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Identifying the protein complexes in protein-protein interaction (PPI) networks is essential
for understanding cellular organization and biological processes. To address the high false
positive/negative rates of PPI networks and detect protein complexes with multiple
topological structures, we developed a novel improved memetic algorithm (IMA). IMA
first combines the topological and biological properties to obtain a weighted PPI network
with reduced noise. Next, it integrates various clustering results to construct the initial
populations. Furthermore, a fitness function is designed based on the five topological
properties of the protein complexes. Finally, we describe the rest of our IMAmethod, which
primarily consists of four steps: selection operator, recombination operator, local
optimization strategy, and updating the population operator. In particular, IMA is a
combination of genetic algorithm and a local optimization strategy, which has a strong
global search ability, and searches for local optimal solutions effectively. The experimental
results demonstrate that IMA performs much better than the base methods and existing
state-of-the-art techniques. The source code and datasets of the IMA can be found at
https://github.com/RongquanWang/IMA.
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1 INTRODUCTION

Many complex systems in the real world are often modeled with complex networks, such as
computer networks, social networks, and biological networks. The detection of community structure
is an essential property of complex networks, and it helps us understand the structure and
functionally of complex networks. Protein complexes mined from the PPI network are
representative of detecting community structure in complex networks. In proteomics, proteins
rarely act alone, and often organize together to form protein complexes to perform specific biological
functions cooperatively (Spirin and Mirny, 2003). Therefore, accurately identifying protein
complexes from PPI networks can contribute to the study of the mechanisms of cellular
functions and organization (Gavin et al., 2002) in the post-genomic era. Although some
experimental methods such as yeast two-hybrid and tandem affinity purification can detect
protein complexes, they have limitations. Specifically, they are expensive and time-consuming.
With the development of high-throughput experimental technologies, many PPI networks are now
available. The computational methods developed complement the experimental techniques in
identifying protein complexes. As a result, many computational methods have been proposed
for the identification of protein complexes from PPI networks, which is a type of cluster analysis,
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which consists of grouping patterns into clusters based on the
similarity, and it is a valuable technology in many areas such as
bioinformatics, machine learning, and computer vision.

To date, a variety of computational methods for detecting
protein complexes in PPI networks have been proposed. Based on
our work, we provide a summary of the related works by
classifying the existing methods into three types: methods
based on reducing noise, methods based on different
topological structures, and methods based on evolutionary
algorithms.

Because the PPI networks are derived from high-throughput
experiments, the high false positive and false negative rates in the
PPI networks are high (Von Mering et al., 2002; Samanta and
Liang, 2003; Liu et al., 2009; Srihari, 2012; Zaki et al., 2013; Lei
et al., 2018), which substantially affects the accuracy of protein
complex identification. To reduce the influence of noise, some
methods utilize various network topological properties for strong
interactions and identify protein complexes. These algorithms
include PEWCC (Zaki et al., 2013), ProRank+ (Hanna and Zaki,
2014), and EWCA (Wang et al., 2019a). Alternatively, some
studies have attempted to integrate the gene expression data
(Keretsu and Sarmah, 2016), gene ontology data (Zhang et al.,
2013a; Wang et al., 2019b), and subcellular localization data
(Wang et al., 2020) to improve the reliability of the
interactions. These studies mainly use biological data to weight
protein interactions and compensate the PPI network, which
better reflects the real protein interactions. DPCT (SabziNezhad
and Jalili, 2020) uses TAP and GO data to construct a weighted
PPI network and to reduce the noise of PPI, and a memetic
algorithm to detect protein complexes. Valdeolivas et al. (2019)
extended the Random walk with restart (RWR) algorithm to
multiplex and heterogeneous networks. This framework
performs better as compared to the aggregation of the
different interaction sources and the multiplex framework is
more efficient than network aggregations to extract
communities from biological networks. Blatti et al. (2020)
presented Knowledge Engine for Genomics (KnowEnG), it is a
free-to-use computational system for analysis of genomics data
sets, it provides the standard clustering pipeline to cluster a
collection of samples. However, further reducing the impact of
random noise in PPI networks, and improving the performance
of protein complex detection methods remain urgent problems to
be solved.

In recent years, various computational methods based on
different topological structures have been developed to detect
protein complexes in PPI networks. Among these methods,
different types of topological structures are commonly
assumed to be protein complexes. Some methods partition
proteins into many non-overlapping clusters by using partition
functions or principles. For example, Markov Clustering (MCL)
(Van Dongen, 2000) is a simulated random walk method, which
mainly uses expansion and inflation operators to manipulate the
adjacency matrix and mine protein complexes from the PPI
networks. Meanwhile, RNSC (King et al., 2004) first moves the
proteins randomly among the clusters to optimize the cost
function, and then a post process, based on cluster size,
density, and functional homogeneity is carried out. Some

methods aim to find cliques. In 2006, CFinder (King et al.,
2004) was developed to cluster proteins in the PPI network,
and it used the concept of k-clique to discover protein complexes.
In 2009, CMC (Liu et al., 2009) tried to enumerate cliques in the
PPI network for discovering protein complexes, but it was too
strict for most protein complexes. Therefore, several methods
based on density have been designed to identify dense subgraphs
in the PPI networks, where subgraphs with densities above a pre-
defined threshold were considered as protein complexes. For
example, MCODE (Bader and Hogue, 2003) first weighted every
node by local neighborhood density and then extended locally
dense nodes to detect protein complexes. Later, Li et al. (2008)
improved the seed-extended method by modifying the DPClus
algorithm based on the diameter and density of the local graph.
Furthermore, Gavin et al. (2006) proposed that protein
complexes have the core-attachment structure, and some
identification methods based on the core-attachment structure.
For example, COACH (Wu et al., 2009) andWPNCA (Peng et al.,
2014) have been proposed to find protein complexes. They first
extracted the protein complex cores from the neighborhood
graphs of the proteins, and protein complex cores were further
extended to form complete protein complexes. Finally, some
protein complexes with a high overlap were merged. There are
some variants of network topological features that are used to
detect protein complexes; these studies (Nepusz et al., 2012;
Giurgiu et al., 2019) have shown that proteins in a protein
complex commonly display strong interactions within the core
of the protein complex, and weak interactions with the proteins
outer surface of the protein complex, ClusterONE (Nepusz et al.,
2012) starts from a seed node and inserts neighbors into it to form
overlapping protein complexes by using cohesiveness.
Subsequently, Wang et al. (2019b) proposed a novel seed-
expand algorithm called SE-DMTG to identify protein
complexes with a combinatorial function from the weighted
PPI networks. Additionally, based on the 3-sigma principle
(Wang et al., 2013), MPC-C (Wang et al., 2020) identifies the
active points of proteins in a time serial of gene expression data
and generates a series of time-sequenced subnetworks to identify
static and dynamic protein complexes. In 2021, Liu et al. (2021)
proposed a protein complex detection methods based on a semi-
supervised model to detect protein complexes with clear module
structures. A number of computational methods only consider
single topological properties to identify protein complexes, and
they recover protein complexes with other types of topological
structures.

Intensive studies on evolutionary algorithms have also been
conducted. In recent years, some researchers have provided new
ideas for solving protein complex identification problems by
using optimized algorithms, by employing the characteristics
of highly adaptive and good optimization abilities. Some
successful methods have been applied to tackle the problems
of identifying protein complexes and efficiency. In 2015,
Ramadan et al. (2016) introduced a genetic algorithm to detect
protein complexes. Subsequently, in 2016, Lei et al. (2016)
presented F-MCL based on Markov clustering and the firefly
method, which automatically determines the parameters by using
the firefly method. In the same year, a novel fruit fly optimization
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clustering method was designed to detect dynamic protein complexes
(Lei et al., 2016). In 2017, Zhang et al. (2017) proposed a new firefly
clustering algorithm for transforming the protein complex detection
problem into an optimization problem. Zhao et al. (2017) proposed a
novel improved cuckoo search clustering method for discovering
protein complexes in dynamic weighted PPI networks. In 2019, Lei
et al. (2019b) used a nature-inspired optimization method to detect
protein complexes. In 2019, amoth-flame-optimization-based protein
complex detection method was presented (Lei et al., 2019a). In 2020,
an evolutionary algorithm based on a heuristic biological operator was
introduced to detect protein complexes (Abduljabbar et al., 2020).
These evolutionary methods have a strong global search ability, but
they have difficulty in locating the local optima efficiently.

To solve these issues, we present a novel algorithm, named IMA,
which uses an improved memetic algorithm we designed to detect
protein complexes from the PPI network. First, we constructed a
weighted PPI network by using the common neighbor, gene
expression data, GO-slim data, and subcellular location data to
reduce the impact of noise on our IMA. Second, many high-
quality initial individuals, including protein complexes with
different topological structures, are generated using EWCA (Wang
et al., 2019a), SE-DMTG (Wang et al., 2019b), and MPC-C (Wang
et al., 2020). We propose a fitness function to identify protein
complexes with various topological properties. Third, a new
improved memetic algorithm is proposed to mine the protein
complexes by optimizing this fitness function in the weighted PPI
network. Remarkably, its selection, recombination, and updating
population operators are used for the global search of the best
individual, and a local optimization strategy is designed to locate
the local optima individually. Finally, our IMA was applied to four
different yeast PPI networks and compared with the 12 existing
excellent methods. The experimental results illustrate that the IMA
achieves state-of-the-art performance of computational metrics and
biological relevance metrics in identifying protein complexes.

In the materials and methods section, we introduce the datasets
and standard protein complexes used in the evaluation of IMA and
define all phases of IMA separately. In the experiments and results
section, we evaluated the proposed method and compare it with the
state-of-the-art methods. The case study and discussion section
shows some examples of protein complexes detected by IMA and
we conclude this paper in conclusion section.

2 MATERIALS AND METHODS

2.1 Datasets
In this study, we used four PPI networks including Krogan
(Krogan et al., 2006), DIP (Xenarios et al., 2002), combined6

(Liu et al., 2009), and WI-PHI (Kiemer et al., 2007). Their
information is presented in Table 1.

Furthermore, two sets of standard protein complexes from the
literature (Wang et al., 2020) were used to evaluate the
performance of the protein complex detection methods, and
their information is shown in Table 2. Here, standard protein
complexes 1 consists of the known protein complexes fromMIPS
(Mewes et al., 2004), SGD (Hong et al., 2007), TAP06 (Gavin
et al., 2006), ALOY (Aloy et al., 2004), CYC 2008 (Pu et al., 2009)
and NEWMIPS (Friedel et al., 2009). Meanwhile, standard
protein complexes 2 also is a combined protein complexes
dataset (Ma et al., 2017). It consists of the Wodak database
(Pu et al., 2009), PINdb and GO complexes (Ma et al., 2017).
Additionally, we also used CYC2008 protein complexes (Pu et al.,
2009) and MIPS protein complexes (Mewes et al., 2004), and they
come from other people’s work, and they are shown in https://
github.com/RongquanWang/IMA/Additional file 3.

The GO-slim data can explain the biological function of
proteins, and it can be downloaded from https://downloads.
yeastgenome.org/curation/literature/go_slim_mapping.tab. The
gene expression data were obtained from https://www.ncbi.
nlm.nih.gov/sites/GDSbrowser. Additionally, the subcellular
localization data set for yeast proteins was obtained from
https://compartments.jensenlab.org/Downloads.

2.2 Methods
2.2.1 Preliminaries
Since PPI networks are defined using graph-theoretic concepts,
we first provide some of the terminologies used in our paper and
then describe the IMA method in detail.

A PPI network can be represented as an undirected graphG(V,
E), where V is the set of vertices (individual proteins) and E is the
set of edges (protein interactions) between the vertices. The
neighbors of v in G, denoted by N(v), are the set of vertices
adjacent to v.

Biologically, protein complexes are groups of proteins that
interact with each other at the same time and place, forming a
single multi-molecular machine. However, due to the inherent
topological structures of protein complexes (Nepusz et al., 2012)
in PPI networks, protein complexes are usually assumed to be the
subgraphs of PPI networks. Let C � (VC, EC,WC) be a subgraph of
G. The neighbors of C are defined by Eq.1:

N C( ) � v| v, u( ) ∈ E, u ∈ VC, v ∈ V − VC{ }, (1)

As a result, the task of identifying protein complexes can be
formulated as mining connected clusters that are densely
connected inside and well separated from the rest of the PPI

TABLE 1 | Statistics of used four PPI networks in the study.

Dataset Number of node Number of edge Density

Krogan 2674 7075 0.0019796849348
DIP 4930 17201 0.0014157219124
combined6 3869 17327 0.0023156247135
WI-PHI 5955 49604 0.0027980540426

TABLE 2 | Statistics of used standard protein complexes.

Datasets Number Protein coverage Avg size

Standard protein complexes 1 812 2773 8.92
Standard protein complexes 2 1045 2778 8.97
CYC2008 protein complexes 193 1371 8.33
MIPS protein complexes 212 1202 15.61

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7943543

Wang et al. Memetic Algorithm, Detecting Protein Complexes

https://github.com/RongquanWang/IMA/Additional
https://github.com/RongquanWang/IMA/Additional
https://downloads.yeastgenome.org/curation/literature/go_slim_mapping.tab
https://downloads.yeastgenome.org/curation/literature/go_slim_mapping.tab
https://www.ncbi.nlm.nih.gov/sites/GDSbrowser
https://www.ncbi.nlm.nih.gov/sites/GDSbrowser
https://compartments.jensenlab.org/Downloads
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


networks, and the clusters correspond to the protein complexes.
The protein complex detection method obtains a set of clusters,
P � (P1, P2, . . ., Pt).

2.2.2 Methods
2.2.2.1 Constructing a Weighted PPI Network
Many studies (Lei et al., 2018, 2019b; Wang et al., 2020) have
shown that the performance of protein complex
identification methods can be improved by integrating
multiple data sources into a single weighted PPI network,
which enhances the confidence of interactions in PPI
networks. Thus, we integrated the topological structures
and multiple biological data to weight the interactions in
the PPI networks. Our goal was to weight the edges of the PPI
network to reflect the reliability of the corresponding
interactions. Graph clustering algorithms can use these
weights to reduce the influence of noisy edges and yield
meaningful clusters.

2.2.2.1.1 Protein Common Neighbor similarity. The larger the
number of common neighbors between the two proteins, the
stronger the interaction of the two proteins, and they are
more likely to participate in the same protein complex. Some
common neighbor similarity measures (Zaki et al., 2013;
Wang et al., 2019a; Wang et al., 2019b) were used to
calculate the similarity of protein pairs. This paper
defines a higher-order common neighbor (HCN)
similarity measure to estimate the reliability of the
interaction between two proteins, v and u. The HCN is
defined by Eq. 2.

HCN v, u( ) �
���������������������������

|NCN v, u( )|2������������|N v( )|p|N u( )|√
p|N v( ) ∪ N v( )|

√
, (2)

where NCN(v, u) � N(v) ∩ N(u) is the number of common
neighbors between proteins v and u. N(v) and N(u) represent the
number of neighbors that proteins v and u are connected with,
respectively. HCN(v, u) can further balance the comprehensive
connectivity of the two interacting proteins, which may consist of
the same protein complex.

2.2.2.1.2 Protein Co-Expression similarity. Next, the gene
expression data describes proteins under various conditions in
a biological process (Zhang et al., 2013b; Wang et al., 2014). The
gene expression vector of each protein comprised of a series of
expression values within the period. If two proteins have a similar
degree of expression at the same time interval, they have a high
co-expression value, and then they are more likely to form a
protein complex. The gene expression profiles of a pair of
proteins v and u in a PPI network, their gene expression
profiles are v � {v1, v2, . . ., vn} and u � {u1, u2, . . ., un},
respectively. Here, we use the person correlation coefficient
(Wang et al., 2013) to calculate the co-expression value PCC(v,
u), as defined in Eq. 3:

PCC v, u( ) � ∑n
i�1 vi − �v( )p ui − �u( )�����������∑n

i�1 vi − �v( )2
√

p
�����������∑n

i�1 ui − �u( )2
√ , (3)

where �v and �u are the average gene expressions of proteins v and u
in n time points, respectively. PCC(v, u) indicates the co-
expression of the vector representation between two
interacting proteins. As the value of PCC(v, u) ranges from −1
to 1, we set PCC(v, u) � PCC(v,u)+1.0

2 to set PCC(v, u) in [0,1]. The
higher the value of PCC(v, u), the larger the probability of co-
expression of proteins v and u and formation of a protein
complex.

2.2.2.1.3 Protein Functional Similarity. From the perspective of
protein function, we used GO-slim data to reflect the functional
similarity of proteins. Moreover, we generated an attribute matrix
O ∈ RN×M, where N denotes the number of proteins in the PPI
network andM denotes the number of GO slim attributes. Based
on matrix O, we constructed a protein attribute affinity matrix,
S ∈ RN×N. Each entry FS(v, u) reflects the GO slim attribute
similarity between proteins v and u, as defined in Eq. 4:

FS v, u( ) � ∑M
k�1ovkpouk������∑M

k�1o
2
vk

√
p

�������∑M
k�1o

2
uk

√ . (4)

2.2.2.1.4 Protein Subcellular Location Similarity. Generally, if
two interacting proteins have the same subcellular location, the
interaction between the proteins is more reliable. Proteins in the
protein complex should be localized in the same inner cellular
compartment. Here, we defined the subcellular location similarity
SL(v, u), and is defined in Eq. 5:

SL v, u( ) � |SL v( ) ∩ SL u( )|2
|SL v( )|p|SL u( )| (5)

where |SL(v)| and |SL(u)| denote the number of subcellular
localizations of proteins v and u, respectively. |SL(v) ∩ SL(u)|
represents the number of common subcellular localization
attributes between proteins v and u.

The edges whose weight is 0 are seen as noise and are removed
from the PPI network, and the rest of edges whose weightW(v, u)
are expressed by Eq. 6:

W v, u( ) � HCN v, u( ) + PCC v, u( ) + FS v, u( ) + SL v, u( )
4

. (6)

Finally, the weighted PPI networks were constructed, and the
reliability of the PPI networks was enhanced.

2.2.2.2 Memetic Algorithm
A memetic algorithm (Li et al., 2014) is typically a hybrid-local
heuristic search method used for optimization. Generally,
memetic algorithms consist of a genetic algorithm and local
optimization strategy. Here, the genetic algorithm is the global
search method, which can explore a reliable estimate of the global
optimum, but it does not obtain an optimal individual in the
explored search space quickly. Therefore, the local optimal search
strategy is typically used to accelerate searching and find the best
individual in the local search space. In this paper, we present an
improved memetic algorithm that can create new individuals that
are located in new promising regions in the global search space
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and search around the newly generated individuals to optimize
individuals of better quality (Gach and Hao, 2012).

2.2.2.3 The IMA Algorithm for Complex Detection
2.2.2.3.1 The Framework of IMA Algorithm. The memetic
algorithm is a valuable framework for dealing with
combinatorial optimization problems. It provides a good
balance between searching for diversification and optimization
by employing a genetic algorithm and the local optimization
strategy (Žalik and Žalik, 2018). We designed a fitness function to
evaluate the quality of the clusters. In addition, we propose a
recombination operator and local optimization strategy for
detecting protein complexes in the PPI network. Our goal is to
maximize the individual’s FSfitness (see Eq. 13) using an improved
memetic algorithm. Algorithm 1 is the main framework of IMA.
The primary input of the IMA algorithm was the PPI network. A
flowchart of Algorithm 1 is presented in Figure 1.

IMA begins with initial populations (line 1, see section
generating the initial population) and then repeats an iterative
procedure many times (generations) (lines 3–18). Two parent
individuals in the current population are selected using a
tournament selection strategy for each generation (line 4, see
section selection operator). Two new children individuals were
generated based on two selected parents using the recombination
operator (line 5, see section recombination operator). Then, we
select the children with the highest fitness function (line 6, see
section fitness function: Eq. 13), and if its fitness function is larger
than the 80% fitness of the individual with the maximum fitness,
it is further improved using the local optimization strategy we
proposed (line 7–11, see section local optimization strategy).
Finally, a roulette wheel selection strategy is used to update
the population (line 12, see section updating population
operator). The individual with the highest fitness function
(line 13, Eq. 13) mined during the search process is always
recorded (lines 14–16). The entire IMA stops when iter

consecutive generations (line 3, MaxIter). In the following
subsections, we provide more details on the parts of the IMA
algorithm.

2.2.2.3.2 Generating Initial Population. As we know, most of
existing protein complex detection methods are based on
unsupervised learning, and they can only identify protein
complexes with a single topology. However, real protein
complexes have a variety of topologies. That is why we
proposed the IMA. In fact, IMA algorithm is a typical swarm
intelligence optimization algorithm, which needs to build an
initial population P. In order to build an initial population, we
should follow two basic requirements: 1) The individuals in the
initial population should be high quality. It means that the
protein complex detection method should produce the high
accuracy initial population; 2) Individuals in the initial
population need to be diverse. Obtaining initial population
method should identify the protein complexes with different
topological structures. Based on the above two points, we
choose EWCA (Wang et al., 2019a), SE-DMTG (Wang et al.,
2019b) and MPC-C (Wang et al., 2020) as the methods to
generate the initial population.

In fact, according to their references, we can see that these
three algorithms not only have high protein complex detection
accuracy, but also can identify the protein complexes with
different topological structures. And their advantageous than
other existing methods are shown in their literatures (Wang
et al., 2019a; b, 2020). For example, EWCA can identify
protein complexes with core-attachment structure, SE-DMTG
can identify protein complexes with high density and modularity
and MPC-C can predict static protein complexes and dynamic
protein complexes with community structure. Moreover, the
identification accuracy of these three algorithms is also
excellent in the existing algorithms. Therefore, they can ensure
the generation of protein complexes with high quality and

FIGURE 1 | The flowchart of IMA framework.
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different topological structures. That is why we chose these
algorithms.

The first approach is the EWCA, which generates o
individuals by using different values of ss (structural
similarity) threshold and ranges from 0.3 to 0.62 with 0.04
increment. The second approach is the SE-DMTG algorithm,
which generates o individuals by randomly constructing seed
queues, and then uses its seed-extended algorithm to generate
individuals. The last method is the MPC-C algorithm, which
is used to construct o individuals by setting different values of
the filter Score(C) cutoff (from 0.1 to 0.8 with a step size of
0.1). Finally, we obtain Pop � 3 × o individuals and combine
them to create the initial population, where the parameter
o is 8.

Algorithm 1. The pseudo-code of general framework of IMA.

2.2.2.3.3 Fitness Function.We first define the fitness function of
the IMA method; this fitness function should reflect the
topological properties of protein complexes in PPI
networks. Generally, a high-quality protein complex is a
group of proteins that are densely interconnected but only
sparsely connected with the rest of the PPI network (Li et al.,
2008; Nepusz et al., 2012; Wang et al., 2019b, 2020).
Meanwhile, in identifying various topological properties of
protein complexes, the combination of multiple single
objective functions can compensate for the shortcomings of
a single objective function, which leads to an improved quality
of the identified protein complexes. Therefore, we propose a
multi-objective function (Eq. 12) by integrating five objective
functions (Eqs 7–11 to describe the topological properties of
protein complexes: cohesiveness(C), density(C), AIEW(C),
ABEW(C), and AWM(C).

C � (VC, EC, WC), where VC is the set of proteins in cluster C,
EC is the set of interactions in cluster C, and WC is the set of
weights between the pair of proteins. According to previous
studies (Nepusz et al., 2012; Wang et al., 2019b), the
cohesiveness score is defined as Eq. 7:

cohesiveness C( ) � Win C( )
Win C( ) +Wout C( ), (7)

whereWin(C) is the sum of the weights of all edges among C, and
Wout(C) is the sum of the weights of the edges connecting nodes
in C to other nodes in the rest of the PPI network.

(Li et al., 2008; Liu et al., 2009; Wang et al., 2019b)
hypothesized that the higher the density of the cluster is, the
more likely the cluster is a protein complex in the PPI network.
The weighted density of cluster C is defined by Eq. 8:

density C( ) � 2pWin C( )
|VC|p |VC| − 1( ) (8)

where Win(C) is the sum of the weights of the edges between
them, and VC is the number of nodes in C.

In this paper, we propose three measures to estimate the
likelihood of a local cluster C being a protein complex. First, it
is the average inner edge weight (AIEW), and it can estimate the
reliability of the internal edges of the cluster C. This is defined in
Eq. 9:

AIEW C( ) � Win C( )
|EC| , (9)

whereWin(C) is the sum of the weights of the edges among them,
and |EC| is the number of edges in cluster C. AIEW(C) is the
average weight of the inner edges in cluster C.

Second, it is the average border edge weight (ABEW), and it
can measure the reliability of the border edges of cluster C. This is
defined in Eq. 10:

ABEW C( ) � Wout C( )
|BEC| , (10)

where |BEC| � {(u, v)|u ∈ C, v∉C} is the number of border edges
that connect the cluster C with the rest of the PPI network, and
Wout(C) is the sum of the weights of the edges connecting nodes
in C to the neighbor of the cluster C. ABEW(C) is the average
weight of the border edges in cluster C.

Third, it is the average weighted modularity (AWM), which
indicates that the cluster C is highly average weight connected
among them and has a low average weight interaction with the
rest of the network. This is defined in Eq. 11:

AWM C( ) � AIEW C( )
AIEW C( ) + ABEW C( ), (11)

Based on these objective functions, we propose a fitness function
that combines these single objective functions to assess the
possibility of a cluster C being a protein complex. This fitness
function is denoted by Eq. 12:

FF C( ) � cohesiveness C( ) + density C( ) + AIEW C( )
− ABEW C( ) + AWM C( ), (12)

here, the density(C) and AIEW(C) seek a dense intra-connection
topological structure, whereas ABEW(C) identifies the sparse
topological structure inter-connecting with the rest of the PPI
network. cohesiveness(C) and AWM(C) are used to identify the
topological structures with densely interconnected nodes that are
sparsely connected to the rest of the PPI network.

As a result, FF(Ci) is used to identify protein complexes with
various topological structures in the individual FS. Finally, the
fitness function (FSfitness) of the individual is the sum of FF(Ci),
which is defined in Eq. 13:
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FSfitness � ∑k
i�1

FF Ci( ), (13)

where Ci represents the ith cluster in the individual FS. FF(Ci) is a
multi-objective function that is designed to capture the
community structure of protein complexes (a group of nodes
has better internal connectivity than external connectivity). k is
the total number of protein complexes found in an individual FS.

In this study, the goal of our IMA method is to find the
individual with the maximum value of FSfitness. Generally, the
higher the FSfitness of an individual FS, and the better the quality of
the individual. Therefore, the protein complex detection problem
can be regarded as an optimization problem by maximizing the
value of FSfitness in a PPI network.

2.2.2.3.4 Selection Operator. The selection operator is an essential
operation used in the memetic algorithm. The main idea of the
selection strategy is that the better an individual, the higher is its
chance of being a parent. In the IMA algorithm, the
recombination operator and updating population operator
need individual selection strategies.

In the parent selection operator, a selection strategy is required
to select two parent individuals from the current population to
generate individual children. The fundamental principle of this
operation is that individuals with a higher fitness function are
more likely to be selected as parent individuals. Here, we use a
binary tournament selection strategy to select the parent
individuals. Meanwhile, the recombination operator also uses a
binary tournament selection strategy to select protein complexes
from composite parent individuals to create individual children.

Lastly, the population updating strategy needs to update the
population according to the fitness of individuals in current
population and generate children individuals. In this updating
process, we use the roulette wheel selection strategy to update the
current population to balance the relatively good individuals and
avoid precocity.

2.2.2.3.5 Recombination Operator. The recombination operator
is the critical diversification mechanism of memetic algorithm.
An effective recombination operator should generate not only
diversified solutions but also transfer significant components
from parents to children (Hao, 2012; Li et al., 2014). The
recombination operator is responsible for combining the
genetic material of several individuals (usually two individuals)
to create a new children (Spears and De Jong, 1995). New children
inherit many high-quality protein complexes from their parents.
Additionally, the recombination operator plays a vital role in the
effectiveness of the memetic algorithm in the global search space.
Traditional recombination operators, having uniform crossover
and two-point crossover, are challenging to convey the excellent
protein complexes of two parents to a new children
simultaneously. This method is less suitable for protein
complex detection. Therefore, we present a recombination
operator based on the fitness function, whose children can
inherit the better protein complexes of their parents. This
operator plays an essential role in preventing the algorithm

from being trapped in an optimal local solution and exploring
the global search space. The main idea of this operator is to take
the protein complexes from two parents as the genetic material
and try to retain the high-quality protein complexes in parents for
the new children. The recombination operator is described in
Algorithm 2.

Algorithm 2. Recombination operator.

Let parent1 and parent2 represent the parents, and let
len(parent1) and len(parent2) be the number of protein
complexes in each parent. Parents parent1 and parent2 are
merged into a composite parent. Note that if there are
redundant protein complexes, and we only leave one. As a
result, we obtain a composite parent individual
compositeparent in line 2. Based on the length of parent1
(len(parent1)) and the length of parent2 (len(parent2)), we
determine the length of the new children (childrenlen) by
randomly generating a number between lenlow and lenup in
lines 3–5. The multi-objective function (Eq. 12) of each
protein complex in the compositeparent individual is calculated
and sorted in line 6. Next, according to their multi-objective
function (Eq. 12) and compositeparent, we use the binary
tournament selection strategy to create two new offspring in
line 7.

2.2.2.3.6 Local Optimization strategy. To improve the quality of
the generated offspring, we presented a new local optimization
strategy to obtain better offspring. This strategy is different from
the general sense of local search strategies, such as the hill-
climbing strategy and simulated annealing strategy. The
purpose of the local optimization strategy is to obtain
offspring of relatively high quality. Here, each protein complex
in children is optimized using a multi-objective function (Eq. 12)
and a local optimization strategy. The local optimization strategy
of the IMA is applied to new children as shown in Algorithm 3.

In this process, for each protein complex Childrensi in the
Childrensmax, we optimize it using the following steps in lines
3–22. First, we find inner nodes (Innernodes) that belong to the
Childrensi and connect at least one protein in the rest of the PPI
networks in line 9. Then, we find the inner_max by improving the
multi-objective function (see Eq. 12) maximum in Innernodes in
line 10, and then we remove the inner_max from Clusterdel in line
11. Second, we find boundary nodes (Boundarynodes), which is
the set of proteins that connect at least one inner protein of the
current Childrensi in line 15. Then, we detect the boundarymax by
increasing the multi-objective function (see Eq. 12) maximum in
line 16, and we insert the boundarymax into Clusteradd in line 17.
We repeat the above two steps until the protein complex
Childrensi does no change, and if it is not changed (it is
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considered a locally optimal cluster) or iteration > 20 in lines
19–22, it is an identified protein complex Opcsi in line 24. Next,
we use the local optimization strategy to optimize the rest of the
protein complexes in Childrensmax in line 2–25. If the fitness
function of the optimized individual Opcs is not larger than that
of the Childrensmax, for the individual Childrensmax, its local
optimization strategy is deemed invalid in lines 26–29. Finally,
we output this optimal child, Opcs, in line 30.

Algorithm 3. The local optimization strategy.

2.2.2.3.7 Updating Population Operator. Population diversity is
also a vital issue for memetic algorithms to effectively avoid
prematurity. When a new child individual is produced with the
recombination operator and local optimization strategy, the
fitness function (Eq. 13) of the new children and the current
population are calculated, respectively. All of these are sorted by
their fitness functions. Moreover, to avoid premature
convergence, we employ a roulette wheel selection strategy to
update the population. Here, the size of the new population in
each iteration is the same as that of the original population. The
roulette wheel selection strategy can balance the diversity of the
population and guarantee that individuals with higher fitness
always have a greater probability of being retained in the
population.

3 EXPERIMENTS AND RESULTS

In the experiment, our operational environment was a windows
10 operating system with an Intel(R) Core(TM) i7-9700 CPU
with a physical memory of 16 GB, and a speed of the processor
was 3.60 GHz. The IMA was run on PyCharm Community
Edition 2017.2.2. The IMA was implemented using the Python 3.

3.1 Evaluation Metrics
There are several statistical matching-based metrics that estimate
the quality of the detected protein complexes based on different
protein complex detection methods. Meanwhile, biological

relevance-based metrics, which are supplementary to statistical
matching-based metrics, are used to evaluate the biological
significance of identified protein complexes.

If a detected protein complex ipc and a known protein
complex kpc contain common proteins each other, their
overlapping score (OS(ipc, kpc)) is calculated using Eq. 14:

OS ipc, kpc( ) � |Vipc ∩ Vkpc|2
|Vipc| × |Vkpc|, (14)

where ipc and kpc are the protein set of ipc and the protein set of
kpc, respectively. If OS(ipc, kpc) ≥ λ, ipc is matched with kpc,
where λ is a threshold.

The F-measure is the harmonic mean of precision and recall,
and it can be calculated using Eq. 15:

F −measure � 2 × precision × recall

precision + recall
, (15)

For more details, please see (Lei et al., 2019a). An identified
protein complex is considered to match a standard protein
complex where the overlap score OS(ipc, kpc) is larger than
0.2 (Lei et al., 2019a).

The coverage rate (CR) was used to measure the number of
proteins in the standard protein complexes that could be covered
by the identified protein complexes (Peng et al., 2014). This is
defined in Eq. 16:

CR � ∑|S|
s�1 max Tst{ }∑|S|

s�1Ns

, (16)

For more details on these parameters, please refer to reference
(Peng et al., 2014).

Generally, a higher Sn indicates that the identified protein
complexes cover the proteins in the standard protein complexes
better. In contrast, a higher PPV indicates that the identified
protein complexes are more likely to be actual protein complexes.
Accuracy (ACC) is the geometric average of PPV and Sn, which is
denoted by Eq. 17:

ACC � ��������
Sn × PPV

√
. (17)

The maximum matching ratio (MMR) (Nepusz et al., 2012) can
measure the overlap matching between standard protein
complexes and detected protein complexes based on maximal
one-to-one mapping. It can deal with the case that a known
protein complex split into different parts in the identified protein
complexes, because only one part is matched with the known
protein complex.

Jaccard (Wang et al., 2019b) was used to quantify the overlap
between the detected protein complexes and known protein
complexes. In fact, Jaccard is defined as the harmonic mean of
the JaccardC of the identified protein complexes and the JaccardG
of standard protein complexes, and it is used to evaluate the
clustering results. Jaccard is calculated using Eq. 18:

Jaccard � 2 × JaccardC × JaccardG( )
JaccardC + JaccardG

. (18)
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As a result, the performance of the detection method is evaluated by
the total score, which is calculated using Eq. 19 (Wang et al., 2020):

Total score � F −measure + CR + ACC +MMR + Jaccard.

(19)

In this paper, the p-value is used to estimate the biological relevance
of the identified protein complexes, and it is denoted by Eq. 20:

p − value � 1 − ∑K−1
k�0

F
k

( ) N − F
C − k

( )
N
C

( ) , (20)

For a more detailed explanation of these parameters, please refer
to references (Lei et al., 2019a; Wang et al., 2020). If the p-value of
the protein complex is less than 0.01, it means that the protein
complex has biological significance.

The co-localization score (CL) (Krumsiek et al., 2008) is
denoted as the maximal fraction of proteins in a protein
complex that is found at the same location (Friedel et al.,
2009). For all the detected protein complexes by different
methods, the average co-localization score was computed
using Eq. 21:

CL � ∑m
j�1maxn

i�1li,j∑m
j�1Nj

, (21)

where li,j is the number of proteins in the detected protein
complex j allocated to the localization group i, Nj is the
number of proteins in the detected protein complex j, and m
and n are the number of detected protein complexes and
localization groups, respectively. The final localization score
was calculated as the geometric mean of the co-localization
scores based on the Huh datasets (Huh et al., 2003).

FIGURE 2 | The effect of Pop. It shows how the variation of parameter
Pop affect the Total score of IMAmethod in standard protein complexes 1 and
standard protein complexes 2.

FIGURE 3 | The effect of MaxIter. It shows how the variation of
parameter MaxIter affect the Total score of IMA method in standard protein
complexes 1 and standard protein complexes 2.
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3.2 The Effects of Parameters
IMA includes two parameters which need to be tuned:
Generations(MaxIter) and Population size (Pop). Pop controls
the number of initial population by EWCA, SE-DMTG, MPC-C.
MaxIter determines the number of iterations of population
optimization. Figures 2, 3 show how performance is
influenced by these parameters in three PPI networks and two
standard protein complexes.

Effect of Pop. Figure 2 shows how Total score changes with
the value of Pop. We can see that Total score is not very sensitive
to Pop, especially when Pop falls in [6, 10]. So in our experiments,
Pop is set to 8 by default.

Effect of MaxIter. Figure 3 shows the changing trend of Total
score when MaxIter increases from 40 to 80. We can see that for
the three PINs, the fluctuations of Total score are not significant.
In our experiments, we set MaxIter � 60 by default.

According to Figures 2, 3, we can see that the Total score is not
very sensitive to the changing trend of MaxIter and Pop, so we
only set MaxIter � 60 and Pop � 8 as the default value. To avoid
evaluation bias and overestimation of the performance, we do not
tune the parameter to a particular dataset and set them as the
default value in the all experiments. For more details on
parameters setting, please see https://github.com/
RongquanWang/IMA/Additional file 1.rar.

3.2.1 Comparison With Competitive Algorithms
To demonstrate the performance of the IMA, we compared it with 12
state-of-the-art methods. These include MCODE (Bader and Hogue,
2003), MCL (Van Dongen, 2000), IPCA (Li et al., 2008), COACH
(Wu et al., 2009), ClusterONE (Nepusz et al., 2012), PEWCC (Zaki
et al., 2013), ProRank+ (Hanna and Zaki, 2014), WPNCA (Peng
et al., 2014), WEC (Keretsu and Sarmah, 2016), EWCA (Wang et al.,
2019a), SE-DMTG (Wang et al., 2019b), and MPC-C (Wang et al.,
2020). The total score is used for a more comprehensive evaluation of
the differentmethods.We obtained the software implementations for
all the compared methods, and their parameters are shown in
Table 3. Although better results could probably be obtained by
fine-tuning these parameters, we only use default or suggestion
thresholds to maintain the fairness of different algorithms.

The performance of the methods was compared on four PPI
networks based on two standard protein complexes. The

experimental results of our IMA and other methods on these
PPI networks are listed in Tables 4, 5, and the highest value of
each metric of each PPI network is in bold.

First, we compared them with the standard protein complexes
1. As shown in Table 4, IMA outperformed the other algorithms
on the Krogan dataset. IMA obtained a F-measure of 0.6272, CR
of 0.3917, MMR of 0.3266, Jaccard of 0.4373, and total score of
2.0688, which were obviously superior to other detection
algorithms. MCL predicted 370 protein complexes and
achieved the highest ACC of 0.3192. Second, we compared the
13 approaches using the DIP dataset. IMA detected 1338 protein
complexes, and achieved the highest F-measure, MMR, Jaccard,
and Total scores, respectively. ClusterONE found 904 protein
complexes and achieved a CR of 0.5062 and ACC of 0.3270, the
best performance in terms of CR and ACC. However, it only
achieved a F-measure of 0.5118, MMR of 0.1467, Jaccard of
0.3297, and total score of 1.8214, which were lower than those
obtained using the IMA method. Second, we compared our IMA
and other methods using the combined6 dataset. Table 4 shows
than the results obtained by using combined6 dataset are similar
to those obtained using the DIP dataset. IMA detected 1054
protein complexes and achieved the highest F-measure, MMR,
Jaccard, and total score with values of 0.7256, 0.3364, 0.4869, and
2.3052, respectively. IPCA found 2160 protein complexes and
achieved a better CR of 0.5106. ClusterONE predicted 648 protein
complexes, achieving a ACC of 0.3306, which was the highest.
Finally, we also used the WI-PHI dataset to evaluate the
performance of all methods, and IMA identified 2561
protein complexes, and IMA scores of F-measure, CR,
MMR, Jaccard, and total score were higher than those
determined by the other methods, and they were 0.7503,
0.6223, 0.3965, 0.4828, and 2.5579, respectively. As for the
ACC, which is among the top three, only lower than SE-DMTG
and ClusterONE. From the above analysis, we found that the
IMA algorithm achieved the best performance in the most
evaluation metrics, with the exception of CR and ACC in some
cases. Therefore, these results demonstrate that the IMA
outperforms the base and could be an excellent approach to
detect protein complexes in PPI networks. More evaluation
metrics are made available in the https://github.com/
RongquanWang/IMA/Additional file 2.

TABLE 3 | Parameters of each method used in the study.

ID Algorithms Parameter

1 MCODE (default setting)
2 MCL inflation � 2 (author suggestions)
3 IPCA S � 3, p � 2,Tin � 0.6 (author suggestions)
4 COACH w � 0.225 (default setting)
5 ClusterONE Density � auto, Overlap threshold � 0.8 (author suggestions)
6 PEWCC Overlap � 0.8,-r � 0.1,Re-join � 0.3 (author suggestions)
7 ProRank+ AdjstCD threshold � 0.45 (author suggestions)
8 WPNCA lambda � 0.3,size � 3 (author suggestions)
9 WEC Balance factor (λ) � 0.8, Edge weight (Tw) � 0.7, Enrichment (Te) � 0.8, Filtering (Tf) � 0.9 (author suggestions)
10 EWCA Structural similarity (ss � 0.4) (author suggestions)
11 SE-DMTG Size � 3 (author suggestions)
12 MPC-C Overlap threshold � 0.8 (author suggestions)
13 IMA Generations (MaxIter) � 60, Population size (Pop) � 24 (default setting)
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TABLE 4 | Performance of different algorithms with respect to standard protein complexes 1.

Algorithms Num F-measure CR ACC MMR Jaccard Total score

Krogan
MCODE 39 0.3414 0.2140 0.1994 0.0351 0.2359 1.0258
MCL 370 0.4004 0.3895 0.3192 0.1123 0.2902 1.5117
IPCA 582 0.5573 0.3389 0.2653 0.2368 0.3713 1.7696
COACH 345 0.5254 0.3473 0.2667 0.1824 0.3556 1.6775
ClusterONE 240 0.4694 0.3085 0.2829 0.1262 0.3324 1.5194
PEWCC 383 0.5289 0.3231 0.2554 0.2194 0.3786 1.7053
ProRank+ 357 0.5448 0.3660 0.2718 0.2018 0.3544 1.7388
WPNCA 369 0.5446 0.3897 0.2758 0.1663 0.3415 1.7179
WEC 516 0.5440 0.3442 0.2637 0.2573 0.4005 1.8089
EWCA 676 0.5883 0.3782 0.2769 0.3019 0.4073 1.9525
SE-DMTG 372 0.5878 0.3504 0.2820 0.2284 0.4058 1.8781
MPC-C 458 0.6010 0.3760 0.2814 0.2344 0.3882 1.8810
IMA-unweighted 767 0.5917 0.3827 0.2843 0.3221 0.4174 1.9982
IMA 773 0.6272 0.3917 0.2859 0.3266 0.4373 2.0688

DIP

MCODE 26 0.1300 0.2193 0.1337 0.0103 0.1292 0.6224
MCL 628 0.3106 0.3578 0.2684 0.0752 0.2155 1.2275
IPCA 1242 0.5741 0.3519 0.2404 0.2096 0.3004 1.6764
COACH 329 0.5850 0.3697 0.2462 0.1254 0.3305 1.6568
ClusterONE 904 0.5118 0.5062 0.3270 0.1467 0.3297 1.8214
PEWCC 648 0.6004 0.3783 0.2438 0.1938 0.3514 1.7677
ProRank+ 167 0.3123 0.2115 0.1870 0.0452 0.2007 0.9567
WPNCA 623 0.5888 0.4307 0.2594 0.1807 0.3360 1.7955
WEC 253 0.4185 0.3104 0.2309 0.0953 0.3078 1.3628
EWCA 964 0.6428 0.4374 0.2691 0.2534 0.3723 1.9750
SE-DMTG 869 0.6309 0.3822 0.2674 0.2264 0.3573 1.8482
MPC-C 1477 0.6632 0.4413 0.2729 0.2716 0.3537 2.0027
IMA-unweighted 1569 0.6861 0.4488 0.2731 0.2957 0.3959 2.0995
IMA 1338 0.7196 0.4528 0.2820 0.3028 0.4234 2.1806

combined6

MCODE 63 0.2483 0.3441 0.1762 0.0313 0.1832 0.9833
MCL 508 0.3606 0.4628 0.3098 0.0909 0.2871 1.5114
IPCA 2160 0.7218 0.5106 0.2783 0.3093 0.4396 2.2597
COACH 682 0.5623 0.4839 0.2653 0.2035 0.3703 1.8855
ClusterONE 648 0.4165 0.5098 0.3306 0.1235 0.3173 1.6979
PEWCC 737 0.6586 0.4713 0.2594 0.2661 0.4370 2.0924
ProRank+ 472 0.5837 0.3898 0.2394 0.2162 0.4363 1.8657
WPNCA 898 0.5912 0.5725 0.2720 0.1872 0.3306 1.9537
WEC 544 0.5614 0.4367 0.2504 0.2001 0.4120 1.8609
EWCA 935 0.6860 0.5058 0.2771 0.3097 0.4534 2.2321
SE-DMTG 490 0.6854 0.4347 0.2767 0.2326 0.4517 2.2321
MPC-C 1008 0.7001 0.4871 0.2769 0.2820 0.4438 2.1899
IMA-unweighted 1183 0.7097 0.4746 0.2771 0.3341 0.4755 2.271
IMA 1054 0.7256 0.4829 0.2734 0.3364 0.4869 2.3052

WI-PHI

MCODE 124 0.1095 0.4282 0.1720 0.0142 0.1095 0.8333
MCL 772 0.2597 0.4323 0.2960 0.0647 0.2246 1.2773
IPCA 2181 0.5361 0.5789 0.2819 0.2604 0.3585 2.0156
COACH 1353 0.4689 0.6095 0.2752 0.1803 0.3144 1.8483
ClusterONE 1313 0.1813 0.4908 0.3103 0.0689 0.2065 1.2577
PEWCC 1813 0.5440 0.5943 0.2757 0.2535 0.3516 2.0192
ProRank+ 255 0.1814 0.2038 0.1801 0.0259 0.1719 0.7630
WPNCA 1813 0.5385 0.6198 0.2834 0.2257 0.3432 2.0106
WEC 729 0.3700 0.4830 0.2353 0.0969 0.2987 1.4839
EWCA 964 0.6428 0.4374 0.2691 0.2534 0.3723 1.9750
SE-DMTG 774 0.4945 0.5198 0.3107 0.1816 0.3827 1.8894
MPC-C 2560 0.6068 0.5054 0.2793 0.2013 0.3668 1.9597
IMA-unweighted 3316 0.6769 0.5924 0.2983 0.3841 0.4423 2.3941
IMA 2561 0.7503 0.6223 0.3060 0.3965 0.4828 2.5579

The bold values are the highest value of each metric of each PPI network.
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TABLE 5 | Performance of different algorithms with respect to standard protein complexes 2.

Algorithms Num F-measure CR ACC MMR Jaccard Total score

Krogan
MCODE 39 0.2317 0.1863 0.1861 0.0238 0.1982 0.8260
MCL 370 0.3214 0.3534 0.3088 0.0792 0.2559 1.3187
IPCA 582 0.4606 0.3097 0.2405 0.1545 0.3271 1.4924
COACH 345 0.4369 0.3166 0.2441 0.1228 0.3136 1.4340
ClusterONE 240 0.3913 0.2729 0.2756 0.0887 0.2826 1.3110
PEWCC 383 0.4228 0.2913 0.2343 0.1418 0.3247 1.4150
ProRank+ 357 0.4435 0.3282 0.2621 0.1306 0.3067 1.4711
WPNCA 369 0.4361 0.3572 0.2614 0.1083 0.2960 1.4590
WEC 516 0.4344 0.3022 0.2465 0.1559 0.3351 1.4741
EWCA 676 0.5112 0.3483 0.2663 0.1986 0.3607 1.6851
SE-DMTG 372 0.5060 0.3092 0.2684 0.1445 0.3471 1.5852
MPC-C 458 0.5252 0.3354 0.2706 0.1583 0.3338 1.6233
IMA-unweighted 767 0.5091 0.3488 0.2709 0.2078 0.3665 1.7031
IMA 773 0.5452 0.3526 0.2733 0.2135 0.3790 1.7636

DIP

MCODE 26 0.1061 0.1982 0.1205 0.0071 0.1114 0.5433
MCL 628 0.2409 0.3025 0.2504 0.0482 0.1921 1.0341
IPCA 1242 0.4516 0.3196 0.2304 0.1298 0.2674 1.3989
COACH 329 0.4703 0.3184 0.2307 0.0800 0.2829 1.3823
ClusterONE 904 0.4232 0.4358 0.2937 0.0972 0.2874 1.5373
PEWCC 648 0.4812 0.3336 0.2329 0.1125 0.2986 1.4588
ProRank+ 167 0.2506 0.1895 0.1802 0.0323 0.1784 0.8310
WPNCA 623 0.4603 0.3709 0.2472 0.1065 0.2866 1.4715
WEC 253 0.2921 0.2588 0.2422 0.0526 0.2497 1.0954
EWCA 964 0.5334 0.3812 0.2536 0.1522 0.3226 1.6429
SE-DMTG 869 0.5305 0.3403 0.2562 0.1382 0.3108 1.5697
MPC-C 1477 0.5692 0.3799 0.2538 0.1706 0.3050 1.6785
IMA-unweighted 1569 0.5763 0.3873 0.2583 0.1855 0.336 1.7435
IMA 1338 0.6064 0.3828 0.2710 0.1894 0.3545 1.8041

combined6

MCODE 63 0.1771 0.2943 0.1642 0.0213 0.1543 0.8113
MCL 508 0.2902 0.4078 0.2966 0.0629 0.2605 1.3181
IPCA 2160 0.5641 0.4521 0.2824 0.1854 0.3725 1.8567
COACH 682 0.4454 0.4171 0.2626 0.1229 0.3184 1.5665
ClusterONE 648 0.3454 0.4385 0.3145 0.0885 0.2881 1.4752
PEWCC 737 0.5223 0.4064 0.2588 0.1531 0.3739 1.7145
ProRank+ 472 0.4697 0.3305 0.2322 0.1237 0.3631 1.5194
WPNCA 898 0.4968 0.5117 0.2822 0.1182 0.3140 1.7231
WEC 544 0.4324 0.3842 0.2577 0.1172 0.3562 1.5478
EWCA 935 0.5657 0.4523 0.2810 0.1846 0.3971 1.8807
SE-DMTG 490 0.5568 0.3747 0.2782 0.1414 0.3793 1.7306
MPC-C 1008 0.5964 0.4077 0.2677 0.1752 0.3756 1.8225
IMA-unweighted 1183 0.602 0.3999 0.2695 0.1993 0.3988 1.8694
IMA 1054 0.6127 0.4138 0.2828 0.2046 0.4066 1.9204

WI-PHI

MCODE 124 0.0766 0.3701 0.1606 0.0086 0.0938 0.7096
MCL 772 0.2116 0.3563 0.2776 0.0445 0.2042 1.0941
IPCA 2181 0.4655 0.4970 0.2830 0.1634 0.3250 1.7340
COACH 1353 0.3577 0.5228 0.2559 0.1115 0.2821 1.5300
ClusterONE 1313 0.1571 0.4179 0.2920 0.0481 0.1956 1.1108
PEWCC 1813 0.4464 0.5215 0.2615 0.1495 0.3189 1.6979
ProRank+ 255 0.1397 0.1732 0.1714 0.0190 0.1502 0.6536
WPNCA 1813 0.4285 0.5445 0.2776 0.1346 0.3093 1.6945
WEC 729 0.2914 0.4329 0.2523 0.0590 0.2767 1.3122
EWCA 2347 0.4346 0.5382 0.2840 0.1679 0.3295 1.7542
SE-DMTG 774 0.4252 0.4397 0.2894 0.1183 0.3307 1.6033
MPC-C 2560 0.6068 0.5054 0.2793 0.2013 0.3668 1.9597
IMA-unweighted 3316 0.5822 0.5041 0.2902 0.2427 0.3838 2.0029
IMA 2561 0.6721 0.5342 0.3023 0.2547 0.4232 2.1866

The bold values are the highest value of each metric of each PPI network.
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TABLE 6 | Functional enrichment of the protein complexes identified using different algorithms.

Algorithms Num <E-20 <E-15 <E-10 <E-5 Significant

Krogan
MCODE 39 6 (15.38%) 8 (20.51%) 14 (35.89%) 24 (61.53%) 33 (84.61%)
MCL 370 43 (11.62%) 72 (19.46%) 125 (33.78%) 246 (66.48%) 275 (74.32%)
IPCA 582 108 (18.56%) 162 (27.84%) 244 (41.93%) 445 (76.47%) 485 (83.34%)
COACH 345 66 (19.13%) 107 (31.01%) 165 (47.82%) 272 (78.83%) 295 (85.5%)
ClusterONE 240 62 (25.83%) 92 (38.33%) 130 (54.16%) 199 (82.91%) 212 (88.33%)
PEWCC 383 144 (37.6%) 196 (51.18%) 275 (71.81%) 357 (93.22%) 374 (97.66%)
ProRank+ 357 88 (24.65%) 119 (33.33%) 184 (51.54%) 283 (79.27%) 311 (87.11%)
WPNCA 369 62 (16.8%) 100 (27.1%) 167 (45.26%) 290 (78.59%) 311 (84.28%)
WEC 516 133 (25.78%) 186 (36.05%) 262 (50.78%) 421 (81.59%) 447 (86.63%)
EWCA 676 149 (22.04%) 216 (31.95%) 323 (47.78%) 529 (78.25%) 564 (83.43%)
SE-DMTG 372 80 (21.51%) 110 (29.57%) 161 (43.28%) 282 (75.81%) 301 (80.92%)
MPC-C 458 130 (28.38%) 199 (43.45%) 293 (63.97%) 442 (96.5%) 449(98.03%)
IMA-unweighted 767 219 (28.55%) 301 (39.24%) 457 (59.58%) 681 (88.78%) 712 (92.82%)
IMA 773 226 (29.24%) 319 (41.27%) 501 (64.81%) 719 (93.01%) 735 (95.08%)

DIP

MCODE 26 8 (30.77%) 12 (46.15%) 14 (53.84%) 19 (73.07%) 19 (73.07%)
MCL 628 118 (18.79%) 184 (29.3%) 279 (44.43%) 443 (70.54%) 485 (77.23%)
IPCA 1242 147 (11.84%) 315 (25.37%) 556 (44.77%) 972 (78.26%) 1039 (83.65%)
COACH 329 75 (22.8%) 122 (37.09%) 177 (53.81%) 290 (88.16%) 305 (92.72%)
ClusterONE 904 137 (15.15%) 201 (22.23%) 337 (37.27%) 690 (76.32%) 772 (85.39%)
PEWCC 648 153 (23.61%) 247 (38.12%) 376 (58.03%) 572 (88.28%) 597 (92.14%)
ProRank+ 167 23 (13.77%) 38 (22.75%) 63 (37.72%) 129 (77.24%) 138 (82.63%)
WPNCA 623 156 (25.04%) 242 (38.84%) 370 (59.39%) 562 (90.21%) 590 (94.7%)
WEC 253 97 (38.34%) 121 (47.83%) 149 (58.9%) 195 (77.08%) 209 (82.61%)
EWCA 964 172 (17.84%) 284 (29.46%) 477 (49.48%) 823 (85.37%) 866 (89.83%)
SE-DMTG 869 142 (16.34%) 213 (24.51%) 358 (41.2%) 708 (81.48%) 770 (88.61%)
MPC-C 1477 323 (21.87%) 538 (36.43%) 906 (61.35%) 1398 (94.66%) 1445 (97.84%)
IMA-unweighted 1569 327 (20.84%) 495 (31.55%) 810 (51.63%) 1430 (91.15%) 1492 (95.1%)
IMA 1338 382 (28.55%) 577 (43.12%) 897 (67.04%) 1305 (97.53%) 1324 (98.95%)

combined6

MCODE 63 26 (41.27%) 31 (49.21%) 42 (66.67%) 57 (90.48%) 60 (95.24%)
MCL 508 129 (25.39%) 162 (31.89%) 209 (41.14%) 323 (63.58%) 349 (68.7%)
IPCA 2160 579 (26.81%) 784 (36.3%) 1145 (53.01%) 1923 (89.03%) 2027 (93.84%)
COACH 682 156 (22.87%) 196 (28.74%) 290 (42.52%) 520 (76.24%) 575 (84.3%)
ClusterONE 648 148 (22.84%) 208 (32.1%) 258 (39.82%) 420 (64.82%) 461 (71.15%)
PEWCC 737 285 (38.67%) 375 (50.88%) 505 (68.52%) 688 (93.35%) 707 (95.93%)
ProRank+ 472 255 (54.03%) 324 (68.65%) 395 (83.69%) 443 (93.86%) 452 (95.77%)
WPNCA 898 375 (41.76%) 493 (54.9%) 609 (67.82%) 797 (88.76%) 829 (92.32%)
WEC 544 235 (43.2%) 273 (50.19%) 310 (56.99%) 400 (73.53%) 423 (77.76%)
EWCA 935 274 (29.3%) 337 (36.04%) 437 (46.74%) 721 (77.11%) 770 (82.35%)
SE-DMTG 490 147 (30.0%) 199 (40.61%) 248 (50.61%) 431 (87.96%) 455 (92.86%)
MPC-C 1008 311 (30.85%) 437 (43.35%) 651 (64.58%) 969 (96.13%) 993 (98.51%)
IMA-unweighted 1183 370 (31.28%) 547 (46.24%) 798 (67.46%) 1117 (94.43%) 1152 (97.39%)
IMA 1054 387 (36.72%) 557 (52.85%) 771 (73.15%) 1032 (97.91%) 1042 (98.86%)

WI-PHI

MCODE 124 24 (19.35%) 29 (23.38%) 40 (32.25%) 58 (46.77%) 64 (51.61%)
MCL 772 25 (3.24%) 35 (4.54%) 74 (9.59%) 234 (30.32%) 287 (37.19%)
IPCA 2181 411 (18.84%) 550 (25.21%) 807 (36.99%) 1259 (57.71%) 1345 (61.65%)
COACH 1353 303 (22.39%) 422 (31.19%) 591 (43.68%) 921 (68.07%) 989 (73.1%)
ClusterONE 1313 198 (15.08%) 256 (19.5%) 342 (26.05%) 555 (42.27%) 635 (48.36%)
PEWCC 1813 435 (23.99%) 627 (34.58%) 906 (49.97%) 1297 (71.54%) 1363 (75.18%)
ProRank+ 255 53 (20.78%) 60 (23.53%) 83 (32.55%) 145 (56.86%) 156 (61.17%)
WPNCA 1813 429 (23.66%) 594 (32.76%) 834 (46.0%) 1253 (69.11%) 1336 (73.69%)
WEC 729 215 (29.49%) 264 (36.21%) 337 (46.22%) 478 (65.56%) 501 (68.72%)
EWCA 2347 474 (20.2%) 675 (28.76%) 950 (40.48%) 1428 (60.85%) 1532 (65.28%)
SE-DMTG 774 87 (11.24%) 146 (18.86%) 255 (32.94%) 496 (64.08%) 540 (69.76%)
MPC-C 2560 452 (17.66%) 766 (29.93%) 1382 (53.99%) 2163 (84.5%) 2239 (87.47%)
IMA-unweighted 3316 715 (21.56%) 1062 (32.02%) 1656 (49.93%) 2646 (79.79%) 2815 (84.89%)
IMA 2561 847 (33.07%) 1243 (48.53%) 1732 (67.62%) 2326 (90.81%) 2379 (92.88%)

The bold values are the highest value of each metric of each PPI network.
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The comparison results obtained using standard protein
complexes 2 in Table 5 are basically consistent with those
obtained using standard protein complexes 1 in Table 4. This

means that the performance of the proposed IMA is relatively
stable. The IMA algorithm performs significantly well on four PPI
networks, and it is competitive with the other algorithms in term of

TABLE 7 | The co-localization scores of protein complexes detected by different methods in four PPI networks.

Algorithms Num Krogan Num DIP Num combined6 Num WI-PHI

Co-localization score
MCODE 39 0.7442 26 0.6156 63 0.6481 124 0.5586
MCL 370 0.5820 628 0.5598 508 0.5182 772 0.5510
IPCA 582 0.6656 1242 0.6113 2160 0.5883 2181 0.5585
COACH 345 0.6587 329 0.6527 682 0.5833 1353 0.4960
ClusterONE 240 0.6716 904 0.5778 648 0.5277 1313 0.5207
PEWCC 383 0.7107 648 0.6271 737 0.6493 1813 0.5110
ProRank+ 357 0.6779 167 0.6933 472 0.7377 255 0.5570
WPNCA 369 0.6245 623 0.6063 898 0.5270 1813 0.4997
WEC 516 0.7182 253 0.6520 544 0.6803 729 0.5039
EWCA 676 0.6960 964 0.6430 935 0.6707 964 0.5303
SE-DMTG 372 0.7164 869 0.6725 490 0.7247 774 0.6419
MPC-C 458 0.7315 1477 0.6503 1008 0.7178 2560 0.6111
IMA-unweighted 767 0.7052 1569 0.6556 1183 0.7090 3316 0.6199
IMA 773 0.7351 1338 0.6728 1054 0.7440 2561 0.6506

The bold values are the highest value of each metric of each PPI network.

FIGURE 4 | Some examples of detected protein complexes with different topological structures by IMA. Note that these protein complexes contain the number of
proteins between 3 and 14. Proteins that have binary interactions are connected by dashed lines.
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computational evaluation metrics. Additionally, in order to further
verify the performance of our IMA algorithm, we also use CYC2008
protein complex dataset and MIPS protein complex dataset to
evaluate these identification algorithms. The evaluation results are
shown in https://github.com/RongquanWang/IMA/Additional file 4.
From the experimental results, we can see that the performance of
IMA algorithm on CYC2008 protein complex dataset and MIPS
protein complex dataset is basically consistent with the performance
on two datasets (standard protein complexes 1 and standard protein
complexes 2). This experimental results show that IMAalgorithmhas
strong adaptability and stability to different standard protein
complexes.

3.3 ComparisonWith Functional Enrichment
Analysis
We needed to conduct a multi-angle analysis for this statistic,
because the p-value of the identified protein complexes is
closely related to the size of the identified protein
complexes (Wang et al., 2019b). For this purpose, the

number of detected protein complexes (Num), the number
of significantly identified protein complexes, and the
percentage of significantly identified protein complexes with
different p-values from 1E-2 to 1E-20 were used to analyze
their functional enrichment. We used a p-value test to analyze
the protein complexes discovered by the IMA, MCODE, MCL,
IPCA, COACH, ClusterONE, PEWCC, ProRank+, WPNCA,
WEC, EWCA, SE-DMTG, and MPC-C. The results of the
p-values of these methods are shown in Table 6.

As shown in Table 6, the number of protein complexes that
could be significantly detected by IMA was higher than that
determined by the other methods in the four PPI networks. This
means that IMA can detect more protein complexes with
biological significance compared to other methods. Although
some detected protein complexes do not match standard protein
complexes currently, they are likely to be real protein complexes. As
for the percentage of significantly detected protein complexes at
different thresholds of the p-value fromE-2 to E-20 inTable 6, we can
conclude that IMA could detect a relatively higher proportion of
protein complexes with biologically significance in most PPI

FIGURE 5 | The 130th protein complex in standard protein complexes 2 detected by different methods based on WI-PHI PPI network. Note that the red nodes
represent the correctly identified proteins, and the blue nodes represent the wrongly identified proteins by method.
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networks. The above analysis demonstrates that the IMA method
could be a promising method for discovering new protein complexes
with biological significance.

3.4 Comparison With Subcellular Location
Score
According to the definition of colocalization score, it is based on
the average colocalization of all detected protein complexes. It
should be noted that the lower the number of detected protein
complexes, the higher the colocalization score. Here, we used the
ProCope tool (Krumsiek et al., 2008) to calculate the
colocalization score.

Table 7 shows the average co-localization scores of protein
complexes detected using various methods on localization
dataset, (Huh et al., 2003). In Krogan, the best co-localization
score of 0.7442 is obtained by the MCODE method, but MCODE
only detected 39 predicted protein complexes, which was beneficial
for achieving high the co-localization score, and IMAobtained a score
of 0.7351, lower than MCODE. In DIP, ProRank + detected 357
protein complexes and obtained a co-localization score of 0.6933,
which was better than that of all the other methods. In combined6,
IMAmethod detected 1054 detected protein complexes and achieved
the highest the co-localization score of 0.7440. In WI-PHI, IMA
achieved the highest co-localization score, and the number of protein
complexes was 2561. Based on the co-localization score of the
detected protein complexes by IMA, it indicates that the proteins
of protein complexes predicted by IMA have better localization
consistency; these proteins in the same protein complex tend to
carry out a similar function.

4 CASE STUDY AND DISCUSSION

IMA algorithm can detect protein complexes with multiple
topological structures. Figure 4 shows some examples of the
detected protein complexes with different topological
structures by using the IMA algorithm. Note that the
standard protein complexes 1 and 2 are also detected by the
IMA algorithm. These protein complexes contain the number
of proteins between 3 and 14. These protein complexes with
different topological structures include linear, triangular, star-
like, rectangular, k-clique, dense subgraph, and core-
attachment structure, and hybrid structure. Proteins that
have binary interactions are connected by dashed lines.
More examples can be found them at https://github.com/
RongquanWang/IMA/Examples.

Figure 5 visualizes an example of the 130th protein complex
in standard protein complexes 1 in the WI-PHI dataset so as to
display the detection result more clearly. Figure 5A shows that
our IMA successfully detected all proteins correctly. Figures
5B–L illustrate the protein complexes identified by IMA, SE-
DMTG, MPC-C, EWCA, COACH, ClusterONE, IPCA,
ProRank+, MCL, PEWCC, WEC, and WPNCA, respectively.

The red nodes represent the correctly identified proteins, and
the blue nodes represent the wrongly identified proteins.

From Figure 5, we can see that SE-DMTG correctly identifies
14 proteins, but misidentifies a protein. Moreover, the other
methods have inaccurately proteins. Our IMA can correctly
identify almost all proteins, which suggests that the IMA
algorithm is superior to the other comparative methods.

5 CONCLUSION

In this paper, we present a novel IMA method for identifying
protein complexes in PPI network. The key idea of IMA is
enabled us to design an improved memetic algorithm to
optimize a fitness function for identifying protein complexes
in PPI networks based on existing contending methods and a
weighted PPI network. Here, an improved memetic algorithm is
the cooperation of a genetic algorithm with a local optimization
strategy. A genetic algorithm is used to improve the diversity of
the population, and the local optimization strategy helps to locate
better solutions more quickly. Furthermore, we designed a fitness
function to overcome the limitations of a single objective function
in estimating an individual’s fitness. The experimental results
show that IMA significantly outperforms the existing outstanding
algorithms in various metrics. We will use graph neural networks
(Zhang et al., 2021) and other evolutionary algorithms to improve
the accuracy of protein complexes identified in the future.
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