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Manuela M. SantosID
1,2

1 Nutrition and Microbiome Laboratory, Centre de recherche du Centre hospitalier de l’Université de Montréal

(CRCHUM), Institut du cancer de Montréal, Montréal, Québec, Canada, 2 Département de Médecine,
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Abstract

Anemia is frequently encountered in patients with inflammatory bowel disease (IBD),

decreasing the quality of life and significantly worsening the prognosis of the disease. The

pathogenesis of anemia in IBD is multifactorial and results mainly from intestinal blood loss

in inflamed mucosa and impaired dietary iron absorption. Multiple studies have proposed

the use of the polyphenolic compound curcumin to counteract IBD pathogenesis since it has

significant preventive and therapeutic properties as an anti-inflammatory agent and very low

toxicity, even at high dosages. However, curcumin has been shown to possess properties

consistent with those of an iron-chelator, such as the ability to modulate proteins of iron

metabolism and decrease spleen and liver iron content. Thus, this property may further con-

tribute to the development and severity of anemia of inflammation and iron deficiency in

IBD. Herein, we evaluate the effects of curcumin on systemic iron balance in the dextran

sodium sulfate (DSS) model of colitis in C57Bl/6 and BALB/c mouse strains that were fed an

iron-sufficient diet. In these conditions, curcumin supplementation caused mild anemia, low-

ered iron stores, worsened colitis and significantly decreased overall survival, independent

of the mouse strain. These findings suggest that curcumin usage as an anti-inflammatory

supplement should be accompanied by monitoring of erythroid parameters to avoid exacer-

bation of iron deficiency anemia in IBD.

Introduction

For patients with inflammatory bowel disease (IBD), anemia is one of the major causes of hos-

pitalization [1, 2] and has a debilitating effect on the quality of life (QoL) [3, 4], increasing dis-

ease morbidity and tightly associating the disease with mortality [5]. IBD is an inflammatory

disease consisting of a group of gastrointestinal tract disorders, namely ulcerative colitis and

Crohn’s disease, which are characterized by blood loss from the intestinal mucosa and reduced

iron absorption. Up to two-thirds of patients with IBD develop anemia, with the most
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common types being iron-deficiency anemia and anemia of chronic disease, which often over-

lap [2, 6, 7].

IBD pathophysiology includes the activation of inflammatory cytokines such as TNF-α [8,

9]. Therefore, many studies on IBD therapies have focused on anti-inflammatory treatments

or natural compounds such as curcumin that have anti-inflammatory properties to mitigate

the disease [10, 11].

Curcumin, the yellow pigment obtained from the rhizome of Curcuma longa (turmeric), is

commonly used as a spice and food-coloring agent [12]. Curcumin features complex and mul-

tifactorial mechanisms of action that have demonstrated a variety of therapeutic properties,

including those described as anti-oxidant, anti-infection, anti-tumor, and anti-inflammatory

[13]. Moreover, curcumin use has no major side effects and has low toxicity at high dosages

(up to 8 g/day) [14]. Anti-cancer activities of curcumin are mediated by a variety of biological

pathways in mutagenesis, oncogene expression, cell cycle regulation, apoptosis, tumorigenesis,

and metastasis. Additionally, the effects of curcumin as an anti-inflammatory agent have been

previously associated with the regulation of different inflammatory cytokines (extracellular

matrix metalloproteinase inducer (EMMPRIN); matrix metalloproteinase-9 (MMP-9); IL-1β;

and mitogen-activated protein kinase (MAPK)) [15–17]. Recently, Kong et al. demonstrated

curcumin’s mechanism of action in macrophages during the inflammasome response [18].

Furthermore, different studies have highlighted curcumin’s properties to inhibit the toll-like

receptor 4/myeloid differential factor 88 (TLR4/MyD88) pathway via the repression of TLR4

homodimerization and the subsequent decrease of MyD88 expression [19, 20]. TLR4 has a

critical role in the inflammatory response inducing nuclear factor-kappa B (NF-κB) expression

via protein adaptor MyD88 stimulation.

Curcumin has also been shown to have anticoagulant and antiplatelet activities [21], which

may sustain or prolong active bleeding [22] and has been proposed to have the properties of

an iron chelator [23–25]. Consistent with its iron chelating properties, curcumin has been

reported to reduce spleen and liver iron stores in mice [24, 26]. Moreover, curcumin has been

also shown to affect hepcidin expression [24], the main regulator of iron homeostasis [27].

Hepcidin, encoded by the HAMP gene, controls the levels of intestinal iron absorption and

plays a major role in regulating iron release from macrophages. These cells are responsible for

iron recycling and, in inflammatory settings, will accumulate iron at high hepcidin levels [28].

The potentially detrimental effects of curcumin on iron homeostasis in the inflammatory

context could exacerbate anemia and iron deficiency; however, this aspect has been often

ignored in studies of gastrointestinal disorders and IBD mouse models, which exhibit marginal

or depleted iron stores. Herein, we investigated the effects of curcumin on the dextran sodium

sulfate (DSS)-induced colitis mouse model in the context of an iron-sufficient diet.

Materials and methods

Ethical statements

All procedures were performed in accordance with the Canadian Council of Animal Care

guidelines after approval by the Institutional Animal Care Committee of the Centre de recher-

che du Centre Hospitalier de l’Université de Montréal (CRCHUM).

Experimental animals

Female C57Bl/6 and BALB/c mice aged 8 weeks old were purchased from Charles River Labo-

ratories (Wilmington, CA, USA). Animals were kept at the CRCHUM animal facility in tem-

perature (22˚C), humidity (65%) and lighting-controlled (12:12 light–dark cycle, light on at

07:00) rooms and had free access to chow and water. They were housed in specific pathogen
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free (SPF) conditions in cages layered with bedding material at 3–4 mice per cage. Nesting

material as environmental enrichment was added to each cage and was changed every two

weeks. A total number of 8–10 of mice were used in each group for statistical power/signifi-

cance calculation. Minimum of three independent replications of each experiments were

done.

Animal treatments, diets, and induction of colitis

Two weeks before DSS treatment, 8 weeks old female C57BL/6 or BALB/c mice received ad
libitum a control diet containing 50 mg/kg of iron in the form of iron sulfate (Teklad

TD.120515; Envigo, IN, United States) with or without 2% (wt/wt) curcumin supplementation

(Teklad TD.140182). Colitis was induced by the administration of DSS (molecular weight

40000; TdB Consultancy, Uppsala, Sweden) at 1–2% w/v in drinking water for 5 days, followed

by 7 days of rest for 3–4 cycles of DSS [29]. All mice were observed daily for general health

conditions, adequacy of food, water, and where weighed and monitored for signs of inflamma-

tion. Animals treated with DSS showed severe signs of illness, associated with colitis symptoms

such as blood in stool and body weight loss. A body weight loss exceeding 20% of total body

weight in combination with hunched posture and/or lack of activity, was defined as a humane

endpoint. At the end of the experimental period, mice were anaesthetized with 75 mg/kg of

pentobarbital sodium via intraperitoneal injection and were sacrificed by cervical dislocation.

No animal deaths without euthanasia were recorded during the duration of the studies.

Blood and tissue samples collection

Blood samples were collected by orbital puncture under terminal anesthesia using capillary

tubes. Samples were collected in BD Microtainer blood collection tubes containing EDTA

anticoagulant (BD Diagnostics, Franklin Lake, NJ, USA) to measure erythroid parameters, and

in blood collection tubes with separation gel for serum samples (Vet lab supplies Ltd, Pulbor-

ough, UK). For histological analysis, tissue samples were placed in histology cassettes and sub-

merged in glass jar containing 10% neutral buffered formalin. For protein extraction, tissue

samples were immediately snap frozen through submersion in liquid nitrogen and stored at

-80˚C. For RNA extraction, tissue samples were collected in RNA later-containing microcen-

trifuge tubes (Qiagen, Mississauga, ON, Canada). Finally, for tissue iron concentration mea-

surements, samples were collected in ice-shilled microcentrifuge tubes and stored at -20˚C.

Erythroid parameters and serum iron

Red blood cell, hemoglobin, hematocrit, and mean corpuscular volume levels were measured

with an automated cell counter calibrated for murine samples (ABC vet counter; ABX Héma-

tologie, Montpellier, France). Serum iron was measured by a colorimetric assay with the

Kodak Ektachem DT60 system (Johnson & Johnson, Ortho-Clinical Diagnostics, Mississauga,

ON, Canada).

Histology

Histological scoring was assessed on colon samples from each mouse. The samples were fixed

in 10% neutral buffered formalin (Chapter Chemicals, Montreal, QC, Canada), cut, fixed and

stained with hematoxylin and eosin. All histological evaluations were assessed in a blinded

fashion. Histological scoring was calculated as follows: presence of occasional inflammatory

cells in the lamina propria (assigned a value of 0); increased numbers of inflammatory cells in

the lamina propria (value of 1); confluence of inflammatory cells, extending into the
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submucosa (value of 2); and transmural extension of the infiltrate (value of 3). For tissue dam-

age score: no mucosal damage (value of 0); lymphoepithelial lesions (value of 1); surface muco-

sal erosion or focal ulceration (value of 2); and extensive mucosal damage and extension into a

deeper structure (value of 3) [30].

Disease activity index

The disease activity index was scored accordingly to previous studies [31, 32]. The index con-

sists of the sum of all scores attributed to weight loss (0, none; 1, 1%–5%; 2, 5%–10%; 3, 10%–

20%; 4,>20%), stool consistency (0, normal; 2, soft; 4, diarrhea) and fecal blood (0, negative;

2, blood in the stool; 4, gross bleeding), divided by 3.

SDS-PAGE and western blot analysis

Protein concentrations were measured using a Pierce BCA protein assay kit (Thermo Fisher

Scientific, Rockford, IL, USA). Same concentrations of protein from colon or liver extracts

were loaded to perform electrophoresis. More precisely, equivalent amounts of proteins were

boiled in loading buffer containing 4% SDS, 20% glycerol, and bromophenol blue for 5 min-

utes. Proteins were resolved on 10% SDS-PAGE gels and then were transferred onto nitrocel-

lulose membranes (GE Healthcare; Amersham Biosciences, Baie d’Urfé, QC, Canada). The

membranes were blocked with 5% non-fat dry milk solution and incubated with antibodies

against lipocalin 2 (R&D Systems, Minneapolis, MN, USA), MyD88 (Cell Signaling, Danvers,

MA, USA) and β-actin (Abcam, Cambridge, MA, USA). To detect the formation of immuno-

complexes, peroxidase-conjugated anti-goat IgG (Santa Cruz, Dallas, TX, USA) and anti-

mouse IgG (R&D Systems, Minneapolis, MN, USA) were used as secondary antibodies. Stain-

ing intensity was developed with an Amersham enhanced chemiluminescence system (GE

Healthcare, Amersham Biosciences, Baie d’Urfé, QC, Canada).

Quantitative RT-PCR

Total RNA from tissue samples was isolated by phenol chloroform using the TRIzol reagent

(Invitrogen, Burlington, ON, Canada) as recommended by the manufacturer, and reverse

transcription was performed with an Omniscript RT-PCR system (Qiagen, Mississauga, ON,

Canada). The mRNA levels of selected genes were measured by real-time PCR with a Rotor-

Gene 3000 real-time DNA detection system (Montreal Biotech, Kirkland, QC, Canada) and

QuantiTect SYBR Green I PCR kits (Qiagen, Mississauga, ON, Canada) as previously

described [33]. Expression levels were normalized to the housekeeping gene β-actin. The fol-

lowing primers were used: Hamp (F) CCTATCTCCATCAACAGATG; Hamp (R) AACAGAT
ACCACACTGGGAA; β-actin (F) TGTTACCAACTGGGACGACA; β-actin (R) GGTG
TTGAAGGTCTCAAA.

Measurement of iron in the liver and the spleen

Non-heme iron concentrations were assessed by acid digestion of liver and spleen tissue sam-

ples [34], followed by measurement by colorimetry using the ferrozine reagent and measuring

absorption at 560 nm [35].

Statistical analysis

All statistics were calculated using Prism GraphPad (GraphPad, San Diego, CA) with a pre-

specified significant P-value of 0.05. Student’s t-test (two-tailed) was used for comparisons
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between two groups, and multiple comparisons were evaluated by one-way analysis of variance

(ANOVA), followed by the Bonferroni multiple comparison test.

Results

Curcumin supplementation of an iron-sufficient diet causes mild anemia

in a DSS-induced colitis mouse model

We investigated the potential contribution of curcumin in the systemic iron balance in an IBD

setting using the DSS-induced colitis mouse model. To evaluate such effects, colitis was

induced by administration of DSS in C57Bl/6 mice with or without 2% curcumin supplemen-

tation of an iron-sufficient diet (50 mg/kg chow). Repeated cycles of DSS administration in the

drinking water of mice were intercalated with resting periods of 7 days with untreated water to

model the chronic pattern of IBD [36, 37].

We found that erythroid parameters including red blood cells, hemoglobin, mean corpus-

cular volume and hematocrit values were significantly lower in DSS-treated mice on the curcu-

min-supplemented diet (Curcumin-DSS), compared with mice treated with DSS without

curcumin supplementation (Ctrl-DSS) (Fig 1A–1D). In control conditions with non-colitic

mice (Ctrl and Curcumin, without DSS), only the mean corpuscular volume was lowered by

curcumin supplementation, with all other erythroid parameters remaining similar in both

groups. The lowest values for serum iron levels were found in the Curcumin-DSS group, with

levels significantly lower compared to non-colitic Ctrl mice (Fig 1E).

Next, we measured liver hepcidin mRNA expression (Hamp), the major regulator of iron

homeostasis [27]. As shown in Fig 1F, Curcumin-DSS mice had the lowest hepcidin expres-

sion of all groups, and the values were also significantly lower when compared to Ctrl-DSS

mice that did not received curcumin supplementation.

We then analyzed the iron concentration in the spleen and liver and found that splenic iron

concentrations in mice fed with 2% curcumin with or without DSS treatment were signifi-

cantly lower compared with their respective controls (Ctrl and Ctrl-DSS; Fig 1G). In regards

to liver concentration, both groups treated with DSS had lower liver iron content compared to

non-DSS mice, indicating that DSS treatment lowers liver iron concentrations (Fig 1H). The

lowest liver iron content was found in the Curcumin-DSS group when compared to all other

treatment groups.

Taken together, these findings indicate that mice fed an iron-sufficient diet supplemented

with curcumin develop mild anemia accompanied by marked lower iron levels in the spleen

and liver in the DSS-mouse model. In contrast, mice treated with DSS alone do not develop

anemia despite a modest lowering of serum and liver iron concentrations.

Curcumin supplementation aggravates colitis in the DSS-mouse model

We evaluated the effect of curcumin supplementation on colitis severity. Curcumin supple-

mentation in DSS-treated mice contributed to a greater weight loss compared to Ctrl-DSS

mice (Fig 2A). This result was in line with survival (Fig 2B), where both Ctrl-DSS and Curcu-

min-DSS groups demonstrated mortality. However, only Curcumin-DSS mice showed a

steady decrease in survival reaching 60% compared to 90% in the Ctrl-DSS group at the end of

the experiment.

The disease activity index, consisting of the sum of the scores attributed to body weight

loss, stool consistency and observance of blood in feces divided by three, was measured accord-

ing to previous studies [31, 32]. We found that around 30 days after the initiation of the treat-

ment Curcumin-DSS mice start having an increased disease activity index compared to Ctrl-
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DSS mice (Fig 2C). The stool consistency score, highest for diarrhea, reflected the same trend

and showed a significant increase in Curcumin-DSS mice compared to Ctrl-DSS (Fig 2D).

Spleen weight was significantly higher in both groups of mice treated with DSS (Ctrl-DSS

and Curcumin-DSS) than non-colitic mice (Fig 2E), with no significant differences found

between Ctrl-DSS and Curcumin-DSS. We additionally analyzed the colon length as a marker

of disease severity and found that it was significantly shorter in DSS-treated mice (Ctrl-DSS

and Curcumin-DSS) than in non-colitic mice, but curcumin treatment did not did not appear

to enhance the shortening of the colon (Fig 2F).

Fig 1. Curcumin supplementation of an iron-sufficient diet causes mild anemia in a DSS-mouse model. C57BL/6 mice were

fed an iron-sufficient diet (50 mg/kg chow; Ctrl) or an iron-sufficient diet supplemented with 2% curcumin (Curcumin). For

dextran sodium sulfate (DSS) treatment, mice were fed an iron-sufficient diet with or without curcumin, starting 2 weeks before

administration of DSS. (A-D) Erythroid parameters: red blood cells, hemoglobin, mean corpuscular volume, and hematocrit.

(E) Serum iron levels. (F) Liver hepcidin (Hamp) mRNA expression against housekeeping β-actin mRNA. (G-H) Iron content

in spleen (G) and liver (H). Results are representative of a minimum of three independent experiments; n = 9–10 mice per

group. Statistical analysis was performed with one-way ANOVA. �P< 0.05, ��P< 0.01, ���P< 0.001, and ns = not significant

between Curcumin to Ctrl groups and when indicated between non-DSS and DSS groups.

https://doi.org/10.1371/journal.pone.0208677.g001
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Fig 2. Curcumin supplementation of an iron-sufficient diet aggravates colitis in a DSS-mouse model. C57BL/6 mice

were fed an iron-sufficient diet (Ctrl) or iron-sufficient diet supplemented with curcumin (Curcumin). For dextran

sodium sulfate (DSS) treatment, mice were fed an iron-sufficient diet with or without curcumin, starting 2 weeks before

administration of DSS. (A) Body weight. (B) Survival. (C) Disease activity index (DAI). (D) Stool consistency. (E) Spleen

weight. (F) Colon length. Results are representative of a minimum of three independent experiments; n = 9–10 mice per

group. Statistical analysis was performed with one-way ANOVA. �P< 0.05, ��P< 0.01, ���P< 0.001, and ns = not

significant between Curcumin to Ctrl groups and when indicated between non-DSS and DSS groups.

https://doi.org/10.1371/journal.pone.0208677.g002
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Overall, these results show that, in our experimental setting, curcumin supplementation

decreases survival and is associated with higher scores of disease activity in DSS-induced colitis.

Curcumin supplementation in DSS-treated mice enhances inflammation in

the colon

We assessed protein levels of lipocalin 2 in the colon as it is highly expressed in response to

injury and inflammation and is used as a biomarker of intestinal inflammation [38]. Our

results showed that curcumin supplementation of DSS-treated mice was associated with

enhanced lipocalin 2 expression (Fig 3A–3B) compared to Ctrl-DSS mice, indicating height-

ened inflammation.

We then assessed the severity of DSS-induced colitis using histology scoring (see materials

and methods). We found that cellular infiltration and tissue damage followed by epithelial

destruction were more severe in mice supplemented with curcumin (Curcumin-DSS) com-

pared to mice treated with DSS without curcumin supplementation (Ctrl-DSS; Fig 3C and 3D).

Fig 3. Curcumin supplementation in DSS-treated mice enhances inflammation in the colon. (A) Representative western

blot of colon protein extracts probed with antibodies against lipocalin 2 and β-actin. Each lane represents an individual mouse.

(B) Graphic depicting densitometric quantification of western blots from three independent experiments. Data are presented

as mean ± SEM. (C) Representative hematoxylin and eosin staining of mouse colon histological sections. (D) Graphic

depicting quantification of colonic histology scores. Statistical analysis was performed by two-tailed Student’s t-test. �P< 0.05,
��P< 0.01, ���P< 0.001; ns = not significant; n = 8 mice per group.

https://doi.org/10.1371/journal.pone.0208677.g003
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We also analyzed curcumin modulation of MyD88 protein expression. MyD88 is the

major adaptor protein essential for the inflammatory cytokine activation upon stimulation

of almost all the TLRs except for TLR3 [39]. As shown in Fig 4A and 4B, DSS treatment

resulted in MyD88 activation (Ctrl vs. Ctrl-DSS groups). Curcumin supplementation signif-

icantly decreased MyD88 expression in colonic tissues in both Curcumin and Curcumin-

DSS groups compared to Ctrl and Ctrl-DSS mice. In contrast to the colon, no significant

modulation of MyD88 was observed in the liver between the four mouse groups (Fig 4C

and 4D).

These findings show that when mice are fed an iron-sufficient diet, curcumin enhances

inflammation and aggravates colitis induced by DSS. In addition, curcumin treatment sup-

presses MyD88 protein expression in the colon but not in the liver and is independent of DSS

induction of colitis.

Fig 4. Curcumin decreases MyD88 protein expression in the colon but not in the liver. (A-B) Colonic MyD88 protein

expression in C57BL/6 mice treated with or without dextran sodium sulfate (DSS) and fed an iron-sufficient diet (Ctrl) or

iron-sufficient diet supplemented with curcumin (Curcumin). (A) Representative western blot of colon protein extracts

probed with antibodies against MyD88 and β-actin. Each lane represents an individual mouse. (B) Graphic depicting

densitometric quantification of western blots from three independent experiments. (C-D) Hepatic MyD88 protein

expression. (C) Representative western blot of liver protein extracts probed with antibodies against MyD88 and β-actin. (D)

Graphic depicting densitometric quantification of western blots from three independent experiments. Statistical analysis

was performed with one-way ANOVA: data in B and D are presented as mean ± SEM. Statistical analysis was performed by

two-tailed Student’s t-test. �P< 0.05, ��P< 0.01; ns = not significant; n = 8 mice per group.

https://doi.org/10.1371/journal.pone.0208677.g004
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Curcumin supplementation of an iron-sufficient diet induces mild anemia

independent of mouse strain

To investigate whether the aggravation of colitis in mice by curcumin is dependent on the

mouse strain, we assessed the DSS-induced colitis mouse model on BALB/c mice using the

same iron-sufficient diets with or without curcumin supplementation at 2% (w/w).

We found that BALB/c mice showed, as previously reported [40], higher resistance to the

DSS treatment, recovering more readily from the successive DSS-treatment cycles. However,

around day 35, body weight loss and survival decreased in Curcumin-DSS mice compared to

Ctrl-DSS mice (Fig 5A and 5B). Disease activity index was higher in Curcumin-DSS mice

compared to Ctrl-DSS (Fig 5C), whereas no significant differences were found in the colon

length and spleen weight (Fig 5D and 5E). Lipocalin 2 expression and histology scoring in the

distal colon were higher in mice supplemented with curcumin (Curcumin-DSS) than in Ctrl-

DSS mice (Fig 5F–5I), indicating more severe inflammatory cell infiltration and tissue damage

in Curcumin-DSS mice.

Regarding erythroid parameters, we found that Curcumin-DSS mice had significantly

lower red blood cells numbers as well as lower hemoglobin and hematocrit values, while mean

corpuscular volume remained unaffected when compared to Ctrl-DSS mice (Fig 6A–6D). Sig-

nificant differences were also found in serum iron levels and liver hepcidin expression, with

lower values found in Curcumin-DSS than in Ctrl-DSS mice (Fig 6E and 6F). Finally, spleen

and liver iron concentrations were significantly lower in Curcumin-DSS mice compared to

Ctrl-DSS mice (Fig 6G and 6H).

These results show that curcumin in an iron-sufficient diet causes mild anemia in a mouse

model of IBD, reduces iron stores in the spleen, worsens colitis and decreases survival even in

a DSS-resistant mouse strain.

Discussion

In this study, we aimed to investigate the potential of curcumin’s chelating activity to affect

body iron stores and anemia development in a murine model of IBD. We found that curcumin

supplementation in DSS-treated mice led to a decrease of several erythroid parameters, includ-

ing the number of red blood cells, hemoglobin, mean corpuscular volume, and hematocrit,

indicating the development of mild anemia. We also showed that Curcumin-DSS mice devel-

oped splenomegaly, which is indicative of extramedullary erythropoiesis in mice responding

to iron-deficiency anemia [41]. These changes were accompanied by a reduction in liver hepci-

din mRNA levels, further indicating that mice become anemic since hepcidin levels are inhib-

ited by anemia [42]. Hepcidin levels decreased despite the presence of inflammation, which

has the opposite effect of anemia and activates hepcidin expression, confirming previous stud-

ies showing that erythropoietic drive can inhibit hepcidin activation through the inflammatory

pathway [43]. Our results are in agreement with previous work reporting that curcumin sup-

plementation decreases hepcidin levels both in mice [26] and humans [44]. This regulation has

been associated with the inhibition of phosphorylation of the signal transducer and activator

of transcription 3 (STAT3) [44, 45] and TNFα activation [46]. MyD88 has also been implicated

as an important factor for hepcidin regulation as MyD88-deficient mice are unable to appro-

priately upregulate hepcidin expression when iron-challenged and develop iron-loading in the

liver [47]. However, we show that curcumin does not affect MyD88 levels in the liver; hence,

MyD88 would not be expected to further interfere with hepatic hepcidin expression in our

experimental settings. The fact that MyD88 expression in the liver was not affected and con-

trasted with its downregulation in colonic tissue, indicates that curcumin regulation of MyD88

expression could be more relevant locally, within the intestine.
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Fig 5. Curcumin supplementation of an iron-sufficient diet in BALB/C mice exacerbates DSS-induced colitis. BALB/c

mice were fed an iron-sufficient diet (50 mg/kg chow; Ctrl) or iron-sufficient diet supplemented with 2% curcumin

(Curcumin) starting at 2 weeks before administration of dextran sodium sulfate (DSS). (A) Body weight. (B) Survival. (C)

Disease activity index (DAI). (D) Colon length. (E) Spleen weight. (F-G) Colonic lipocalin 2 expression. (F) Representative

western blot of colonic lipocalin 2 and β-actin expression. Each lane represents an individual mouse. (G) Graphic depicting

densitometric quantification of western blots from three independent experiments. Data are presented as mean ± SEM. (H)

Representative hematoxylin and eosin staining of mouse colon histological section. (I) Graphic depicting quantification of

colonic histology scores. Results are representative of a minimum of three independent experiments; n = 8 mice per group.

Statistical analysis was performed by two-tailed Student’s t-test. �P< 0.05; ns = not significant.

https://doi.org/10.1371/journal.pone.0208677.g005
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Our finding that curcumin modulates iron status is in line with its iron chelating properties

that have been demonstrated both in vitro [25] and in vivo [23, 24]. In long-term experiments

in mice, curcumin supplementation has been shown to significantly lower liver and spleen

iron levels [26]. Others have reported that the usage of a high dosage of curcumin in a low iron

diet modulates erythroid and iron parameters, exacerbating iron deficiency symptoms [24].

Our present work strengthens and adds to these previous studies by demonstrating that the

effect of curcumin in iron metabolism is of importance in the context of chronic intestinal

inflammation.

Under our experimental conditions, Curcumin-DSS mice exhibited more severe symptoms

of intestinal inflammation. This contradicts previous reports on curcumin’s anti-inflammatory

Fig 6. Curcumin supplementation of an iron-sufficient diet induces mild anemia independent of mouse strain. BALB/c mice

were fed an iron-sufficient diet (50 mg/kg chow; Ctrl) or iron-sufficient diet supplemented with 2% curcumin (Curcumin) starting

at 2 weeks before administration of dextran sodium sulfate (DSS). (A-D) Erythroid parameters: red blood cells, hemoglobin, mean

corpuscular volume and hematocrit. (E) Serum iron levels. (F) Liver hepcidin (Hamp) mRNA expression against housekeeping β-

actin mRNA. (G-H) Iron content of spleen or liver. Statistical analysis was performed by two-tailed Student’s t-test. �P< 0.05, ��P
< 0.01; ns = not significant; n = 8 mice per group.

https://doi.org/10.1371/journal.pone.0208677.g006
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effects in colitis, which had been linked to the attenuation of the TLR4/MyD88/NF-κB inflam-

matory pathway by inhibiting TLR4 homodimerization [19] and decreasing MyD88 expres-

sion [48]. Although the reasons for these differences are not clear at present, it is worth

mentioning that MyD88 deficiency in mice seems to increase susceptibility to DSS-induced

colitis. Araki et al. reported that MyD88 is crucial in intestinal homeostasis by playing a pro-

tective role against the development of colitis since DSS induced a more severe colitis in

MyD88-/- mice [49]. In their experiments, they observed that mice lacking MyD88 in the colon

had a subsequent higher intestinal permeability, causing more severe infiltration of bacterial

products from the lumen [49]. Similarly, our data show that MyD88 downregulation by curcu-

min in DSS-treated mice resulted in an aggravation of the inflammatory responses in our

experimental conditions. In fact, DSS-curcumin mice showed more severe colonic tissue dam-

age compared to DSS-treated mice that were not supplemented with curcumin. While the pre-

cise mechanism of action remains to be investigated, the susceptibility of MyD88-deficient

mice to colitis has been linked to gut microbiota composition, which is altered in IBD [50].

Furthermore, MyD88-/- mice, in contrast with wild-type mice, are unable to respond to treat-

ment with probiotic bacteria in the context of DSS-induced colitis, further highlighting the

link between MyD88 and the gut microbiota [51]. Overall, the implications of these studies are

that bacterial components may play both detrimental [50] and protective roles, at least par-

tially, in a MyD88-dependent manner [49, 51].

Regarding colitis severity, our study is in contrast with previous reports revealing a protec-

tive effect of curcumin in DSS-induced acute [11, 52] and chronic [53] colitis in mice. Such

differences may be due to the amount of iron found in standard rodent chow, which tends to

have excess iron ranging from 350 mg/kg up to 900 mg iron/kg diet in some related studies

[53]. This strikingly contrasts with our iron-sufficient diet that contained 50 mg/kg, which is

more in accordance to mouse iron requirements [54]. Excess dietary iron may compensate for

the iron chelating effect of curcumin [55] and presumably avoids the development of iron defi-

ciency and anemia in this model. In addition to iron, other components of the rodent diet,

such as fermentable fibers, may have a role in altering the effects of curcumin in DSS-induced

colitis. Indeed, recent studies have shown that the presence of fermentable fibers in the diet

can ameliorate low-grade inflammation while exacerbating disease severity in response to

acute colitis [56].

Previous studies have reported that the efficacy of dietary curcumin in trinitrobenzene sul-

fonic acid (TNBS)-induced colitis, another rodent model for IBD, may vary depending on the

mouse strain [10]. Furthermore, mouse strain has also been shown to influence the severity of

DSS-induced colitis [40]. We tested BALB/c mice since they are known to be substantially

more resistant to DSS acute colitis in comparison to C57BL/6 mice [40]. We found that curcu-

min aggravated colitis and induced an iron-deficiency anemia phenotype in BALB/c mice as

well, indicating that the detrimental effect of curcumin in the context of an iron-sufficient diet

is independent of mouse strain.

In conclusion, we found that long-term curcumin administration in mice has potentially

adverse effects in a DSS-induced model of ulcerative colitis, lowering iron stores and leading

to the development of anemia. While beneficial effects of curcumin as an anti-inflammatory

agent have been documented in animal models as well as in patients with mild to moderate

ulcerative colitis [57, 58], the iron chelating properties of curcumin should be considered. This

is particularly pertinent in situations of iron-deficiency, a condition that is found in up to 78%

of Crohn’s disease patients with active inflammation [59]. Our study highlights the potential

risks of curcumin, which is commonly taken as an over-the-counter supplement without mon-

itoring erythroid and iron status parameters.
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