plants interactions, feeding behavior and ecology has been docu-
mented [56, 57], which makes this group of beetles particularly interesting to study in a
phylogenetically comparative context. Phylogenies of Scolytinae have so far relied on a combi-
nation of five molecularmarkers (one mitochondrial and four nuclear genes) and eventually
morphological characters. Given the high diversity of Scolytine species, additional data are
needed to obtain sufficient resolution at deeper nodes.

In order to select new phylogenetic markers, 100 different nuclear genes were screened by
PCR using degenerate primers and tested in a restricted but representative group of Scolytinae
and other weevils.With the aim of developing slowly evolving genes, the properties of each gene
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fragment were evaluated based on PCR amplification and sequencing success and their phyloge-
netic performance. This study reports on the development and utility of 16 novel markers for
weevils, with a particular focus on bark and ambrosia beetles in the subfamily Scolytinae.

Materials and Methods

We included 18 species of bark and ambrosia beetles and 8 additional weevils from other sub-
families for primer screening (Table 1 and S1 Table). These beetles were collected by one of the
authors (BHJ) during fieldwork in tropical forests (1998–2012). Collectionpermits were
requested from authorities in Uganda, Tanzania, Cameroun, South Africa and Madagascar.
Ethical guidelines were followed. Voucher specimens are deposited in the Coleoptera collection
of the University Museum of Bergen, University of Bergen, Norway. All weevils, Platypodinae
and Scolytinae species used in this study were previously described in other phylogenetic stud-
ies [7, 11, 58].

The procedure for primer selection can be summarized as follows: 1) putatively single copy
expressed sequence tags (ESTs) longer than 800 base pairs were selected in GenBank for two
different beetle species,Tribolium castaneum and Dendroctonus ponderosae; 2) preliminary

Table 1. Weevil species included in this study.

Species Code Subfamily Tribe Country

Brentidae sp. BrBre05 Brentidae (familiy) Brentinae Cameroon

Mesites fusiformis CsMes01 Cossoninae Cossonini Spain

Pselactus sp. CsPse01 Cossoninae Onycholipini Portugal (Madeira)

Larinus sp. ClLar01 Lixinae Cleonini Russia

Porthetes hispidus MoPor01 Molytinae Amorphocerini South-Africa

Platypus impressus PlPla07 Platypodinae Platypodini Tanzania

Triozastus marshalli PlTri02 Platypodinae Platypodini Cameroon

Chaetastus tuberculatus TsCha02 Platypodinae Tesserocerini Cameroon

Pityophthorus micrographus CoPit01 Scolytinae Corthylini Norway

Diamerus inermis / D. hispidus DiDia03 / DiDia04 Scolytinae Diamerini Tanzania / Madagascar

Dryocoetes autographus DrDry01 Scolytinae Dryocoetini Russia

Ozopemon uniseriatus DrOzo02 Scolytinae Dryocoetini Papua New Guinea

Hylastes attenuatus HtHyt06 Scolytinae Hylastini Sweden

Hylesinus varius HlHyl02 Scolytinae Hylesinini Sweden

Kissophagus hederae HlKis01 Scolytinae Hylesinini Austria

Chaetoptelius vestitus ToCha01 Scolytinae Hylurgini Morocco

Dendroctonus terebrans / D. micans ToDen02 / ToDen01 Scolytinae Hylurgini USA

Tomicus piniperda ToTom01 Scolytinae Hylurgini Norway

Acanthotomicus sp. IpAca01 Scolytinae Ipini Cameroon

Pityogenes quadridens IpPit03 Scolytinae Ipini Sweden

Premnobius cavipennis PrPre01 Scolytinae Premnobiini Sierra Leone

Camptocerus aenipennis ScCam02 Scolytinae Scolytini Guyana

Cnemonyx vismiacolens ScCne01 Scolytinae Scolytini Guyana

Scolytus intricatus ScScl02 Scolytinae Scolytini Czech Republic

Xyleborus affinis XyXyl00 Scolytinae Xyleborini Cameroon

Xyleborus monographus XyXyl03 Scolytinae Xyleborini Czech Republic

Degenerate primers were designed on conserved regions in the alignment of insect nucleotide sequences that were available from genomic and

transcriptomic sources. Two or more consecutive degenerate sites were preferentially avoided as well as the use of completely degenerate sites (N). A total

of 274 primers were designed (Table 2 - only successful primers reported).

doi:10.1371/journal.pone.0163529.t001
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BLAST searches were performed to discard unsuitable markers, based on the evidence for mul-
tiple paralogous copies (e.g. large gene families) or ambiguous genomic characterization (e.g.
similar matching values for different proteins); 3) available sequences for each selected gene
were aligned, including annotated genomic and transcriptomic sequences frommodel organ-
isms (e.g.Drosophila melanogaster, Apis mellifera and Bombyx mori) to determine intron-exon
structure; 4) degenerate primers were designed; 5) a PCR screening was run and products with
the expected correct size (albeit highly variable due to presence of introns) were sequenced; 6)
markers reaching a minimum PCR and sequencing success of 20% were used to reconstruct
single gene phylogenies (Bayesian) and trees were compared to previously established and
well-supported clades [5, 7, 10, 11].

DNA was extracted from individual specimens using DNeasy Blood& Tissue kit (Qiagen)
following the manufacturer’s instructions. The PCR reactionmixture contained 2.5 μl 10x PCR
buffer (Qiagen), in which the final concentration of MgCl2 was 2.0 mM, 200 μM of each dNTP
(Sigma Aldrich), 0.5 μM of each primer, 0.125 units Hot Start Taq1 DNA polymerase (Qia-
gen), 2 μl DNA, with water added to a final volume of 25 μl. A negative control (sterile water)
was included in each test. The PCR was performed using a S1000TM Thermal Cycler (BIO-RAD
Laboratories, Inc.). Three standard cycle programs were used for the initial screening: denatur-
ation step at 95°C for 5 minutes, 35 cycles of 30 seconds at 95°C, 30 seconds at 48, 52 and 58°C,
60 seconds at 72°C, and finally 5 minutes extension at 72°C. Further optimization included a
gradient of annealing temperatures in the range of 44–62°C, modulating the extension time
depending on the expected PCR product length, and MgCl2 concentration.We also considered
two different touch-down PCR protocols for two of these genes (see Table 2 for details).

PCR products were sequencedwith the same primers as those used for amplification. DNA
sequences of both strands were obtained using the BigDye Terminator cycle sequencing ready
reaction kit (Applied Biosystems Inc.) using an automated DNA sequencer (Applied Biosys-
tems Prism 3700) following the manufacturer’s instructions.

All obtained sequences were submitted to BLAST analyses, accepting a correct gene target if
the cutoff value was below 1E-4. All sequences for each gene were alignedwith other insect
sequences for a preliminary NJ analysis in PAUP � 4.0 [59] to detect deviant sequences. The
sequences were checked by eye and using Bioedit 7.2.5 [60] and MAFFT [61] to align gene frag-
ments with complex structure, caused either by to the presence of indels of coding triplets, or
less frequently by long introns marked by unusual exon-intron borders such as the most com-
mon alternative splice site GC—AG [62].

Introns were trimmed and the coding fragments were translated into amino acid sequences
using Bioedit 7.2.5 to check for translational errors (stop codons). All these preliminary analy-
ses had the purpose of detecting pseudogenes or early signs of possible paralogs (e.g. high
degree of amino acid substitutions). In addition, the amino acid sequences of the selected
markers were examined in OrthoDB v9 to assess gene orthology [63, 64]. The orthology for
each gene was confirmed by cluster of orthologous groups (COGs) comparison among arthro-
pod sequences in the database. Ambiguous nucleotide positions in the coding region that were
difficult to align were tentatively excluded (in Arr2 and Iap2) to create an alternative alignment
for comparisons (see results and discussion).

Phylogenetic analyses were performed on unambiguously aligned sequences obtained from a
minimum of 5 species. Phylogenetic inference was based on Bayesian and maximum parsimony
analyses, the latter as implemented in PAUP � 4.0. Node support in the parsimony analyses was
estimated by bootstrap analyses using 20 random additions of heuristic searches for each of 200
bootstrap replicates. Bayesian phylogenetic analyses were performed in MrBayes 3.2 [65]. The
most appropriate model for base frequencies and substitution rates was determinedby jModelT-
est [66], using the Akaike information criterion (AIC). MrBayes searches were run for each gene
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Table 2. Primer sequences and annealing temperature for the nuclear markers selected in this study. Furthermore, primers for additional genes for

lower level phylogenetics are reported.

Gene acronym Primer forward (5’-3’) Primer reverse (5’-3’) Annealing T˚C

EF2 CGTTTCTAYGCBTTYGGHCGTG CCYTCYTTRGTGGCCCAYTGG TD 58 (10 cy) 44 (25cy)

ATGATGGGYCGTTAYGTWGARGC TD 58 (10 cy) 44 (25cy)

Hsp70 CAAGCYGACATGAAGCAYTGGCC CGGGTGATGGAGGTGTAGAARTC 58

GAYGGTATCTTYGARGTMAAGTC CGRCCYTTGTCRTTRGTGATGG 55

CCNC ATGGCTGGMAAYTTTTGGCARAG TCGAGCAGATARAAYTCRCAYTC 52

HDAC Rpd3 ATGAARCCSCACMGSATAMGSATGAC GTAGTCGTTRTARGGSAGYTCRTTGGC 53

GCCACSGAAGTYTCRTASGTCCA 53/50

Arr2 CGYGARGAGGAYGARGTYATGGG ACCATSGTRACYTCGCAATGYTGCAC 52

CTCAAARACKATRTTGTCGTCRTCGTC 52

Iap2 TGGAAYTAYGGRGACCAAGTRATGGC CCATCKGGCRTGYTCYGTCCAWGGATC 52

PABP1 CCRATTCGYATYATGTGGTC GAARGCRACAAAWCCRAAWCC 50

Prp1 ATGTCSGCKACTYTRGAYGCWGG GGRTASGTGTTRTCYTGCATYTC 44

CTR9 GAAGGYGATAARATGGAWCARGC TCGAAACAYTGKGCKGCATTTTC 52

RCC1 GGKTGYAATGACGARGGSGC CGGCCCAATTGTCCYTGYTC 52

SOD1 TCCACATYCAYGARTTYGGGG CCTTKKCCCAAATCATCMGG TD 52 (10 cy) 46 (25cy)

TPI CGHAAATTCGTWGTYGGWGGHAACTGG CKGARCCYCCRTATTGRATTC 50

GGTGGHAACTGGAARATGAACGG 52

ADA2 GAYATGYTDGAYGTVCATGC ACAGGRCCRGCTTCRCCRCAATG 52

AARTTYAATGCCAAATAYAAYCC GGWCCRGCTTCACCRCARTGWGG 48/52

UBA5 TTGGKAGYGTAACWGCRGAAATG ATATGGCCWGARACSGCRTTTTC 52

Cda4 TACGARGARTGGGTKGGRGARATG AACCAATTMGTRTGRAASGGCATC 48

FEN1 GARGCCCCYTGYGARGCKGARGC TCACCATGCCYTCYTCRTCMGG 48

ACTB CTGAAGCCCCMTTGAACCCMAAGGC GAGATCCACATCTGYTGGAARGTGG

CXorf56 GAAGYATTGCRTGTTCSGAYAC GTCACMGAACTGAAYTTKCCC

eRF1 GTTGGCAGATGAATTTGGAACRGC CCRAABAGAGCTCCRTTACCATCC

U2AF ATYGCTGGATTWAAYGGRATGC TCTCKTCTRTGRTACTTRTCSGGWTC

MAD YAAYTTYCCWGCYATGRTWCC ACACCRTGRTTYTTWGCWCC

mp20 GACAAGGARGCCCARGARTGGATCG TCCCACAGRTCAACTGTYTGGAARAC

GGTCCGGGCCCAYTCRGRGTGCYTGTTAGG

5MP CATGACKTTTATGMGKGCKTTC CTTCYTCRGCGTTTTGWAGCC

Pi4k TGYTGYCCKTGYTGYTTYGG TGGTAYGGRTASGCYCGCC

Gel GAYGAGGGCSGGWTCSGCWGC AGGATRAAGCARTCRCCTTTGTTC

C1-THF CATYTRACYGGYGAYATYCATGC ACAGCYCCYGTKGCYCCCAAATC

alpha-Spec CAYGCHAATGCWTTCCATCARTGG GGYTGKCCYTCYTCWACCATYGG

AATS CATCAYACGTTTTTTGAGATG GCATGRTCNGCTAARACNCGRTARGCC

Hsp90 GATCATCAATATSTTCTACTC TCTCCGGTGATGWARTAGATG

dldE3 GGRGAYTGTATWCATGGRCC GCYTCRTTRATBARTTCRCC

CATCCWGAAGTKGGMTGGGTKGG

Mpgt AAACCSCTGTTYCCMGTTGCKGG GCMGTTTTYAACTGSGACCACC

NaK GGYGGTTTCGCSWTGYTGYGTGGATCGG GCGACGATGATACCGATCARGAAGATGACAGC

Fbox11 AATGCWTTRGCTGGWATYTGGG CCRCCRTGYTGACCRTGRTG

UDE AAGCCRGACACCGTWCCCGG CTGGCWTCRGGRCTGTACGCCC

GTPbp ATTARAAYGTAKCCATCGTTRCCCC GTGTTGATAATWGASGACTTGCC

CatL CACATTTACACTTTYAACCCRATG ACCARCTGTTYTTMACCARCCAGTA

TpC CTTCCCSCMGARCARATYGCCG CCTCSCCRGTCATCATCTCCATG

PGI GGCCCSCTKATGGTRACCGAAGC CCCAGCTCCACKCCCCATTGGTC

(Continued )
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separately and for concatenated datasets (8109 bp– 2702 aa) using the suggestedmodels for
each gene partition and a mixedmodel for amino acid substitution. In both cases, the search
consisted of 2000000 generations with two independent runs, each with four simultaneous
chains, and trees sampled every 1000 generations. The convergence diagnostics (SDSF, PSRF)
and parameter sample plots were evaluated using the software Tracer 1.6 [67].

An indirect measure of the phylogenetic signal in each marker was assessed through topo-
logical congruencewith previously well documented clades [5–7, 10, 11, 68] which were used
to derive a scheme of the current classification of Curculionoidea (Fig 1). These clades belong
to six tribes of Scolytinae (A = Dryocoetini including Xyleborini, B = Ipini, C = Hylurgini
+ Hylesinini, D = Scolytini) and the subfamily Platypodinae (E). Rooting of the trees was

Table 2. (Continued)

Gene acronym Primer forward (5’-3’) Primer reverse (5’-3’) Annealing T˚C

AcCoA GGTGTACTGCKGAYATTGGYTGGATCAC GGAAACSCAGCMGCKCCWGGYTTCAT

CATCAGRTGYCCKGASACGTTYARCAT

Ucdk GAGCACKGTWTGCAARCGYATWATGG CCYCTWGGAATRATRACATCAGC

PPO1 AAYCTSCACCAYTGGCAYTGGC CGGAASGTSCKCTCRAASGG

Prp6 AATCCSAATCATCCWCCGGCKTGG TTCTTCCAGYTTRGCSGCRGTWGTCC

Mxp TAMGSACRGCSTAYACSAACAC CGCTTGTGYTTCATSCKCCG

Npl4 CTCGYTGYGTSCAYTGCTC TCGCGCACYAGCGCCATRCAYTG

Cam1 GAYGGMGATGGCACRATYACTACC TCRTAATTGACCTGACCGTCRCC

STX1A ATGACYAARGAYAGATTRGCRGC GCCATRTCCATRAACATRTCRTG

TP120b TWGGRAATGTCAAYGTYTC AAGCTCAACCCKCKCCACATCC

CHS1 CATATMTTYTTCGAYGAYGC CAACGATCYTCKCCYTGATC

DDX49 AARGCTATACGARGAYCCWTATGG TGCCTGCYCTAGCWGTYCTYCC

GTF2H3 CTCGCATTTGATGCAGAAGGC CARATYGGRCTAAACTTGCA

IF3 ACTCGCTYTACAAAATGTTGGG CTTTSGTRTCGGCRATATGRATC

TIF6 GACACRATWCCSGTGGTSCATGC CTACCWCARTTWACYGTTCC

IDH TACAAYGTWGGAATWAARTGTGC CAMACAAARCCYCCYTCMGATTTC

Ecr GAAGTKATGATGTTCMGRATGGC GAWGCACATYTCDGARTTYTG

doi:10.1371/journal.pone.0163529.t002

Fig 1. Schematic tree showing well supported relationships between tribes within the subfamily Scolytinae and other

weevil families and subfamilies considered in this study.

doi:10.1371/journal.pone.0163529.g001
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dependent on the sequences available, and used in the following order: 1) Brentidae, 2) Platy-
podinae, 3) Cossoninae,Molytinae and Lixinae, 4) Scolytini [5, 6].

Basic properties of each gene, including the overall mean divergence of sequences (p-dis-
tance) and the variation in first, second and third positions, were calculated for each gene frag-
ment usingMEGA 6.0 [69]. Parsimony informative sites were calculated together with the
homoplasy and retention indices (respectively HI and RI–S2 Table) using PAUP � 4.0. A phylo-
genetic informativeness profile (PI) was obtained for each gene using PhyDesign [70], an on-
line program developed from a previous study [71]. Substitution rates for each position were
calculated using HyPhy implemented in PhyDesign, selecting a K2P model (base frequen-
cies = 0.25, transitions = 2, transversions = 1). The input time tree was obtained using Beast
v1.8.2 [72], with topology constraints following previously published phylogenies of weevils
and Scolytinae [5, 6, 11]. The tree was reconstructed using a concatenated dataset of 16 genes,
using a GTR+I+ Γmodel for each gene partition, and a Yule speciation process.We selected an
uncorrelated lognormal relaxed molecular clock and used default priors as suggested by the
authors (see XML S1 file in Supplementary information). Two calibration points were used:
116 Ma for the node subtending Scolytinae and other weevil subfamilies, and 30 Ma for clade
A (Dryocoetini+Xyleborini).

Results

Sequenceswere obtained for 57 different genes, whereas 43 primer sets never amplified the cor-
rect gene. A total of 798 sequences were obtained, but only 510 of these (64%) were unambigu-
ously characterized as beetle orthologs in BLASTN search. Among the remaining 288
sequences, 53 were identified as non-beetle sequences (mainly from bacteria, fungi or nema-
todes associated with beetles) with different degree of confidence in gene identity. The remain-
ing 235 sequences resulted in unreadable or poor quality sequences without a clear match in
GenBank (E value> 1E-4, query coverage< 30% and/or less than 30% identity).

The evaluation of the 57 markers with readable sequences was based on the number of
sequences obtained and their phylogenetic performance.When only one or two sequences
were obtained for a gene (e.g. cathepsin L, troponin C, acetyl coenzima A synthetase, maxillope-
dia, calmodulin 1), the phylogenetic utility was not possible to assess. Other excludedmarkers
produced a higher number of sequences, such as odorant binding protein (8 sequences) and gly-
coside hydrolase family 31 (11), but these were largely unalignable. Another group of failed
markers produced sequences from non-target organisms, such as 6-phosphogluconate dehydro-
genase of fungi, or phosphoglucose isomerase of bacteria. A total of 23 genes were discarded due
to low amplification rates, high levels of non-beetle amplification, or generally low degree of
gene orthology.

The remaining 34 genes showed differing degree of PCR and sequencing success (from 5 to
26 sequences obtained), and were further evaluated based on their capacity to recover known
relationships at various taxonomic levels. Eighteen of these markers were found insufficiently
informative for higher level phylogenetics, because no more than two of the predefined clades
were reconstructed correctly. However, most discardedmarkers nevertheless revealed some
phylogenetic utility at lower taxonomic level; including populations (see S3 Table for further
details).

We selected 16 genes that revealed a relatively high and stable PCR and sequencing success
(from 50 to 100%) as the best candidates for Scolytinae phylogenetics (Table 3). All the verified
sequences obtained in this study were deposited in GenBank database under the accession
numbers KX160539—KX160803 (S1 Table). The speciesXyleborus affinis was the most suc-
cessful in PCR and sequencing (15 out of 16 possible sequences obtained); the other samples
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varied considerably in this respect with only 4 sequences obtained for Larinus sp. (S1 Table).
The total fragment length, the presence of length-variable regions, and the number and posi-
tion of introns, were mapped on the annotated genomes of T. castaneum and D. ponderosae
(eventually transcriptomic and genomic data of other insect species) to create a map of the
gene structure (Fig 2; see also Table 4).

OrthoDB analyses showed that 12 out of 16 genes selected in this study are present in single
copy in more than 70% of the arthropod species currently in the database (133). PABP1 and
UBA5 are in single copy in 96% of these species, followed by HDAC Rpd3 (95%), CCNC (94%),
Prp1 (92%), TPI, CTR9 and FEN1 (90%), Cda4 (89%), EF2 (84%), RCC1 (81%) and ADA2
(74%). Only five genes are frequently in multi-copy status in arthropod genomes: Hsp70 (single
copy only in 2% of the species in the database), Arr2 (4.5%), Iap2 (8.3%) and SOD1 (22%).

The best evolutionarymodel for the majority of the genes was GTR+I+Γ, except for SOD1
and Iap2 in which SYM+I+Γ and GTR+Γwere selected. Bayesian analysis of the concatenated
nucleotide and amino acid data from 16 genes showed a well resolved tree topology (S1 Fig)
with all expected clades recovered with maximum support, except Scolytini (pp = 0.75). The
overall tree topologywas correct with the exception of four weevil species that were nested
inside Scolytinae as the sister lineage to Hylurgini (weakly supported in the amino acid analy-
sis). Parsimony analyses of the concatenated dataset revealed similar results both for the nucle-
otide and amino acid datasets, with all major clades recovered with medium to high bootstrap
support. However, the sub-family Scolytinae was not monophyletic in respect to the other
advanced weevil species (S2 Fig).

Single gene analyses resulted in partially resolved phylogenies, mainly recovering a mono-
phyletic Scolytinae, the majority of the predefined subgroups of Scolytinae (A-B-C-D), and the
subfamily Platypodinae (Fig 3). All selected genes enabled the correct reconstruction of the
most recent clade (A), with 3 genes obtaining the correct sister group (B). None of the selected
genes showed high degree of incongruence that received high node support. Overall mean

Table 3. PCR and sequencing success for 16 selected genes.

GENE ACRONYM A B C D E F G H Total (%)

PABP1 4 3 6 3 3 4 2 1 26 (100%)

TPI 4 2 6 - 2 2 2 - 18 (69%)

UBA5 3 3 5 3 2 2 1 1 20 (77%)

Iap2 3 3 1 2 1 4 2 - 16 (62%)

SOD1 2 1 4 3 2 3 1 - 16 (62%)

Prp1 3 3 5 1 3 1 2 - 18 (69%)

ADA2 3 2 2 2 3 - 2 - 14 (54%)

CTR9 2 2 4 2 - 1 2 - 13 (50%)

CCNC 4 2 5 2 2 2 2 1 20 (77%)

Cda4 2 1 4 - 3 1 1 1 13 (50%)

HDAC Rpd3 3 1 4 - 2 2 1 - 13 (50%)

Arr2 4 2 4 3 3 2 2 - 20 (77%)

FEN1 3 2 4 2 1 - 2 1 15 (58%)

EF2 2 2 3 2 3 - 2 - 14 (54%)

Hsp70 1 1 5 2 1 1 2 1 14 (54%)

RCC1 2 2 4 - 2 2 1 - 13 (50%)

The number of sequences obtained was reported for the following groups: A = Xyleborini + Dryocoetini, B = Ipini, C = Hylurgini + Hylesinini, D = Scolytini,

E = Platypodinae, F = other Curculionidae subfamilies, G = other Scolytinae, H = Brentidae.

doi:10.1371/journal.pone.0163529.t003
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Fig 2. Structure of the PCR amplified gene fragments. The graphics illustrate intron-exon patterns in 16 markers

with coding regions shown as black bars and introns as thin black lines. Length variable coding regions (indels) were

colored in light grey (Iap2 and Arr2).

doi:10.1371/journal.pone.0163529.g002
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divergence in nucleotide sequences was reported for each codon position for each gene (S3
Fig).

Selected genes for Scolytinae phylogeny

Polyadenylate binding protein 1 (PABP1). PABP1 was the most successfulmarker, with
sequences obtained from all 26 species. The amplified fragment was 435 bp long, contained no
introns, and translated into 145 amino acids. The phylogenetic analyses recovered almost all
pre-defined clades (Fig 3a), but only two of them were highly supported (B, pp = 0.98;
E, pp = 1). The tribe Scolytini was placed outside a polytomy including the remaining species
of Scolytinae, the subfamily Platypodinae and the various other weevil subfamilies. No clear
evidence of paralogs emerged from the analyses. Preliminary studies indicated increased phylo-
genetic performance with broader taxon coverage.

Triose-phosphate isomerase (TPI). A combination of two primer pairs (two forward, one
reverse) resulted in 67% PCR amplification and sequencing success. The aligned fragments
consisted of 547 bp after removal of introns, which translated into 182 amino acids. Two
introns were located in this gene fragment (Fig 2, Table 4). The phylogeny based on this marker
confirmed the monophyly of Platypodinae (pp = 1), while Scolytinae formed a large polytomy
including two advanced weevil species. Furthermore was Cossoninaemonophyletic (pp = 1),
in addition to one scolytine subgroup (A, pp = 1), and subgroup C almost so (Fig 3b).

Ubiquitin-likemodifier activating enzyme 5 (UBA5). The UBA5 gene fragment is 348
bp long and translated into 116 amino acids. It was amplified from 20 different species (77%)
in all main clades and contained one short intron in all species. The phylogeny recovered the
monophyly of clades A and E with high node support (pp = 0.99 and 1, respectively) while
clade D (pp = 1) had Scolytus intricatus excluded. Clade B and C were weakly supported
(pp<0.95) and Kissophagus hederae was not included in Hylurgini (Fig 3c).

Table 4. Gene information.

Acronym nucs aa Intron Intron range (per intron)

PABP1 435 145 0 -

TPI 547 182 0–2 (457–51)(237–48)

UBA5 348 116 1 (94–48)

Iap2 672* 224* 1 (1131–50)

SOD1 213 71 0 -

Prp1 582 194 0–1 (258–55)

ADA2 624 208 2 (70–39) (105–53)

CTR9 627 209 0–1 (81–59)

CCNC 384 128 3 (200–69)(134–49)(71–58)

Cda4 410 136 0–3 (68–51)(63–56)(53)

HDAC Rpd3 858 286 3–5 (69–53)(70–54)(165–48)(564–54)(66–55)

Arr2 501* 167* 0–3 (110–51)(84–53)(158–55)

FEN1 417 139 1–3 (63–46)(55–42)(93–44)

EF2 621 207 1–2 (398–183)(702–84)

Hsp70 567 189 0–2 (61-?)(317–187)

RCC1 303 101 0–1 (250–51)

For each marker, the length of the sequenced coding region is given as the number of nucleotides and

amino acids, together with the number and length of intron(s). The symbol * indicates genes with sequence

length variability due to exonic indels.

doi:10.1371/journal.pone.0163529.t004
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Inhibitor of apoptosis 2 (Iap2). A total of 16 sequences (62%) were obtained from partial
Iap2. This gene was amplified for only one species in Hylurgini (Chaetoptelius vestitus). The
amplified fragments contained one long intron and a coding region of variable length up to
672 bp. Two hypervariable regions in the first exon were characterized by a series of indels of
up to a maximum of six and ten triplets, respectively, consisting of serine-rich strings of amino
acids. The intron range is within 50–80 bp in the majority of the species, but D. ponderosae
(obtained from GenBank) contained a very long intron (1131 bp). BLASTN search indicated
that a baculoviral Iap repeat is located between the two hypervariable regions. The phylogenetic
analyses resulted in four monophyletic groups (clade A, pp = 0.94; clade B, pp = 0.99; D and
F, pp<0.95), with no phylogenetic evidence of paralogs (Fig 3d).

Cu-Zn superoxide dismutase 1 (SOD1). We amplified a short fragment (213 bp) of the
cytoplasmic copper/zinc superoxide dismutase (SOD1), which contained no intron. We
obtained 14 orthologous beetles sequences (54%) and five non-beetle sequences, but also
amplified other genomic regions, suggesting non-specificity for this primer pair. The

Fig 3. Phylogenetic trees based on Bayesian analyses of 16 selected genes. Trees were rooted with the most distant outgroup available for each

marker. Posterior probabilities are given to the left of the nodes. Sequences of D. ponderosae (ToDen00) were obtained from GenBank.

doi:10.1371/journal.pone.0163529.g003
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phylogeny contained several polytomies, with only one clade (A) receivingmaximum support.
Two internal nodes in the C and D clades were also recovered (pp>0.95). The tree was rooted
with a monophyletic Platypodinae (Fig 3e).

Pre-mRNA-splicing factor ATP-dependent RNA helicasePRP1 (Prp1). A fragment of
the Prp1 gene with the length of 582 bp (intron excised) corresponding to 194 amino acids, was
amplified from 18 different species (70%). The presence of a single intron was observed in the
majority of the species except three unrelated Scolytinae species and one Platypodinae. The
phylogeny revealed two monophyletic groups (A, pp = 1; E, pp<0.95) and three groups which
contained highly supported internal nodes (B, C and E), and a series of weakly supported
incongruent relationships (Fig 3f). The tree was rooted on a monophyletic Platypodinae.

Adenosine deaminase2 (ADA2). We amplified and sequenced the ADA2 gene from 14
species (54%). Failures were most frequent in weevils other than Scolytinae and Platypodinae.
The tree topology (Fig 3g) was largely congruent with our predefined clades (A, C, D, E;
all pp�0.95), except Ipini (clade B). The tree was rooted on a monophyletic Platypodinae.

RNA-associated protein CTR9 (CTR9). A single primer pair resulted in the amplification
and sequencing of 13 sequences (50%), mainly in Scolytinae, with much lower amplification
rates in other weevil subfamilies (1 sequence). The amplified gene fragment revealed a simple
structure with a single intron in many species, but was absent in the entire tribe Scolytini and a
few other Scolytinae species. The two exons presented a total sequence length of 627 bp (209
amino acids). The phylogeny recovered three pre-defined clades (A, B and D), two of them
highly supported (A and D) while resolution at deeper nodes was generally low (Fig 3h).

Cyclin-C (CCNC). A 384 bp fragment (introns excised) was amplified for 20 species
(77%), with relatively good taxon coverage among the different groups. The alignment
included three long introns whichmay cause amplification and sequencing problems. The phy-
logeny based on this marker revealed a monophyletic Platypodinae (pp = 1) that formed the
sister group to the advanced weevils (Curculionidae sensu Alonso-Zarazaga and Lyal
1999, pp = 1). All smaller clades were congruent with previous phylogenies, albeit only three
clades were strongly supported (A, D and E, pp = 1), whereas the larger group of Scolytinae
was paraphyletic with respect to two other weevil species (Fig 3i).

Chitin deacetylase4 (Cda4). Cda4 sequences were obtained from a total of 13 beetle spe-
cies (50%). This marker amplified few weevils other than Scolytinae (2 sequences) and failed to
amplify species in the tribe Scolytini. The gene structure was relatively simple with 3 short
introns (<100bp), with the first and the third intron present in the majority of the species,
while the second one was absent in all Platypodinae and Hylurgini species. The phylogeny
based on a 410 bp long coding fragment (136 amino acids) showed monophyly for group A
(pp = 1) and E, while Hylurgini (group C) was paraphyletic (Fig 3j).

Histone deacetylaseRpd3 (HDAC Rpd3). HDAC Rpd3 represents the longest gene frag-
ment selected in this study. This gene was amplified and sequenced for 13 species (50%), with
the longest fragments reaching more than 1700 bp due to the presence of introns. A total of 5
introns were present in one species (Platypus impressus), while the other species showed a high
variability in intron numbers (1–4) with intron 4 particularly long in Kissophagus hederae (571
bp). The final alignment, with introns removed, resulted in 858 nucleotide positions coding for
286 amino acids.We did not amplify any species in the tribe Scolytini (clade D) and we had
limited success with Ipini (B) and in weevils other than Scolytinae and Platypodinae (Fig 3k).
The phylogeny based on these sequences showed a largely unstructured tree, with only clades
A and F recovered (pp = 1 and pp = 0.94 respectively), and partially so in Hylurgini (clade C:
Hylastes attenuatus, Tomicus piniperda and D. ponderosae, pp = 0.98).

Arrestin 2 (Arr2). Arr2 showed high degree of PCR and sequencing success in Scolytinae
and in some other weevils, obtaining a total of 20 sequences (77%). The alignment of our new
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Arr2 sequences contained three introns. At the beginning of the second exon, the coding region
varied in length due to triplet indels. One example of atypical intron borders was encountered
in the first intron (GC-AG), in Premnobius caevipennis. Three predefined clades were recov-
ered (A, pp = 1; B, pp = 0.96; E, pp = 1), with two other groups only partly resolved (clade
C, pp = 0.98; D, pp = 0.99). The overall tree topologywas largely congruent with established
phylogenies, where clades A and B were recognized as sister lineages with maximum node sup-
port (Fig 3l). The tree was rooted on a monophyletic Platypodinae.

Flap endonuclease1 (FEN1). FEN1 sequences were obtained from 15 different species
(58%). The alignment of nucleotide sequences revealed three introns that were present in the
majority of the species. The coding region was 417 bp long and translated into 139 amino
acids. The phylogeny was well resolved and recovered highly supported monophyletic groups
corresponding to the clades A, B, C, and D (Fig 3m). In addition, the sister clades A and B were
correctly reconstructed (pp = 0.98), and Platypodinae (one species) was, in the absence of other
advanced weevils, placed as sister to Scolytinae.

Elongation factor 2 (EF2). We obtained EF2 sequences from 14 species (54%), but only
from species in Scolytinae and Platypodinae. Additional unspecific amplifications of EF2 were
also obtained (7 sequences),mainly from fungi and nematodes. The amplified fragment con-
tained two long introns up to 300 bp, but occasionally longer in a few species (Table 2). Bayes-
ian analysis of 621 aligned nucleotides (207 amino acids) showed a partially correct phylogeny
that included several highly supported clades (A, D and E, all with pp = 1). The monophyly of
Hylurgini (clade C) was only weakly supported (Fig 3n). The tree was rooted on a monophy-
letic Platypodinae.

Heat shock protein 70 (Hsp70). Partial Hsp70 gene was amplified in 14 species (54%) and
contained one or two introns. Only the second intron was present in the majority of amplified
species.With introns excised, the alignment consisted of 567 nucleotides coding for 189 amino
acids. This marker performed particularly well in Hylurgini and Hylesinini (clade C) with 5
out of 6 samples amplified. The phylogeny contained a well resolved clade C (pp = 0.91) and D
(Scolytini, pp = 1), while the remaining parts of the tree topology formed largely a polytomy
(Fig 3o). Unspecific PCR amplification and sequencing of fungi and nematodes occurred in
four samples. Furthermore, paralogous copies, characterized by a triplet insertion in weevils,
were identified based on phylogenetic analysis of all available sequences (S3 Fig).

Regulator of chromosome condensation 1 (RCC1). A short fragment consisting of 303
bp (intron excised) was amplified for 13 species (50%). The sequenced gene fragment con-
tained one intron in all species, except Hylesinus varius, and the exons could be translated into
101 amino acids. The primers showed very low success in weevils other than Scolytinae, ampli-
fying only two species in group E (Platypodinae) and one species of Cossoninae. The primers
did not amplify this gene in the tribe Scolytini (D). Occasional unspecific amplifications were
observed (4 sequences, from fungi and nematodes). The phylogeny based on this marker was
mainly congruent with established relationships and showed no evidence of multiple copies
(Fig 3p). Platypodinae (E, pp = 1), Dryocoetini (A, pp = 0.91) and a subclade of Hylurgini
(C, pp = 1) were recovered.

Phylogenetic signal

Phylogenetic informativeness (PI) profiles varied considerably between the selectedmarkers,
showing different degrees of signal across the more than 100 Ma of weevil evolutionary history
(Fig 4). The net PI values showed a marked decline for all markers towards the Cretaceous era.
Iap2 displayed the highest PI peak in recent times, followed by four other markers with lower
PI profiles (TPI, Prp1 and Arr2, FEN1). The gene EF2 showed a diverse profile, having lower PI
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Fig 4. Phylogentic informativeness profiles. The K2P model was used to estimate substitution rates in

HyPhy as implemented in the software PhyDesign. Different evolutionary models produced similar results

(data not shown). The dated phylogenetic tree was obtained using BEAST v1.8.2.

doi:10.1371/journal.pone.0163529.g004
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for recent times but relatively more PI than FEN1 and Arr2 at more ancient times. PABP1,
which presented the highest homoplasy level among the selected genes (S3 Table), showed an
intermediate PI profile, following the same trend of Hsp70, Cda4,CCNC and almost identical
to UBA5. Cda4 and CCNC showed higher PI in recent times whileHsp70 maintained margin-
ally higher PI for ancient times. The gene with the lowest PI value was SOD1. Four markers
(HDAC Rpd3, ADA2, RCC1 and CTR9) were not included in the analysis due to missing data.

Additional genes for lower level phylogenetics

One of the main characteristics shared by several of the 18 genes that were not selectedwas the
generally low, and sometimes clade-specific, PCR and sequencing success (S3 Table). These
genes also exhibited many problems in phylogeny reconstructionwhen sufficient data were
obtained, including failure to recover well-established clades (Fig 5). For example, very few
sequences were acquired for α-spectrin, with no sequences obtained for three of the groups (B,
C and D), producing a tree topologywith only one correct clade recovered (A, pp = 1) and
therefore difficult to evaluate (Fig 5a). A similar situation was reported for phosphatidylinositol
4-kinase type 2-alpha (Pi4k) where no sequences were obtained for the clades D and E, but two
clades (A, pp = 1 and C, pp = 0.97) were recovered correctly (Fig 5b), and a third group was
nearly monophyletic (B, excluding Pityogenes quadridens, pp = 0.96). For muscular protein 20
(mp20) we obtained a higher number of sequences (12), with two monophyletic groups recov-
ered (clade A, pp = 1 and B, pp<0.95), but with group D (Scolytini) not monophyletic (Fig 5c).
In the case of the beta-actin gene (ACTB), sequences were obtained from 18 different species,
including 5 species of Hylurgini. However, the phylogeny recovered only one of the youngest
clades (B, pp = 1), while all other groups were largely paraphyletic (Fig 5d). In the chromosome
X open reading frame 56 gene (CXorf56), only the youngest group (clade A, pp = 0.99) was cor-
rectly recovered (Fig 5e) whereas closely related species did not group together. Another poorly
performing gene was MAD, with a phylogenetic tree showing a large polytomy that included a
highly paraphyletic Hylurgini (clade C). This gene nevertheless distinguished Platypodinae
(pp = 0.96) from all other advanced weevils at the root of the tree (Fig 5f). A similar situation
was also observed for the eukaryotic peptide chain release factor subunit 1 (eRF1) gene. The
phylogeny largely formed a polytomy (Fig 5g), and includedmany paraphyletic groups, includ-
ing Platypodinae (clade E). The phylogeny for splicing factor U2F showed a largely unstruc-
tured tree with generally low support (Fig 5h), with only Scolytinimonophyletic (clade
D, pp<0.95).

The remaining 10 of the 18 genes with shallow level phylogenetic utility generally exhibited
low PCR and sequencing success (5–9 sequences), and showed clade-specific amplification (see
S3 Table). A correct tree topologywas recovered for dihydrolipoamide dehydrogenase E3
(dldE3) which showed a congruent and well supported phylogeny for three clades (A, B and C,
all with pp>0.95) and also recovered a node including A+B (pp = 0.99). The low number of
sequences obtained (7) was the main reason to exclude this gene. Alanyl-tRNA synthetase
(AATS), F-box only protein 11 and Na+/K+ ATPase alpha subunit (NaK) displayed very low
PCR and sequencing success. The first of these recovered clade A (pp = 1), the second clade A
and B (pp = 1 and pp = 0.99 respectively) while the third one did not produce enough
sequences to enable hypotheses testing.Hsp90 revealed amplification of eight species in Scolyti-
nae, but not other weevils. The phylogeny was consistent with clade A (pp = 0.97) and partially
so for clade C (3 species pp<0.95). The alignment of Hsp90 revealed no intron but the coding
region presented variable length due to the presence of indels. Primers for the two genes man-
nose-1-phosphate guanyltransferase α C1-tetrahydrofolate synthase (C1-THF) and uracil-DNA
degrading factor amplified well in Hylurgini. Finally, gelsolin and elongation initiation factor
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Fig 5. Phylogenetic trees resulting from Bayesian analyses of 8 excluded gene fragments.

doi:10.1371/journal.pone.0163529.g005
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5C (also known as krasavietz - 5MP) revealed unstructured tree topologies. The first gene
recovered only clade D (pp = 1) while the second supported clade E (pp = 1) and in part clade
C. Additional information on suggested subfamily/tribe/genus specificmarkers were reported
in supplementary material (S3 Table).

Discussion

Phylogenetic studies on insects have generally suffered from a lack of coordination in establish-
ing a common set of nuclear markers [73]. Most efforts were invested in butterflies and bees
[31, 37], with other related groups occasionally taking advantage of such developments [74].
Beetles are one of the many groups lagging behind in terms of phylogenetic marker availability.
With the presentation of 16 protein coding genes, which are here shown to be informative in
weevil phylogenetics, and the suggestion of 18 additional, but less developed, genes as potential
phylogenetic markers at various taxonomic levels, we have at least partly remedied this situa-
tion. Indeed, many of the 16 best markers were relatively easy to amplify with one or two
primer pairs, with a PCR success ratio between 50 and 100%. Direct sequencing was facilitated
by the high proportion of single bands produced in the PCR of these genes. Only occasional
events of unspecific amplification occurred and most sequences could be aligned unambigu-
ously and translated into amino acids.

Further optimization of primers is required to enable amplification across a broader range
of weevils and other beetle groups. This is particularly relevant to the many unsuccessful genes
that we screened, which may amplify with a better design of primers. In such a brief screening
of candidate genes it is likely that promising markers were overlooked. The gene α-spectrin, as
one example, may deserve further attention as one of very few genes previously screened for
beetles [23]. Unfortunately, the primers designed in this study amplified mainly Xyleborini and
Dryocoetini,but not the majority of other tribes.We also continued our previous screening of
the NaK gene [9], which again was particularly positive for Ipini, Dryocoetiniand Xyleborini,
with potential application at lower level phylogeny.

Only one marker amplified in all samples (PABP1). This gene, and three additional ones
(TPI, UBA5 and Prp1) with comparable high amplification rates, shared a pattern of simple
intron structure, which may facilitate the amplification process. Other genes could be almost as
easily amplified (Arr2, Iap2, CCNC), but requiredmore efforts in the alignment procedure due
to the presence of highly variable regions and/or introns. For all the other genes, improved
primer design seems required to obtain PCR and sequencing regularity at appreciable levels
such as in nymphalid butterflies [32] or dolichoderine ants [39]. Suboptimal primer design was
most evident in cases where failures in amplification were taxon-specific, for instance TPI,
HDAC Rpd3,Cda4 and RCC1 in species of the tribe Scolytini. Other genes such as ADA2,
Hsp70, FEN1 and CTR9were amplifying Scolytinae, which was our main target group, but
failed in most other weevils.

Degenerate primers tend to amplify non-targeted regions for several of the screened genes.
However, only two genes with short amplified fragments (SOD1 and RCC1) were regularly
affected by this kind of problem, and occurred less frequently in CXorf56, Hsp90 and eRF1. The
amplification of other gene copies is a relatively common problem in PCR basedmethods and
at least three routinely usedmarkers (COI, EF-1α, enolase) in bark and ambrosia beetles are
occasionally burdened with such complexity [10, 68, 75]. In other cases, such as EF2 and
Hsp70, the same gene copy was unintentionally amplified from other beetle-associatedorgan-
isms (fungi and nematodes), probably due to the conservednature of these genes [68]. When
we tested nuclear markers for orthology assessment in arthropods (OrthoDB v9), Hsp70 was
one of the few genes which resulted present in multiple copies in the large majority of the
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species in the database (98%). In our study, the presence of Hsp70 paralogs was clearly demon-
strated based on BLAST search, strongly deviating amino acid substitution patterns and long
phylogenetic branches of paraphyletic groups (S4 Fig). Although three other genes (Iap2, Arr2
and SOD1) are rarely in single copy in the arthropod genomes, our study did not provide any
clear evidence of paralogy in beetles.

Two markers (HDAC Rpd3 and CCNC) were particularly problematic due to the many long
introns they contained (up to 5 in HDAC Rpd3) and they require internal primers for more
effective amplification and sequencing. The presence of long and/or numerous introns seems
widespread in beetles. This insect order has generally a higher number of introns compared to
other insects [76], particularly so in the phytophagan beetles [23]. For example, a 300 bp short
fragment of the gene Wingless, which is widely used in insect phylogeny, contains three compli-
cated introns in weevils, but it is intron free in adephagan beetles and most other insect orders.
On the other side are weevil sequences of TPI simpler than those of coccoideanHemiptera
which have two extra introns and one hypervariable indels region [77]. Only two introns were
present in the majority of weevils, although highly variable in Hylurgini and four additional
species. Similar situations, with lack of conserved intron patterns within clades, were observed
for genes such as CTR9,HDAC Rpd3 and Cda4, contrasting the long held argument that intron
structure is a conserved and therefore useful phylogenetic marker [78, 79].

A further complicating feature in the alignments of Arr2 and Iap2 involved variable coding
regions that contained different numbers of triplet nucleotide indels. Because indel-rich regions
are difficult to align, they could potentially introduce unwarranted noise in the phylogenetic
signal. However, the removal of these ambiguous regions did not affect tree topologies resulting
from independent analyses of each of these genes. Indel-rich regions of Arr2 occur in species
from other insect orders (BLAST analyses), which further document natural and widespread
variation in this trait. Iap2 is much less known in terms of indels variation and our data were
only comparable to other GenBank sequences in the secondmore conserved exon.

The process of evaluating and ranking different markers in terms of phylogenetic utility is a
complex task. Rates are not always inversely correlated with phylogenetic resolution and clade
support [80] and only the implementation in large taxonomic samples represents the ultimate
test of a phylogenetic marker performance. Our gene classification based on phylogenetic util-
ity that was assessed according to clade congruence and phylogenetic informativeness (PI)
must therefore be taken as a preliminary proxy for a marker’s phylogenetic signal [81, 82, 83].
It will be particularly interesting to observe the contribution of Iap2 in a larger data set given its
much higher PI compared with other markers. Iap2 is a fast evolving gene which, likewiseTPI,
Prp1, FEN1 and Arr2, showed a high peak for the Miocene epoch, but it differs from the other
genes by maintaining a stronger phylogenetic signal over time. Even though this marker has
two variable regions that could have biased the PI profile estimate, the average level of homo-
plasy was also the lowest for this gene. On the other hand, the tree topology resulting from the
phylogenetic analyses was not particularly congruent with previously established relationships.

Only one gene (FEN1) produced a tree topology that was largely congruent with all prede-
fined clades, and only three genes (PABP1, FEN1,Arr2) were congruent with the most recent
split—between Ipini and Dryocoetini/Xyleborini(Paleocene age)—indicating high substitution
rates for most genes in our screening.However, a perfectmatch between a gene tree and the
species tree is rarely observed [84]. Dense taxon sampling and simultaneous analyses of many
genes will usually overcome such limitations, building on the hidden support frommany genes
not visible in single gene analyses [85, 86].

Large amounts of data are usually required to obtain resolution betweenmore ancient
groups such as insect orders and families. It is therefore a possibility that 15–20 markers are
not sufficient to resolve the weevil phylogeny, including relationships among bark and
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ambrosia beetles. Data volume is by itself useful as demonstrated by studies on the complete
mitochondrial genome of weevils that resolve certain parts of the tree topology [6, 87]. Limiting
mitochondrial data to a handful of genes illustrates this point well as resolution fades rapidly
[8]. Larger data volumes are now available from nuclear genome sequencing, either in terms of
entire genomes [88–90], or transcribed genomes [91, 92]. Each of these approaches has their
own disadvantages with respect to high cost and labor intensity. Transcriptome data are fur-
thermore burdened with highly biased gene expressions, for instance the overexpression of
ribosomal proteins in ESTs of beetles [93]. A targeted PCR-based approach to sequencing has
on these grounds been recommended in phylogenetic analyses [94].

New NGS technologies have lately enabled more specific amplification of conserved
sequence regions, bypassing complete genomic or transcriptomic assembly, and thereby reduc-
ing the dataset to a core of comparable informative sequences which are more suitable for phy-
logenetics [95, 96]. Sequence capture of ultra-conservedelements (UCEs) has enabled high
sequence homology [51, 97, 98] and hence, these results are more directly comparable to PCR
based sequences. UCEs have a phylogenetic information potential comparable to protein cod-
ing genes at the per nucleotide level; however, the large volume of data involving hundreds of
loci and more than 100,000 nucleotides provide better resolution and higher support at deep
phylogenetic level [99, 100].

It is increasingly being argued that PCR-based methods are becoming redundant in the age
of NGS, but this is largely an overstatement. Most sequencing, in fact, occurs at a routine basis,
as a tool in integrative taxonomy where a handful of sequences from establishedmarkers are
sufficient to place a new species in the tree of life. Most laboratories in the world are not yet
rigged for the latest NGS in terms of equipment, labor and budgetary concerns. As long as the
monthly turnaround rate involves less than 10 genes and 100 taxa, the time and cost doing tra-
ditional PCR and sequencing is much lower [100]. Recognizing that small data sets are not
only less expensive, but also can be sufficiently informative, the reliance on PCR and Sanger
sequencing will continue as the best option for many small scale studies also in the future. In
fact, modest data sets of a few thousands of nucleotides (5–10 genes) can be almost as informa-
tive as large collections of UCEs [100, 101]. With approximately 80–90% congruence in topol-
ogy, one may reconsider if sequencing of UCEs is always the best option despite the generally
higher node support obtained for this type of data.

Conclusion

This study has revealed the many difficulties in selecting and optimizing newmarkers for wee-
vil phylogenetics. Other beetle groups may be less problematic than weevils [23], but beetles in
general are much more challenging in this respect as compared to Hymenoptera and Lepidop-
tera [32, 36, 86, 102]. Nevertheless, this study provides a step forward in PCR-based sequencing
of beetles and we hope that these newmarkers will provide a useful toolbox for beetle phyloge-
netics, particularly in studies on more recent divergences where a limited amount of genetic
data can enable accurate inference of past evolutionary events.

Supporting Information

S1 Fig. Phylogenetic tree based on Bayesian analyses of 16 concatenated genes both for
nucleotides and amino acids. Posterior probability values are reported below the node for the
nucleotides analysis (8109 bp), while the pp values above the node refer to the amino acids
analysis (2702 aa).
(TIF)
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S2 Fig. Phylogentic tree based on parsimony analyses of 16 concatenated genes both for
nucleotides and amino acids. Bootstrap support values are reported below the node for the
nucleotides analysis (8109 bp), while the values above the node indicate the bootstrap support
for amino acids analysis (2702 aa).
(TIF)

S3 Fig. Average genetic variation for eachmarker. p-distance values for each position and for
each gene were calculated across the entire sample, excluding Brentidae to avoid missing data.
(TIF)

S4 Fig. Phylogenetic tree based on a fragment of the geneHsp70. Results of Bayesian analysis
based on Hsp70 sequences of weevils and Scolytinae; three different copies of D. ponderosae
Hsp70 were included in order to test for paralogs. Six more species were also included in the
analysis (CuSib01 = Sibinia sp. CgAph02 = Aphanarthrum capense, MiLan01 = Lanurgus xylo-
graphus, MoAmo01 = Amorphocerus rufipes, DrCyr02 = Acanthotomicus sp. and TsCen01 =
Cenocephalus sp.). Three different Hsp70 groups were identified.One group consisted of para-
logous copies of Hsp70 (A), plus two clusters of sequences from fungi (B) and nematodes (C).
(TIF)

S1 File. XML file used for analyses in BEAST v1.8.2. The file was generated using BEAUTI v
1.8.2.
(XML)

S2 File. Additional information on 16 PCR amplified and sequencedgenes.
(DOCX)

S1 Table. GenBank accession numbers for each of the 16 selectedgenes sequenced in this
study.
(DOCX)

S2 Table. Estimates of evolutionarydivergence (p-distance) between sequences.For each of
the 16 genes, the proportion of different nucleotide sites between sequences was calculated.
The most frequently PCR amplified species (Xyleborus affinis) was compared with members of
the other tribes and subfamilies and the lower value was reported. PIC = Parsimony informa-
tive characters, HI = Homoplasy index and RI = Retention index.
(DOCX)

S3 Table. Information on markers not developed for higher level phylogenetics.The main
problems for further development are reported, together with data on fragment length, and
number and length of introns for 18 of these markers. The same information could not be
derived for markers with low number of sequences.
(DOCX)
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