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PhenomeNet is an approach for integrating phenotypes across species and

identifying candidate genes for genetic diseases based on the similarity

between a disease and animal model phenotypes. In contrast to ‘guilt-by-

association’ approaches, PhenomeNet relies exclusively on the comparison of

phenotypes to suggest candidate genes, and can, therefore, be applied to

study the molecular basis of rare and orphan diseases for which the molecular

basis is unknown. In addition to disease phenotypes from the Online Mende-

lian Inheritance in Man (OMIM) database, we have now integrated the clinical

signs from Orphanet into PhenomeNet. We demonstrate that our approach can

efficiently identify known candidate genes for genetic diseases in Orphanet

and OMIM. Furthermore, we find evidence that mutations in the HIP1 gene

might cause Bassoe syndrome, a rare disorder with unknown genetic aetiology.

Our results demonstrate that integration and computational analysis of human

disease and animal model phenotypes using PhenomeNet has the potential to

reveal novel insights into the pathobiology underlying genetic diseases.
1. Introduction
Two major goals of biomedical research are the in-depth understanding of the

function of genes and their role in human disease. To achieve these goals,

research in genetics seeks to understand the functions of individual genes,

their interactions with other genes, the molecular consequences of allelic vari-

ation and how this variation interacts with environmental factors. In order to

study these parameters, researchers use a variety of organisms and approaches,

such as forward and reverse genetics, in an attempt to link the phenotypic

manifestations observed in an organism with their genetic basis.

In addition to hypothesis-based studies, systematic mutagenesis and phenotyp-

ing programmes are now being implemented for several model organisms, with

the aim of describing the phenotypes associated with mutations in every protein-

coding gene, revealing the genes’ functions, the structure and dynamics of physio-

logical pathways as well as providing insights into the pathobiology of disease.

While the manifestations of mutations in homologous genes might be expected

to give rather diverse phenotypes in different organisms, it has been shown that

in many cases, particularly between vertebrates, phenotypes are remarkably con-

served, implying that the underlying physiological pathways in which these

genes function are themselves highly conserved. As such, animal models are a

valuable tool for the investigation of gene function and the study of human disease.

One of the main challenges is to compare phenotypes systematically across

species and to translate the insights from animal model research into an under-

standing of human traits and disease. Achieving this goal would allow us to

capture variation and link biological processes through to phenotypes, enabling

us to increase the speed by which findings from basic animal research are trans-

lated into clinical applications that benefit human health and increase our

understanding of basic biological processes. In the context of clinical research,

http://crossmark.crossref.org/dialog/?doi=10.1098/rsfs.2012.0055&domain=pdf&date_stamp=2013-02-21
mailto:rh497@cam.ac.uk


Table 1. Overview over phenotype vocabularies and ontologies. OMIM, Online Mendelian Inheritance in Man; MGI, Mouse Genome Informatics; RGD, Rat
Genome Database; SGD, Saccharomyces Genome Database.

ontology/vocabulary species/domain resources

Human Phenotype Ontology (HPO) [4] human, clinical phenotypes OMIM [1]

Orphanet signs and symptoms human, clinical phenotypes Orphanet [2]

Mammalian Phenotype Ontology (MP) [5] mammals, primarily mouse MGI [6], RGD [7]

FlyBase Controlled Vocabulary Drosophilidae FlyBase [8]

DictyBase Phenotype Ontology Dictyostelium discoideum DictyBase [9]

Ascomycete Phenotype Ontology Saccharomyces SGD [10]

Caenorhabditis elegans Phenotype Ontology [11] Caenorhabditis elegans WormBase [12]

Fission Yeast Phenotype Ontology Schizosaccharomyces pombe PomBase [13]

Plant Trait Ontology [14,15] flowering plants Gramene Resource for Comparative Grass Genomics [16],

The Arabidopsis Information Resource [17]
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the Online Mendelian Inheritance in Man (OMIM) knowl-

edgebase [1], a database that catalogues the association

between human phenotypes and their causative genes, and

the Orphanet database [2], a database dedicated to infor-

mation on rare diseases and orphan drugs, form two of the

main information sources for phenotypic manifestations

associated with human genetic disease.

To characterize phenotypes, model organism databases

and disease information sources use controlled vocabularies,

or ontologies, to provide standardized descriptions of pheno-

type observations. Ontologies in biology provide structured,

controlled vocabularies of terms that can be used to annotate

complex datasets [3], and a large number of phenotype ontol-

ogies have been developed in the context of clinical and

biomedical research as well as for the annotation of mutant

animal model phenotypes. Table 1 lists some of the major

phenotype ontologies that are currently in use.

In order to integrate phenotypes across species, the Pheno-

type And Trait Ontology (PATO) was created as the key to a

framework that allows the description and integration of quan-

titative and qualitative phenotype-related information across

different levels of granularity (i.e. across scales reaching from

the molecular level over the organizational levels of the orga-

nelle, cell, tissue and organ to the whole organism), different

domains and species [18]. PATO allows for the description

of phenotypes by combining qualities (such as colours, sizes,

masses, lengths) with the entities of which they are a quality.

These entities are either anatomical structures (represented in

anatomy ontologies), biological processes, functions or cellular

components (represented in the Gene Ontology (GO), and

other biological entities (described, e.g. in the CellType Ontol-

ogy). This allows PATO-based phenotype descriptions to be

integrated across species, and several thousand PATO-based

definitions of phenotype terms in major phenotype ontologies

have already been created [19].

Recently, we have used these definitions to develop

PhenomeNet, a phenotype-based system to prioritize candi-

date genes for diseases based on comparing the similarity

between animal model phenotypes and human disease

phenotypes [20]. PhenomeNet integrates phenotype vocabul-

aries of multiple model organism species, and systematically

compares the similarity of experimentally derived phenotypes

from mutagenesis experiments with human disease pheno-

types. PhenomeNet then computes the pairwise similarity
for all included phenotypes (either from animal models or

descriptions of diseases) and suggests candidate disease

models based on phenotypic similarity. In contrast to ‘guilt-

by-association’ approaches, the PATO-based integration of

phenotypes enables the direct comparison of phenotypes in

different species (such as human and mouse) and can, there-

fore, be applied to suggest candidate genes for rare and

orphan diseases for which the molecular basis is not known.

We have now extended the PhenomeNet approach by

integrating the clinical signs associated with disorders

from Orphanet [2]. We quantitatively evaluate the success of

PhenomeNet for prioritizing candidate genes based on Orpha-

net’s clinical signs using an analysis of the receiver operating

characteristic (ROC) curve [21], and use our method for identi-

fying candidate genes for diseases whose aetiology is unknown.

Based on the similarity between phenotypic manifestations

observed in mutant mice and the clinical signs associated

with disorders in Orphanet, we present and discuss evidence

that the HIP1 gene may be responsible for Bassoe syndrome.

Our results demonstrate that integration and compu-

tational analysis of human disease and animal model

phenotypes using PhenomeNet has the potential to reveal

novel insights into the pathobiology underlying genetic

diseases. All our results and a web-based interface that can

be used to query and explore our PhenomeNet system

can be found at http://phenomebrowser.net.
2. Results and discussion
2.1. Performance of Orphanet-based disease

gene discovery
We have now incorporated the Orphanet phenotypes into

PhenomeNet, and use PhenomeNet to perform a pairwise

comparison of the phenotypic similarity to all other included

phenotypes, assuming that phenotypic similarity is indicative

of an underlying biological relation. To evaluate our inte-

gration results for Orphanet, we compare PhenomeNet’s

rankings against known gene–disease associations taken

from the Mouse Genome Informatics (MGI) database [6],

against OMIM’s gene–disease associations and against

Orphanet’s gene–disease associations. MGI’s gene–disease

associations are based on OMIM, i.e. they associate mouse

http://phenomebrowser.net
http://phenomebrowser.net
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Figure 1. The figure shows the ROC curves for predicting disease genes based on phenotypic similarity in the PhenomeNet system. A ROC curve is a plot of the true
positive rate of a classifier as a function of its false positive rate. Here, we rank animal model phenotypes based on their phenotypic similarity to a disease
phenotype, and evaluate true and false positives rates for each rank (starting with the most similar animal model phenotypes for a disease phenotype). The true
positive rate is calculated as the fraction of known gene – disease associations identified (on the y-axis), and the false positive rate is the fraction of gene – disease
pairs identified in which the gene is not known to be involved in the disease (on the x-axis). The ROC AUC is a quantitative measure of the success of predicting
disease genes through comparisons of phenotypes. A ROC AUC of 0.5 indicates a random classifier (i.e. the true positive rate increases proportional to the false
positive rate), a ROC AUC above 0.5 indicates that the prediction is better than random, and a ROC AUC of 1 would indicate a perfect classifier. (a) The ROC curves
resulting from comparing Orphanet disease phenotypes with mouse model phenotypes and compared with known gene – disease associations from Orphanet (AUC
0.734), OMIM (AUC 0.764) and MGI (AUC 0.798). (b) The ROC curves resulting from comparing OMIM disease phenotypes with mouse model phenotypes and
comparing against known gene – disease associations from OMIM (AUC 0.777) and MGI (AUC 0.868). (Online version in colour.)
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models with OMIM disease identifiers, but manually evalu-

ate assertions in publications making this a gold-standard

resource [22]. To evaluate against OMIM, we map the Orpha-

net disease identifiers to their corresponding OMIM identifier

using the mappings provided by Orphanet. Because not

all OMIM diseases can be mapped to Orphanet diseases,

we only perform this mapping in one direction. Orphanet

associates human genes with diseases, and we use the

human–mouse orthology associations provided by the MGI

to map humans genes to their mouse equivalent.

To validate our approach for identifying gene–disease

associations, we use ROC analysis [21]. A ROC curve is a

plot of the true positive rate of a classifier as a function of

its false positive rate. The area under the ROC curve (ROC

AUC) is a quantitative measure of the classifier’s perform-

ance. To compute the true and false positive rates, we first

identify, for each disease, the genes that have been identified

as being involved in the disease in Orphanet, OMIM or MGI.

We treat these gene–disease pairs as positive instances. In the

absence of a large set of negative gene–disease associations,

we treat all other associations as negative instances for the

purpose of our evaluation. As second step, we rank animal

model phenotypes based on their similarity to a disease phe-

notype, and iterate through the ranks starting with the most

similar animal model phenotype. At each rank r, we compute

the true positive rate TPR(r) as

TPRðrÞ

¼ true positive instances identified between ranks 1 and r
total number of positive instances

ð2:1Þ
and the false positive rate FPR(r) as

FPRðrÞ ¼ negative instances identified between ranks 1 and r
total number of negative instances

ð2:2Þ

Using Orphanet’s gene–disease associations as positive

instances, the resulting ROC AUC of our approach is 0:734,

while we achieve a ROC AUC of 0.764 when comparing the

predictions against OMIM’s gene–disease associations and

0.798 using MGI’s gene–disease associations as positive

instances. The resulting ROC curves, including the updated

ROC curves of PhenomeNet when using OMIM’s disease

phenotypes, are shown in figure 1.

While the resulting ROC curves and their ROC AUC

demonstrate the feasibility of our approach, our choice of

treating unknown gene–disease associations as negative

instances in the evaluation means that these results are con-

servative estimates of the true performance of our method.

Our aim is to find causal genes for orphan diseases without

known molecular basis, and in our evaluation, we will treat

these as negative instances even if a biological relation

exists between the gene and the disease.
2.2. HIP1 as a candidate gene for Bassoe syndrome
The PhenomeNet approach, in contrast to ‘guilt-by-associ-

ation’ approaches [23], does not require prior knowledge of

the genetic basis of diseases for its predictions and is, there-

fore, ideally suited for investigating diseases whose genetic

basis is unknown. We manually investigated the Phenom-

eNet predictions for Orphanet’s diseases and identified

HIP1 as a candidate for the orphan disease Bassoe syndrome



Table 2. The phenotypic traits of Bassoe syndrome in Orphanet and the phenotypic manifestations of mutations in Hip1 available in the MGI database. The last
column lists additional phenotypes associated with Hip1 mutations in mouse found in the scientific literature.

organ system Orphanet mouse models (MGI) additional mouse phenotypes reported in literature

skeletal kyphosis, hypertensible

joints, cubitus valgus

abnormal spine

curvature, lordosis

kyphosis [24], kypholordosis [25], spinal defects [26]

muscular amyotrophy, hypotonia,

muscle hypotrophy

abnormal muscle

morphology

muscle hypotrophy [27], muscle wasting [27]

behavioural abnormal gait, amimia abnormal gait,

hypoactivity,

tremors

failure to thrive [25], ataxia [24], defects in presynaptic

function [27]

visual cataract, strabismus nuclear cataracts,

microphthalmia

cataracts [26]

reproductive testicular atrophy,

hypogonadism,

hypogenitalism,

abnormal ovaries,

reduced fertility

testicular atrophy,

male infertility

decreased testicular weight [28], testicular

degeneration [26,28], increased apoptosis of postmeiotic

spermatids [28], oligospermia [28], decreased

fertility [26,29], reduced sperm count and motility [26,29],

ovarian abnormalities [29]
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(ORPHANET:1875, OMIM:254000). An overview of the

similarity between the phenotypes of Bassoe syndrome and

HIP1 mutations is illustrated in table 2.

Bassoe syndrome (congenital muscular dystrophy—infantile

cataract— hypogonadism) was first described in an extended

kindred in Norway with seven affected individuals in four gen-

erations and a history of male and female stillbirths [30]. The

complexity and severity of the phenotype was very variable

but characteristically associated with hypogonadism/gonadal

dysgenesis, in one case with elevated gonadotrophins, mus-

cular dystrophy/amyotonia and infantile cataract. Orphanet

associates Bassoe syndrome with kyphosis, cataract, hypo-

tonia, muscle hypotrophy, hypogonadism, hypogenitalism,

abnormal gait, abnormal ovaries, amimia, amyotrophy,

hypoplastic testis, reduced fertility, hyperextensible joints,

cubitus valgus and strabismus. The availability of this richer

characterization of the syndrome, in contrast to the minimal

phenotype-related annotations provided in the OMIM descrip-

tion, allowed our extended version of PhenomeNet to rank the

disease as possessing the most similar set of phenotypes to

those reported for mutations in the orthologous Hip1 gene in

the mouse and other model organisms. The similarity between

the affected individuals in this family to mice carrying null

alleles for Hip1 is striking.

HIP1 encodes the Huntingtin-interacting protein 1 (HIP1),

which has been identified as an interacting partner of

Huntingtin, a protein associated with neurodegeneration in

Huntington disease. It is expressed in many tissues through-

out the body [31] and in different brain regions [32], it has

been shown to be involved in clathrin-mediated endocytosis

of cell surface receptors [27,33] and it plays a role in develop-

ment [26] and tumourigenesis [34]. More recently, HIP1

has been implicated in androgen and oestrogen-mediated

transcriptional activation, and it has been suggested that it

may associate with other promoters or response elements

and regulate the transcriptional activity of other nuclear hor-

mone nuclear receptors [35]. Expression of HIP1 in

postmeiotic spermatids reinforces a potential role for germ
cell differentiation or maintenance, which is consistent with

the mouse phenotypes described to date.

Experimental evidence in mice links Hip1 mutations to

cataracts [26], spinal defects [26], kyphosis [24] and kypholor-

dosis [25], microphthalmia [26], failure to thrive [25] as well as

tremors, abnormal gait and ataxia [24]. Hip1-null mice were

also linked to decreased testicular weight owing to testicular

degeneration and increased apoptosis of postmeiotic sperma-

tids and oligospermia [28], decreased fertility, reduced sperm

count, and motility and ovarian abnormalities [24,26,29].

Hip1-null mice also present complex development-related phe-

notypes, abnormal hematopoiesis and muscle hypotrophy/

wasting [27]. There is debate as to whether the abnormal gait

and muscle wasting observed in Hip1-null mice are of neuro-

logical origin [24,26]. However, Hip1-null mice have defects

in presynaptic function, delayed recovery from chemically

induced long-term depression and altered AMPA and

NMDA receptor function [24,27]. The variable severity and

expressivity of the Hip1 alleles made to date, mainly on recom-

binant congenic backgrounds, suggests that the phenotypes are

subject to either background effects or intrinsic threshold varia-

bility, with a pattern strongly reminiscent of the family

described by Bassoe [30].

More recently, Bradley et al. [36] created a double knockout

of Hip1 and Hip1r, the Hip1-related protein, with much more

severe and penetrant phenotypes such as extreme kyphosis.

The protein HIP1r is important in the development of the gas-

tric mucosa [37], providing a possible explanation for the

comment from Bassoe in 1956 that his patients suffered from

‘indigestion’ sufficiently severe to merit clinical intervention,

if the two have overlapping functionality as suggested by the

complementation study conducted by Bradley et al. [36].
2.3. Human mutations in HIP1
With the exception of a fusion protein between HIP1 and

PDGFR being recorded as part of a chromosomal translocation

in chronic myeloid leukaemia [38], coding sequence or
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regulatory mutations in HIP1 have not been reported in

humans. In a study of recurrent distal 7q11.23 deletions, stat-

istical analysis of the association between epilepsy and HIP1
deletion in 10 families with deletions covering the HIP1 locus

showed a significant association [39]. The authors concluded

that haploinsufficiency of HIP1 is sufficient to predispose the

brain to epilepsy and a broad range of cognitive and neuro-

behavioural abnormalities, including intellectual disabilities,

hyperactivity, and aggression [39]. This study also reported two

reciprocal microduplications inclusive of HIP1 with behaviour-

al phenotypes related to expressive language disorder,

attention deficit hyperactivity disorder and aggression pheno-

types, bipolar disorder and encephalocele. This suggests that

overexpression may be associated with a similar phenotype

as underexpression, and in some cases where the copy

number variation (CNV) region was inherited from an unaf-

fected parent there was a suggestion of a two-hit mechanism

where a second somatic mutation results in expression of the

phenotype. To date, non-neurological phenotypes have not

been reported for patients with CNVs including HIP1 and

the phenotype associated with smallest deletion including

HIP1 reported by Ramocki et al. [39] is only reported as epi-

lepsy. A recent report of a patient with a chromosome

12q24.31–q24.33 deletion showing developmental delay,

kyphoscoliosis and micropenis suggests that loss of HIP1R
results in a phenotype related to the mouse mutant [40].

The discrepancy between the human and mouse pheno-

types for Hip1/HIP1 lesions may be due to ascertainment;

Ramocki et al. [39] used a database of CNVs to identify patients.

In humans, coding sequence or regulatory mutations may be

necessary to show the complete phenotype, predicting that

patients with Bassoe syndrome might show specific gain-of-

function or change-of-function mutations, or may be function-

ally null rather than haploinsufficient; heterozygous knock-out

mice show weaker phenotypes in comparison with complete

nulls [24]. The demonstration that human HIP1 can almost com-

pletely compensate for removal of Hip1 and Hip1r strongly

suggests that the two genes are functionally equivalent in

mouse and human [36].
3. Material and methods
3.1. Ontology-based cross-species integration
To make phenotypes of animal models comparable with human

phenotypes, we follow a knowledge-based approach using bio-

medical ontologies and automated reasoning. Phenotypes,

clinical signs and symptoms are widely represented using bio-

medical ontologies, such as the Human Phenotype Ontology

(HPO) [4] and the Mammalian Phenotype Ontology (MP) [5].

Many phenotype ontologies used in model organisms and

humans have been defined based on the PATO frame-

work [18,19]. In these definitions, phenotypes, signs and

symptoms are decomposed in an affected entity and a quality
that characterizes how the entity is affected. Entities in pheno-

types, clinical signs and symptoms are either biological processes
and functions or anatomical structures. Processes and functions,

such as mating (GO:0007618), are represented using the

species-independent GO [41], whereas anatomical entities are

commonly represented using species-specific anatomy

ontologies.

Phenotypes in which functions and processes are affected

are directly comparable between species owing to the use of
the species-independent GO and the species-independent

PATO ontology. To make phenotypes in which anatomical

structures are affected comparable between species, homologous
anatomical structures between species can be identified and

used to systematically integrate phenotypes across species [42].

To account for gaps between species, as well as different levels

of granularity in anatomy ontologies, background knowledge

in ontologies can be used to provide an additional layer of

abstraction. For example, we can compare the human pheno-

type Proximal fibular overgrowth (HP:0005067, decomposed

into the entity Proximal epiphysis of fibula (human) and the

quality Hypertrophic) and the mouse phenotype Abnormal
fibula morphology (MP:0002187, decomposed into the entity

Fibula (mouse) and the quality Abnormal morphology). For this

purpose, we make use of the knowledge that Fibula (mouse)

and Fibula (human) are homologous anatomical structu-

res, that Proximal epiphysis of fibula (human) is a part of Fibula
(human), and that Hypertrophic is a kind of Abnormal
morphology. We then infer, using automated reasoning, that

Proximal fibular overgrowth (human) is a kind of Abnormal
fibula morphology (mouse). In PhenomeNet, we formalize EQ-

based phenotype definitions in the Web Ontology Language

(OWL) [43] and use the consequence-based OWL reasoner

CB [44] to infer related phenotypes across species. The source

code and the resulting mappings are freely available at

http://phenomeblast.googlecode.com.
3.2. Semantic similarity
To analyse information from phenotype ontologies and

compare phenotypic similarity between animal models,

diseases and drug profiles, we use a measure of semantic

similarity [45]. Semantic similarity exploits the background

knowledge in an ontology, commonly the ontology’s under-

lying graph structure, to identify similar concepts. In

particular, we use the simGIC similarity measure [46].

simGIC is based on the Jaccard metric, which is a measure to

compare set similarity, and can be used to evaluate the distance

between two sets of phenotype terms. To make the Jaccard

metric a semantic similarity measure between a set of phenotype

terms S1 and another set of phenotype terms S2, using the ontol-

ogy O as background knowledge, simGIC adds, for every

element x of S1 and y of S2, the superclasses of x in O to S1

and the superclasses of y in O to S2 (i.e. it compares sets

that are closed against the super-class relation). To compare

the similarity between two diseases, we then calculate the infor-

mation content I(x) of each phenotype term x in our integrated

phenotype resource. The information content I(x) of the term x
is defined based on the probability P(X ¼ x) that a gene or

disease is characterized with x

IðxÞ ¼ �logðPðX ¼ xÞÞ: ð3:1Þ

We then calculate the similarity between the sets S1 and

S2 (closed against the super-class relation) as

simðS1; S2Þ ¼
P

x[S1>S2
IðxÞ

P
y[S1<S2

IðyÞ : ð3:2Þ

The use of semantic similarity has several benefits over

other similarity measures. It benefits from the background

knowledge in ontologies, in particular the hierarchical

abstraction that ontologies provide, and can define similarity

based on overlap of general features of a phenotype (e.g. a

similarity between the anatomical location affected in a

http://phenomeblast.googlecode.com
http://phenomeblast.googlecode.com
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phenotype instead of an exact match). In PhenomeNet, we

close sets of phenotype terms against superclasses in the

MP, because the use of MP has been shown to yield the

best results when analysing mouse phenotypes [47].

3.3. Mapping of Orphanet clinical signs to Human and
Mammalian Phenotype Ontology

We have created a phenotypic representation of the disorders

in Orphanet based on the HPO and MP [4,5]. To generate the

mapping between Orphanet’s clinical signs, and HPO and

MP terms, we used a combination of lexical, structural and

manual approaches. First, we use the Needleman–Wunsch

algorithm [48] to find the labels and synonyms of phenotype

terms in the HPO and MP that are lexically most similar to

the labels of clinical signs in Orphanet, and we assign these
MP or HPO classes as equivalent to the clinical sign in Orpha-

net. Second, we use the taxonomic structure of clinical signs

in Orphanet and identify a superclass in HPO or MP for

clinical signs. In particular, we identify a superclass, in

Orphanet’s classification of clinical signs, which is lexically

identical or very similar to a term in the HPO or MP, and

assign this HPO or MP term as a superclass of Orphanet’s

clinical sign. Finally, we manually reviewed the mappings

and removed incorrect associations. As a result, we can

associate 2507 disorders from OrphaNet with 52 002 terms

from HPO as well as 11 674 phenotype terms from MP.

Financial support for R.H. was provided by the European Commis-
sion’s 7th Framework Programme, RICORDO project (grant
number 248502). Financial support for G.V.G. and P.N.S. was
provided by the NIH (grant number R01 HG004838-02).
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