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Abstract

The search for therapeutic agents which bind specifically to precursor protein conformations and 

inhibit amyloid assembly is an important challenge. Identifying such inhibitors is difficult since 

many protein precursors of aggregation are partially folded or intrinsically disordered, ruling out 

structure-based design. Furthermore, inhibitors can act by a variety of mechanisms, including 

specific or non-specific binding, as well as colloidal inhibition. Here we report a high throughput 

method based on ion mobility spectrometry-mass spectrometry (IMS-MS) that is capable of 

rapidly detecting small molecules that bind to amyloid precursors, identifying the interacting 

protein species, and defining the mode of inhibition. Using this method we have classified a 

variety of small molecules that are potential inhibitors of human islet amyloid polypeptide 

(hIAPP) aggregation or amyloid-beta 1-40 (Aβ40) aggregation as either specific, non-specific, 

colloidal or non-interacting. We also demonstrate the ability of IMS-MS to screen for inhibitory 

small molecules in a 96-well plate format and use this to discover a new inhibitor of hIAPP 

amyloid assembly.

Aberrant aggregation of proteins and peptides into amyloid fibrils contributes to more than 

50 human disorders, including Alzheimer’s disease and type-2 diabetes mellitus1. The 

ability to screen for compounds able to disrupt protein aggregation, and assess their mode of 
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action, is instrumental in therapy discovery. For folded proteins, structure-based design has 

been used to create small molecules able to stabilize the native state, thereby preventing the 

conformational changes required for protein aggregation to occur2-4. For aggregation-prone 

proteins that lack defined structure, discovery of small molecule inhibitors of aggregation is 

limited to screening using relatively low resolution approaches such as dye binding assays. 

Most biophysical techniques lack the sensitivity and resolution to detect and individually 

characterize oligomers during aggregation and, therefore, are not suitable for characterizing 

unique protein subspecies with which the small molecule inhibitor interacts5. Dye binding 

assays can also be compromised by competitive binding of the small molecule to the dye-

binding site on the protein and by inner filter effects which can interfere with the 

fluorescence of the dye6-8.

Electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) 

circumvents the disadvantages of other in vitro screening techniques, allowing the rapid 

identification of inhibitors, the characterization of their mechanism of action, and the 

identification of the individual species to which the small molecule binds9-11. Here, we 

demonstrate the capability of ESI-IMS-MS to screen for, and analyze, the mode of 

interaction of a range of small molecules with human islet amyloid polypeptide (hIAPP, also 

known as amylin), a peptide associated with β-cell death in type-2 diabetes mellitus12 and 

the failure of islet transplants, and amyloid beta 1-40 (Aβ40)13, a peptide associated with 

Alzheimer’s disease. ESI-IMS-MS has a number of additional benefits: it is rapid (<1 

minute/sample), consumes low amounts of sample (~1000 molecules screened/mg protein), 

does not require sample labeling or immobilization, and provides stoichiometric and 

conformer-specific information. Additionally, colloidal inhibitors (that self-aggregate and 

physically sequester proteins non-specifically14), that may erroneously be classified as 

“hits” in other assays, are immediately identifiable. While several small molecules have 

been shown to inhibit the fibrillation of hIAPP and/or Aβ40 in vitro10,15-20, their 

mechanisms of action remain poorly understood. Using a selection of small molecules 

(Supplementary, Section 1 and Table S1), we demonstrate the ability of ESI-IMS-MS to 

differentiate and classify compounds that do not bind, and those that bind specifically, non-

specifically or colloidally, to hIAPP and Aβ40 (Figure 1). Furthermore, we use the method 

developed to screen a further thirty compounds to demonstrate that it can be implemented in 

a high throughput mode and, in doing so, reveal a new specific inhibitor of hIAPP 

aggregation.

Results and Discussion

hIAPP forms oligomeric assemblies and fibrils in absence of inhibitor

The ESI mass spectrum of hIAPP (Figure 2a) shows predominantly monomer-related ions 

(e.g. 12+ and 13+) together with traces of dimer and trimer (Figure 2b). hIAPP aggregates 

during fibril assembly forming oligomers dimer through to hexamer early in assembly which 

are readily observed using ESI-IMS-MS10 (Figure 2c). The higher order oligomers appear 

and subsequently disappear as aggregation proceeds, resulting in the formation of long 

straight amyloid fibrils10 (Figure 2b, inset).
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ESI-IMS-MS-based screening approach

To determine the mode of action of different small molecules in inhibiting hIAPP self-

assembly, 10 compounds were evaluated initially (Figure 1e). These were chosen because 

they, or their analogues, have been shown previously to inhibit, or have no observed effect, 

on amyloid formation (Supplementary, Section 1). Molar ratios of small molecule:hIAPP of 

1:1 and 10:1 were used. The monomer and oligomer populations in the presence of each 

small molecule were characterized using ESI-IMS-MS. This technique has been 

implemented successfully to determine and rank ligand binding affinities22-24. However, 

ESI-MS can suffer from the drawback that hydrophobic interactions are not wholly 

maintained in the gas-phase which can lead to underestimates of binding affinity and/or false 

negative results. For this reason, fibril formation was also monitored using thioflavin T 

(ThT) fluorescence and the morphologies of the resulting aggregates were assessed using 

negative stain transmission electron microscopy (TEM). The objectives were to (i) observe 

interactions between peptide monomers or oligomers and each small molecule; (ii) 

determine how these interactions affect the distribution of monomeric conformers and 

oligomers; and (iii) elucidate whether any changes observed can be correlated with the 

inhibition (or lack of inhibition) of hIAPP amyloid formation.

Mode of action of a positive inhibitor of hIAPP fibril assembly

Using the ESI-IMS-MS-based screening approach described, the 10 compounds selected 

based on their known effect on hIAPP aggregation (Supplementary, Section 1 & Table S1) 

were analyzed. One of these was Fast Green FCF (1) (FG), a known inhibitor of hIAPP 

fibril formation25.

Consistent with previous reports25, ThT fluorescence and TEM (Figure 3a,b) confirmed that 

FG inhibits amyloid formation by hIAPP in vitro. However, the mechanism by which it 

inhibits assembly was unknown. Here, using ESI-IMS-MS, FG was found to bind to the 2+ 

and 3+ monomeric charge states of hIAPP (Figure 3c). Our previous work10, and that of 

others26, has shown that each hIAPP monomeric charge state (2+ and 3+) populates at least 

two conformers (extended and compact, with the more expanded structure proposed to be 

amyloid-prone). Analysis of the ESI-IMS-MS data reveals that FG alters the distribution of 

charge states and the monomeric conformers present, increasing the relative abundance of 

the 3+ monomer ion (Figure 3c) and the proportion of compact conformers compared with 

those observed for hIAPP alone (Supplementary, Figure S1). The interaction of FG likely 

involves the sulfonated groups forming favorable electrostatic interactions with positively 

charged hIAPP at pH 6.8 (hIAPP pI ≃ 8.9). Consistent with this, the extent of binding is 

dependent on the buffer ionic strength (Supplementary, Figure S2). Factors other than 

electrostatic complementarity must contribute to the specific binding of FG, however, as not 

all sulfonated small molecules are inhibitors of hIAPP amyloid assembly (Supplementary, 

Section 1 & Figure S3). For two other known positive inhibitors, EGCG (epigallocatechin 

gallate)10,16 (2) and silibinin10,27 (3), low levels of binding are observed, despite complete 

inhibition of fibrillation, indicative of hydrophobic interactions playing a role in the binding 

interface. Unlike the hIAPP-FG interaction, this mode of binding is relatively insensitive to 

buffer ionic strength (Supplementary, Figure S2).
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Colloidal inhibition characterized using ESI-IMS-MS

Congo red (CR) (4), was analysed as an example of a known colloidal inhibitor of hIAPP 

assembly28. At a 1:1 molar ratio of hIAPP:CR, a small increase in the rate of fibril formation 

was observed, with no significant change in the hIAPP mass spectrum (Figure 4a-c). 

However, at a 10:1 molar ratio of CR:hIAPP, no fibrillation was observed (Figure 4a,b). 

These data are consistent with previous reports that CR promotes fibril formation in some 

systems at low concentrations29 but inhibits protein self-assembly when present at high 

concentrations (100-200 μM)14. Using ESI-IMS-MS, CR alone is observed to self-associate 

at high concentrations (320 μM), with aggregates ranging in size from ~5-11 copies 

(Supplementary, Figure S4). No binding of CR monomer to monomeric hIAPP was 

observed (Figure 4c), consistent with colloidal inhibition resulting from supramolecular 

assemblies of CR inhibiting fibril formation at high ligand concentrations.

Non-specific binding and lack of inhibition characterized using ESI-IMS-MS

Although not reported as an inhibitor of hIAPP aggregation, 1H-benzimidazole-2-sulfonic 

acid (1H-B-SA) (5) possesses both aromatic and anionic moieties known to be important for 

the interaction of small molecules with amyloid proteins and peptides30.

The mass spectrum of a 10:1 molar ratio of 1H-B-SA and hIAPP is indicative of non-

specific binding, resulting in a series of ions with multiple ligands bound, following a 

Poisson distribution21,22 (Figure 4c). As an interaction of this type often involves charge, it 

is less sensitive to structure and can be maintained during the ESI process22. Additionally, 

these types of interactions can be more stable in the gas-phase than hydrophobic 

interactions24, such as proposed for hIAPP and EGCG (2)10. Consistent with this, the ion 

intensity of the 1H-B-SA:hIAPP complex is decreased at increased ionic strength 

(Supplementary, Figure S2). Non-specific interactions can be distinguished from specific 

interactions (that show a binomial distribution21) by comparison of the binding profiles 

(Figure 1). To confirm annotation as a non-specific binding ligand, a second analysis 

performed at lower ligand:peptide ratio may be required to avoid ambiguity that may arise 

by specific binding of molecules forming multiply bound complexes at high ligand:peptide 

ratios.

ThT fluorescence and TEM investigation indicated that non-specific binding of 1H-B-SA to 

hIAPP does not inhibit fibril formation (Figure 4a,b). Similarly, the mass spectrum of a 10:1 

molar ratio of tramiprosate (3-amino-1-propanesulfonic acid) (6) and hIAPP is also 

indicative of a non-inhibitory, non-specific interaction, which is confirmed by TEM 

(Supplementary, Figure S3). Importantly, for the compounds aspirin (7), ibuprofen (8), 

benzimidazole (9) and hemin (10) (Supplementary, Section 1 & Table S1), no evidence for 

binding to monomeric hIAPP, alteration in the monomer charge state distribution, or 

oligomer population, was observed using ESI-IMS-MS and fibrils were observed to form as 

shown by TEM (Supplementary, Figure S5). Previous studies using CD spectroscopy and 

Congo red binding assays led to the erroneous conclusion that aspirin is an inhibitor of 

hIAPP amyloid formation31, illustrating how ESI-IMS-MS helps avoid false positive results.
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Predicting the inhibitory potential of small molecules against amyloid formation from their 

structure alone is difficult, since structural analogues can show significant variability in 

aggregation inhibition. Rifamycin SV, for example, can block fibril formation by β2-

microglobulin (β2m), while other rifamycins are ineffective32. Similarly, derviatives of 

EGCG have marked differences in their inhibitory capacity33. The LogP value (the log of 

the hydrophobic partition coefficient) of each small molecule tested was calculated to 

determine the diversity in hydrophobicity of the compounds tested and to deduce any 

correlation with their ability to inhibit amyloid formation (Supplementary, Figure S6). The 

LogP values of the positive inhibitors range from −4.4 (FG) to +2.2 (EGCG), suggesting 

that polarity is not the only important factor for binding. Both hydrophilic FG and 

hydrophobic EGCG inhibit hIAPP aggregation, confirming that the MS-based method for 

screening inhibitors is capable of observing both electrostatic and hydrophobic interactions 

between amyloidogenic peptides and aggregation inhibitors.

Further analyses using Collision Induced Dissociation (CID) MS/MS showed that the 

specific inhibitors bind more tightly than their non-specific counterparts, as judged by their 

gas-phase stability (Supplementary, Figure S7), providing an additional means of selecting 

ligands for further analysis. Arrival time distribution (ATD) plots from ESI-IMS-MS 

experiments also provide evidence for the type of interaction occurring. With FG bound, 

there is a shift in the ATD plot towards more compact hIAPP monomeric protein species 

(Supplementary, Figure S8).

Oligomer formation in the presence of small molecule inhibitors

ESI-IMS-MS was utilized to determine the individual nature and abundance of the lowly-

populated hIAPP oligomers in the presence of each small molecule. In the absence of small 

molecule, hIAPP forms oligomers up to, and including, hexamers within 2 minutes of 

dilution into buffer (Figure 2c)10. In the presence of a 10-fold molar excess of a ‘negative’, 

non-interacting small molecule such as ibuprofen (8), the same array of oligomers is 

observed (Figure 5a). When a ‘positive’ specific inhibitor (e.g. FG) (1) is added (Figure 5b), 

binding of the small molecule to the peptide monomer is observed, with no higher order 

hIAPP species detected. This lack of oligomers is likely due to inhibition of self-assembly 

achieved by small molecule binding to the monomeric peptide. When a non-specific binder 

(e.g. 1H-B-SA (5)) is added (Figure 5c), multiple copies of ligands (≤ seven molecules) 

bound to each monomeric conformer are observed in the mass spectrum, indicative of a non-

specific interaction. Conversely, the spectrum of hIAPP in the presence of CR (4) (Figure 

5d) shows a multitude of higher order species. However, the majority of these peaks 

correspond to multimers of CR resulting from self-association of the small molecule. 

Peptide monomers are also observed in the spectrum but not peptide oligomers, which may 

result from their low intensities compared with CR aggregates, or their absence. The ESI-

IMS-MS data presented reveal clear differences between the spectral ‘fingerprint’ of hIAPP 

undergoing no interaction, specific, non-specific or colloidal interactions with small 

molecules. Consequently, ‘hits’ from screens of potential small molecule inhibitors can be 

distinguished readily from negative, colloidal or non-specifically bound molecules using 

ESI-IMS-MS and, based on simple characterization of the spectral features, selected for 

further characterization or optimization.
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Screening mixtures of small molecules using ESI-IMS-MS

To validate the use of ESI-IMS-MS as a potential high-throughput screen (HTS) for small 

molecule interactions with aggregating proteins/peptides, several small molecules were 

mixed and added to hIAPP in combination. The ability of ESI-IMS-MS to differentiate 

between molecules able to bind specifically to the target protein/peptide from their non-

binding or non-specific binding counterparts was then assessed. This approach has two key 

advantages: firstly, it decreases the time taken to screen an array of molecules (5-10 

molecules/min); secondly, in competition, the strongest binders as observed in the gas-phase 

should out-compete negative, weak or colloidal inhibitors. This method is demonstrated 

using FG (positive) (1), CR (colloidal) (4), 1H-B-SA (non-specific) (5) and four small 

molecules that do not bind to hIAPP (negative) (7-10). When added to hIAPP (32 μM) in 

combination (160 μM each small molecule), FG and CR behave as each one behaved when 

added individually, i.e. FG binds specifically to the target peptide and CR self-associates 

without any specific protein interaction being observed (Supplementary, Figure S9). The 

presence of equimolar CR does not prevent FG from binding to hIAPP, nor does the 

presence of equimolar FG inhibit the self-association of CR. We also tested the ability of FG 

to bind hIAPP in the presence of mixtures of small molecules that do not bind (aspirin (7), 

ibuprofen (8), benzimidazole (9) and hemin (10)). The results showed that of the five small 

molecules present, only FG binds hIAPP (Supplementary, Figure S9). Additionally, the 

presence of a high concentration of a non-specifically binding small molecule did not 

perturb the interaction of FG with hIAPP (Supplementary, Figure S10). In the unlikely event 

that two positive inhibitors are encountered in the same mixture, the molecule which binds 

most stably in the gas-phase will out-compete the other. This is the case when FG (1) and 

EGCG (2) are each added in a 5-fold molar excess to hIAPP (Supplementary, Figure S10). 

FG and hIAPP have favourable electrostatic interactions25, whereas EGCG is thought to 

bind principally via hydrophobic interactions34. Given the known ability of electrostatic 

interactions to be preserved in the gas-phase over their hydrophobic counterparts, FG out-

competes EGCG. The relative affinity of these two different ligands for hIAPP therefore 

cannot be deduced from these data. To control for the effects of the chemistry of binding 

determining the relative intensity of bound peaks observed by ESI-MS22,23, the Kd of small 

molecules identified as a “hit” in a mixture of compounds should be confirmed using other 

biophysical methods in solution.

ESI-IMS-MS as a generic screen for amyloid inhibitors

To demonstrate the applicability of ESI-IMS-MS as a generic tool for screening and 

classifying inhibitors of aggregating systems, we screened for inhibitors of Aβ40 assembly1. 

The sequences of hIAPP (Figure 2a) and Aβ40 (Figure 6a) share 25 % identity and 50 % 

similarity, with the core sequences Aβ40 (26–32) and hIAPP (21–27) believed to be 

involved in the self-assembly of each peptide35-37 being most similar. Aβ40 (32 μM) was 

incubated alone or with tramiprosate (6), hemin (10) or EGCG (2) at 10:1 molar ratio of 

small molecule to Aβ40. Aβ40 alone, when analyzed by ESI-MS, gives rise to dominant 3+ 

and 4+ monomer charge state ions (Figure 6b) and oligomeric species from dimer through 

pentamer (Figure 6c) en route to long straight amyloid fibrils.
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Tramiprosate (6) has been shown to retard Aβ40 and Aβ42 fibrillation in vivo, likely via 

competition with glycosaminoglycan (GAG) binding to the peptide38,39. The mass spectrum 

of a 10:1 molar ratio of tramiprosate:Aβ40 peptide (Figure 6d) indicates a non-specific 

interaction which may explain how tramiprosate interferes with GAG binding to Aβ in 

vivo38. ThT and TEM data reveal fibrillation in the absence and presence of tramiprosate (6) 

(Figures 6e,f), corroborating these findings. Hemin (10) (along with other porphyrins) has 

also been reported to interfere with Aβ fibrillation17,40. Here, hemin has no observed effect 

on Aβ self-assembly as judged by its inability to bind to Aβ40 (Figure 6d) and the resultant 

formation of fibrils (Figure 6f). Notably, no increase in ThT fluorescence is observed in the 

presence of hemin, presumably because the small molecule either interferes with ThT 

fluorescence or prevents ThT binding (Figure 6e). Conversely, EGCG (2), binds specifically 

to Aβ40 monomer, forming a 1:1 EGCG:Aβ40 complex (Figure 6d), resulting in the 

formation of amorphous aggregates and the absence of long straight amyloid fibrils (Figures 

6e,f). The results demonstrate, therefore, the utility of ESI-MS as a screen for inhibitors of 

different amyloid systems.

Focused screen for the identification of novel inhibitors of amyloid formation

To validate further the MS-based assays, we next performed a screen of a library of novel 

molecules with structural similarity to the aggregation inhibitors previously reported 

(Supplementary, Table S2). We reasoned that a focussed screen of this type would be a 

rigorous test for the ESI-IMS-MS assay and indicate the suitability of this approach for 

HTS. Focused screening is a well-versed method to improve the hit-rate of a HTS by 

seeding a screening library with compounds which have a higher probability to inhibit, or 

bind to, the target compared with random screening41. The screening method uses the 

structural information from known bioactive ligands to identify novel compounds with 

similar structure, and hence potential biological activity. For proof of principle, five known 

inhibitors of hIAPP and/or Aβ40 aggregation (vanillin42, resveratrol43, curcumin44, 

chloronaphthoquinine-tryptophan45 and EGCG10) were selected as queries to seed a 

focussed library of compounds for screening. The seeding process involved assessment of 

each of the inhibitors for structural similarity to an in-house, structurally diverse library of 

50,000 lead-like small molecules using the programme Rapid Overlay of Chemical 

Structures (ROCS)46. A subset of 20 compounds was then chosen for analysis using the 

comparator (ROCS Combiscore) with consideration to maximal structural diversity of the 

proposed screening set. The 20 compounds (molecules 11-30) selected were screened, 

together with compounds 31-40 which have been reported to inhibit other forms of 

fibrillogenesis by other polypeptides (Supplementary, Table S2). LogP values of these 

compounds are shown in Supplementary, Figure S11.

Of these 30 compounds screened, one was found to inhibit hIAPP aggregation (compound 

26), three demonstrated non-specific binding to hIAPP (compounds 13, 25 and 27) and the 

remainder did not bind (Supplementary, Table S2). The newly disovered inhibitor 

(compound 26) is a non-obvious structural mimetic of chloronaphthoquinine–tryptophan 

(Supplementary, Figure S12). In the presence of a 10-fold molar excess of compound 26, 

hIAPP monomer shows evidence of specific ligand binding, fibril formation is inhibited and 

amorphous aggregates result (Supplementary, Figure S13).
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Automation of ESI-MS allows identification of novel compounds from focussed libraries in 

the form of a semi-HTS. For proof of principle, we performed analyses from a 96-well plate 

format, with data acquisitions of one minute per well. The results demonstrate that spectra of 

high quality can be obtained in a reproducible manner (Supplementary, Figure S14). With 

this method, 96 novel potential inhibitors could be screened per plate, consuming ~1 mg 

peptide. Using robotic automation, ~1000 compounds can be screened in less than 24 hours. 

By assaying mixtures of five compounds in parallel, 480 molecules could be screened per 

plate, increasing the screening rate to ~5000 novel compounds per day.

Conclusions

The data presented demonstrate the use of ESI-IMS-MS as a HTS for inhibitors of amyloid 

assembly. This approach allows rapid identification of protein-ligand interactions, using 

microliter sample volumes and milligrams of protein, and provides information-rich data 

concerning the identity of the interacting species (monomer or oligomer), the nature of 

binding (specific, non-specific or colloidal) and the effect of the ligand on protein 

aggregation (monomer binding, shift in monomer conformational equilibrium, disassembly 

of oligomers). The use of IMS in conjunction with ESI-MS serves further to allow a reliable 

and easily interpretable screen based purely on the appearance of 3D Driftscope plots, 

without requiring complex data analysis. The results establish this method as a powerful tool 

with unique analytical capability for the discovery of small molecule leads in the drug 

discovery field. Additionally, a novel inhibitor of hIAPP aggregation has been identified 

based on analysis of a library of small molecules, illustrating the potential of this method as 

a HTS.

Methods

Sample preparation for MS

hIAPP was synthesized using Fmoc chemistry, oxidised using dimethyl sulfoxide (DMSO) 

to form the disulfide bond linking residues Cys 2 – Cys 7, and purified via HPLC. 

Hydrochloric acid was used as the counter ion in all HPLC buffers as trifluoroacetic acid can 

affect the kinetics of amyloid formation47 (see Supplementary, Section 2 for further details). 

Aβ40 was expressed recombinantly in E. coli (Supplementary, Section 2). Lyophilized 

hIAPP samples were dissolved in DMSO at a final peptide concentration of 3.2 mM. After 

24 h incubation at 25 °C, stock solutions were diluted 100-fold into 200 mM ammonium 

acetate, pH 6.8, to a final peptide concentration of 32 μM for MS analysis. The final 

concentration of DMSO was 1 % (v/v). Lyophilized Aβ40 was dissolved at 32 μM in 200 

mM ammonium acetate, pH 6.8, 1 % DMSO (v/v), and centrifuged at 13,000 g, 4 °C for 10 

min prior to analysis. All samples were incubated at 25 °C in 96-well plates without 

agitation.

ESI-(IMS)-MS analysis

A Synapt HDMS quadrupole-time-of-flight mass spectrometer (Micromass UK Ltd., Waters 

Corpn., Manchester, UK), equipped with a Triversa NanoMate (Advion Biosciences, Ithaca, 

NY, USA) automated nano-ESI (nESI) interface, was used for these analyses. The 
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instrument has a traveling-wave IMS device situated in between the quadrupole and the 

time-of-flight analyzers, and has been described in detail elsewhere48. hIAPP or Aβ40 

samples were analyzed using positive ionization nESI with a capillary voltage of 1.7 kV and 

a nitrogen nebulizing gas pressure of 0.8 psi. The following instrumental parameters were 

used: cone voltage 30 V; source temperature 60 °C; backing pressure 1.6 mBar; ramped 

traveling wave height 7–20 V; traveling wave speed 300 m/s; IMS nitrogen gas flow 20 mL/

min; IMS cell pressure 0.55 mBar. Data were processed by use of MassLynx v4.1 and 

Driftscope software supplied with the mass spectrometer. The m/z scale was calibrated with 

aq. CsI cluster ions.

Collision induced dissociation (CID) tandem mass spectrometry (MS/MS) was carried out in 

the trap collision cell of the mass spectrometer, using argon gas. The quadrupole analyzer 

was used to select ions representing ligand-bound monomer complexes and increasing 

collision energy was applied to the trap collision cell in 10 V increments from 10-100 V, 

until the ligands were completely dissociated from the monomer ions. Automation of the 

NanoMate for high throughput experiments was programmed enabling samples in each of 

the 96-wells to be analyzed for one minute, consecutively.

For analysis of ligand binding to monomeric peptide, hIAPP or Aβ40 (32 μM) was dissolved 

in 200 mM ammonium acetate (pH 6.8) containing 32 μM or 320 μM of small molecule. For 

analysis of these samples by nESI-MS, a cone voltage of 30 V was used to preserve protein-

ligand interactions, and a backing pressure of 1.6 mbar was applied. Data were acquired 

over the range m/z 200–6,000.

Thioflavin-T (ThT) fluorescence assays

Samples were added to a 96-well plate (Corning Costar 3915, Corning Life Sciences, 

Amsterdam, The Netherlands), sealed with clear sealing film and incubated in a FLUOstar 

OPTIMA plate reader (BMG Labtech, Aylesbury, Bucks, UK) for 5 days at 25 °C without 

agitation. Each 100 μL sample contained ThT (100 μM) and peptide (32 μM) in 200 mM 

ammonium acetate, pH 6.8 and a 1 % (v/v) final concentration of DMSO. The thioflavin-T 

studies used excitation and emission filters of 430 and 485 nm, respectively.

Transmission electron microscopy (TEM)

The TEM images of each 32 μM peptide solution were acquired after 5 days incubation at 

25 °C using a JEM-1400 (JEOL Ltd., Tokyo, Japan) transmission electron microscope. 

Carbon grids were prepared by irradiation under UV light for 30 min and stained with 4 % 

(w/v) uranyl acetate solution as described previously49.

Virtual screening

The structure of each of the five query molecules (vanillin, resveratrol, curcumin, 

chloronaphthoquinine-tryptophan and epigallocatechin-3-gallate (EGCG)) was minimized to 

the lowest energy conformer using LigPrep50. The minimized conformers were used as the 

query scaffold for virtual screening of an in-house library of 50,000 structurally diverse, 

novel small molecules using Rapid Overlay of Chemical Structures (ROCS)46. ROCS is a 

3D method that matches the shape of a molecule to the shape of the query molecule. It also 
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incorporates pharmacophoric features in assessing overlays such that the ROCS Combiscore 

measures the similarity of the matched shapes as well as the matched pharmacophoric 

features. Virtual hits were pooled and ranked according to the ROCS Combiscore parameter 

and 20 of the top 100 compounds were selected for screening based on a qualitative 

assessment of structural diversity. In addition, a further ten compunds chosen from the 

literature as known inhibitors of amyloid formation by different polypeptide sequences were 

included in the screen.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

L.M.Y. is funded by a Biotechnology and Biological Sciences Research Council (BBSRC) CASE studentship 
(Grant Number BB/I015361/1) sponsored by Micromass UK Ltd/Waters Corpn, Manchester, UK. J.C.S. is funded 
by a BBSRC CASE studentship (Grant Number BB/H014713/1) sponsored by Avacta Analytical PLC, Wetherby, 
UK. R.A.M. is funded by a BBSRC studentship (Grant Number BB/F01614X/1). The Synapt HDMS mass 
spectrometer was purchased with funds from the Biotechnology and Biological Sciences Research Council through 
its Research Equipment Initiative scheme (BB/E012558/1). S.E.R. acknowledges funding from the European 
Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013; 322408). D.P.R. 
acknowledges support from the United States National Institutes of Health (GM078114). We thank Dominic Walsh 
(Brigham & Women’s Hospital, Boston, USA) and Sara Linse (Lund University, Sweden) for provision of Aβ40 
peptide and vector and Dr James R. Ault (University of Leeds) for setting up the automated ESI-MS analyses. We 
also acknowledge all members of the Ashcroft, Radford and Raleigh groups for helpful discussions.

References

1. Sipe JD, et al. Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature 
Committee of the International Society of Amyloidosis. Amyloid. 2012; 19:167–170. [PubMed: 
23113696] 

2. Grimster NP, et al. Aromatic sulfonyl fluorides covalently kinetically stabilize transthyretin to 
prevent amyloidogenesis while affording a fluorescent conjugate. J. Amer. Chem. Soc. 2013; 
135:5656–5668. [PubMed: 23350654] 

3. Klabunde T, et al. Rational design of potent human transthyretin amyloid disease inhibitors. Nat. 
Struct. Mol. Biol. 2000; 7:312–321.

4. Connelly S, Choi S, Johnson SM, Kelly JW, Wilson IA. Structure-based design of kinetic stabilizers 
that ameliorate the transthyretin amyloidoses. Curr. Opin. Struct. Biol. 2010; 20:54–62. [PubMed: 
20133122] 

5. Hamrang Z, Rattray NJW, Pluen A. Proteins behaving badly: emerging technologies in profiling 
biopharmaceutical aggregation. Trends Biotech. 2013; 31:448–458.

6. Meier JJ, et al. Inhibition of human IAPP fibril formation does not prevent β-cell death: Evidence 
for distinct actions of oligomers and fibrils of human IAPP. Am. J. Physiol. Endocrinol. Metab. 
2006; 291:E1317–E1324. [PubMed: 16849627] 

7. Aitken JF, Loomes KM, Konarkowska B, Cooper GJS. Suppression by polycyclic compounds of the 
conversion of human amylin into insoluble amyloid. Biochem. J. 2003; 374:779–784. [PubMed: 
12812521] 

8. Harroun TA, Bradshaw JP, Ashley RH. Inhibitors can arrest the membrane activity of human islet 
amyloid polypeptide independently of amyloid formation. FEBS Letts. 2001; 507:200–204. 
[PubMed: 11684098] 

9. Woods LA, et al. Ligand binding to distinct states diverts aggregation of an amyloid-forming 
protein. Nat. Chem. Biol. 2011; 7:730–739. [PubMed: 21873994] 

Young et al. Page 10

Nat Chem. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Young LM, Cao P, Raleigh DP, Ashcroft AE, Radford SE. Ion mobility spectrometry-mass 
spectrometry defines the oligomeric intermediates in amylin amyloid formation and the mode of 
action of inhibitors. J. Amer. Chem. Soc. 2014; 136:660–670. [PubMed: 24372466] 

11. Hyung SJ, et al. Insights into antiamyloidogenic properties of the green tea extract (−)-
epigallocatechin-3-gallate toward metal-associated amyloid-β species. Proc. Natl. Acad. Sci. 
U.S.A. 2013; 110:3743–3748. [PubMed: 23426629] 

12. Westermark P. Amyloid in the islets of Langerhans: thoughts and some historical aspects. Ups. J. 
Med. Sci. 2011; 116:81–89. [PubMed: 21486192] 

13. Selkoe DJ. Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. 2001; 81:741–766. 
[PubMed: 11274343] 

14. Feng BY, et al. Small-molecule aggregates inhibit amyloid polymerization. Nat. Chem. Biol. 2008; 
4:197–199. [PubMed: 18223646] 

15. Bieschke J, et al. EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular 
toxicity. Proc. Natl. Acad. Sci. U.S.A. 2010; 107:7710–7715. [PubMed: 20385841] 

16. Meng F, Abedini A, Plesner A, Verchere CB, Raleigh DP. The flavanol (−)-epigallocatechin 3-
gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and 
protects cultured cells against IAPP-induced toxicity. Biochem. 2010; 49:8127–8133. [PubMed: 
20707388] 

17. Howlett D, Cutler P, Heales S, Camilleri P. Hemin and related porphyrins inhibit β-amyloid 
aggregation. FEBS Letts. 1997; 417:249–251. [PubMed: 9395306] 

18. Meng F, Raleigh DP. Inhibition of glycosaminoglycan-mediated amyloid formation by islet 
amyloid polypeptide and proIAPP processing intermediates. J. Mol. Biol. 2010; 406:491–502. 
[PubMed: 21195086] 

19. Porat Y, Mazor Y, Efrat S, Gazit E. Inhibition of islet amyloid polypeptide fibril formation: a 
potential role for heteroaromatic interactions. Biochem. 2004; 43:14454–14462. [PubMed: 
15533050] 

20. Ehrnhoefer DE, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway 
oligomers. Nat. Struct. Mol. Biol. 2008; 15:558–566. [PubMed: 18511942] 

21. Daubenfeld T, Bouin AP, van der Rest G. A deconvolution method for the separation of specific 
versus nonspecific interactions in noncovalent protein-ligand complexes analyzed by ESI-FT-ICR 
mass spectrometry. J. Am. Soc. Mass Spectrom. 2006; 17:1239–1248. [PubMed: 16793278] 

22. Sun N, Sun J, Kitova EN, Klassen JS. Identifying nonspecific ligand binding in electrospray 
ionization mass spectrometry using the reporter molecule method. J. Am. Soc. Mass Spectrom. 
2009; 20:1242–1250. [PubMed: 19321359] 

23. Sun J, Kitova EN, Wang W, Klassen JS. Method for distinguishing specific from nonspecific 
protein-ligand complexes in nanoelectrospray ionization mass spectrometry. Anal. Chem. 2006; 
78:3010–3018. [PubMed: 16642987] 

24. Wang W, Kitova EN, Klassen JS. Influence of solution and gas phase processes on protein-
carbohydrate binding affinities determined by nanoelectrospray Fourier transform ion cyclotron 
resonance mass spectrometry. Anal. Chem. 2003; 75:4945–4955. [PubMed: 14708765] 

25. Meng F, et al. The sulfated triphenyl methane derivative acid fuchsin is a potent inhibitor of 
amyloid formation by human islet amyloid polypeptide and protects against the toxic effects of 
amyloid formation. J. Mol. Biol. 2010; 400:555–566. [PubMed: 20452363] 

26. Dupuis NF, Wu C, Shea JE, Bowers MT. Human islet amyloid polypeptide monomers form 
ordered beta-hairpins: a possible direct amyloidogenic precursor. J. Amer. Chem. Soc. 2009; 
131:18283–18292. [PubMed: 19950949] 

27. Cheng B, et al. Silibinin inhibits the toxic aggregation of human islet amyloid polypeptide. 
Biochem. Biophys. Res. Commun. 2012; 419:495–499. [PubMed: 22366091] 

28. Khurana R, Uversky VN, Nielsen L, Fink AL. Is Congo red an amyloid-specific dye? J. Biol. 
Chem. 2001; 276:22715–22721. [PubMed: 11410601] 

29. Kim YS, Randolph TW, Manning MC, Stevens FJ, Carpenter JF. Congo red populates partially 
unfolded states of an amyloidogenic protein to enhance aggregation and amyloid fibril formation. 
J. Biol. Chem. 2003; 278:10842–10850. [PubMed: 12529361] 

Young et al. Page 11

Nat Chem. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Porat Y, Abramowitz A, Gazit E. Inhibition of amyloid fibril formation by polyphenols: structural 
similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug. Des. 
2006; 67:27–37. [PubMed: 16492146] 

31. Thomas T, Nadackal GT, Thomas K. Aspirin and diabetes: inhibition of amylin aggregation by 
nonsteroidal anti-inflammatory drugs. Exp. Clin. Endocrinol. Diabetes. 2003; 111:8–11. [PubMed: 
12605343] 

32. Woods LA, et al. Ligand binding to distinct states diverts aggregation of an amyloid-forming 
protein. Nat. Chem. Biol. 2011; 7:730–739. [PubMed: 21873994] 

33. Cao P, Raleigh DP. Analysis of the inhibition and remodeling of islet amyloid polypeptide amyloid 
fibers by flavanols. Biochem. 2012; 51:2670–2683. [PubMed: 22409724] 

34. Palhano FL, Lee J, Grimster NP, Kelly JW. Toward the molecular mechanism(s) by which EGCG 
treatment remodels mature amyloid fibrils. J. Amer. Chem. Soc. 2013; 135:7503–7510. [PubMed: 
23611538] 

35. Tenidis K, et al. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) 
with amyloidogenic and cytotoxic properties. J. Mol. Biol. 2000; 295:1055–1071. [PubMed: 
10656810] 

36. Petkova AT, et al. A structural model for Alzheimer’s β-amyloid fibrils based on experimental 
constraints from solid state NMR. Proc. Natl. Acad. Sci. U.S.A. 2002; 99:16742–16747. [PubMed: 
12481027] 

37. Young L, et al. Monitoring oligomer formation from self-aggregating amylin peptides using ESI-
IMS-MS. Int. J. Ion Mobil. Spectrom. 2013; 16:29–39.

38. Aisen P, et al. Alzhemed: A potential treatment for Alzheimer’s disease. Curr. Alzheimer Res. 
2007; 4:473–478. [PubMed: 17908052] 

39. Gervais F, et al. Targeting soluble Aβ peptide with Tramiprosate for the treatment of brain 
amyloidosis. Neurobiol. Aging. 2007; 28:537–547. [PubMed: 16675063] 

40. Necula M, Kayed R, Milton S, Glabe CG. Small molecule inhibitors of aggregation indicate that 
amyloid β oligomerization and fibrillization pathways are independent and distinct. J. Biol. Chem. 
2007; 282:10311–10324. [PubMed: 17284452] 

41. Valler MJ, Green D. Diversity screening versus focussed screening in drug discovery. Drug 
Discov. Today. 2000; 5:286–293. [PubMed: 10856911] 

42. De Felice FG, et al. Targeting the neurotoxic species in Alzheimer’s disease: inhibitors of Aβ 
oligomerization. The FASEB Journal. 2004; 18:1366–1372. [PubMed: 15333579] 

43. Ladiwala ARA, et al. Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Aβ 
into off-pathway conformers. J. Biol. Chem. 2010; 285:24228–24237. [PubMed: 20511235] 

44. Yang F, et al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and 
reduces amyloid in vivo. J. Biol. Chem. 2005; 280:5892–5901. [PubMed: 15590663] 

45. Scherzer-Attali R, et al. Complete phenotypic recovery of an Alzheimer’s disease model by a 
quinone-tryptophan hybrid aggregation inhibitor. PLoS ONE. 2010; 5:e11101. [PubMed: 
20559435] 

46. Rapid Overlay of Chemical Structures (ROCS). OpenEye, Scientific Software; Santa Fe, NM, 
USA: http://www.eyesopen.com/

47. Marek P, Woys AM, Sutton K, Zanni MT, Raleigh DP. Efficient microwave-assisted synthesis of 
human islet amyloid polypeptide designed to facilitate the specific incorporation of labeled amino 
acids. Org. Letts. 2010; 12:4848–4851. [PubMed: 20931985] 

48. Giles K, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. 
Rapid Commun. Mass Spectrom. 2004; 18:2401–2414. [PubMed: 15386629] 

49. Platt GW, Routledge KE, Homans SW, Radford SE. Fibril growth kinetics reveal a region of 
beta2-microglobulin important for nucleation and elongation of aggregation. J. Mol. Biol. 2008; 
378:251–263. [PubMed: 18342332] 

50. Maestro. Schrödinger Release. 9.3 edn. Schrödinger, LLC; NY, USA: 2014-2

Young et al. Page 12

Nat Chem. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.eyesopen.com/


Figure 1. 
Schematic diagram of the basis of the ESI-IMS-MS screen and a selection of the small 

molecules utilized for screen validation. (a-d) Schematic of expected ESI mass spectra 

resulting from different interactions between peptide/protein monomer (denoted m) and 

potential inhibitors (denoted L). Oligomers are denoted o; charge states are in superscript. 

(a) A specific ligand (termed positive) will result in a binomial distribution of bound peaks 

(pink)21; (b) the presence of a colloidal inhibitor will lead to spectra containing overlapping 

peaks resulting from the heterogeneous self-association of the small molecule (orange 

peaks); (c) a non-specific ligand will bind and result in a Poisson distribution of bound peaks 

(green)21; (d) the presence of a non-interacting small molecule (termed negative) will result 
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in spectra similar to those of peptide alone; (e) list of ten small molecules analyzed initially 

for inhibition of hIAPP aggregation during ESI-MS screen validation. Colors correspond to 

binding-mode classification by mass spectra (a-d): specific = pink, colloidal = orange, non-

specific = green, negative = gray.
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Figure 2. 
hIAPP forms an array of oligomeric species en route to long-straight amyloid fibrils. (a) 

Primary sequence of hIAPP. The peptide has a disulfide bridge between Cys-2 and Cys-7 

and an amidated C-terminus; (b) ESI-MS mass spectrum of hIAPP. Numbers above peaks 

denote oligomer order, with the positive charge state of ions in superscript; (c) ESI-IMS-MS 

Driftscope plot of the hIAPP monomer (1) through hexamer (6), present 2 min after diluting 

the monomer to a final peptide concentration of 32 μM in 200 mM ammonium acetate, pH 

6.8. ESI-IMS-MS Driftscope plots show IMS drift time versus mass/charge (m/z) versus 

intensity (z = square root scale). Inset: negative stain TEM image of hIAPP fibrils after 5 

days in 200 mM ammonium acetate pH 6.8 buffer (25 °C, quiescent) (scale bar = 100 nm).
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Figure 3. 
Inhibition of hIAPP amyloid assembly by Fast Green FCF (FG). (a) ThT fluorescence 

intensity over time of hIAPP alone (black circles) (32 μM peptide, 200 mM ammonium 

acetate buffer, pH 6.8, 25 °C, quiescent) and with increasing FG:hIAPP molar ratios: 1:1 

(orange) and 10:1 (green), showing dose dependent decrease in formation of ThT-positive 

hIAPP species upon addition of FG. (b) Negative stain TEM images of hIAPP incubated 

with (i) 1:1 or (ii) 10:1 molar ratios of FG:hIAPP for 5 days (25 °C, quiescent) (scale bar = 

100 nm), showing lack of fibrillation (ii) and formation of small/amorphous aggregates (i) of 

hIAPP in the presence of FG. (c) Positive ion ESI mass spectra showing FG alone (i), or 

added at 32 μM (ii), or 320 μM (iii), to hIAPP (32 μM). FG binds to the 2+ and 3+ charge 

state ions of hIAPP monomer (bound peaks denoted with orange or green circles; number of 

circles represents number of ligands bound), and to the 4+ charge state of the hIAPP dimer 

(bound peak denoted with white circle). This binding mode is classified as specific.
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Figure 4. 
Colloidal inhibition and non-specific binding observed using ESI-IMS-MS. (a) ThT 

fluorescence intensity of hIAPP (black) (32 μM peptide, 200 mM ammonium acetate buffer, 

pH 6.8, 25 °C, quiescent) with Congo red (CR):hIAPP molar ratios: 1:1 (orange) and 10:1 

(red) and with 1H-benzimidazole-2-sulfonic acid (1H-B-SA):hIAPP molar ratio: 10:1 

(blue)). Inhibition of the formation of ThT-positive species is observed only in the presence 

of excess CR. (b) Negative stain TEM images of hIAPP incubated with 1:1 (i) or 10:1 (ii) 

molar ratios of CR or a 10:1 molar ratio of 1H-B-SA (iii) (5 days, 25 °C, quiescent) (scale 

bar = 100 nm). Fibrils are observed in the presence of equimolar CR and excess 1H-B-SA 

but not in the presence of excess CR. (c) Positive ion ESI mass spectra showing CR added at 

32 μM (i) or 320 μM (ii), or 1H-B-SA added at 320 μM (iii), to hIAPP (32 μM). CR is not 

observed to bind to hIAPP when added at 32 μM (i) or 320 μM (ii), however CR self-

aggregates at 320 μM (ii) (denoted nx+, where n is the number of CR molecules and x is the 

charge state of those ions (red peaks). This binding mode is classified as colloidal. Multiple 

copies of 1H-B-SA bind to the 2+ and 3+ hIAPP monomer ions (bound peaks denoted with 
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blue circles, number of circles represents number of ligands bound), and to the hIAPP dimer 

(bound peaks denoted with white circles). This binding mode is classified as non-specific.
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Figure 5. 
ESI-IMS-MS demonstrates the mode of inhibition (specific/colloidal/non-specific) or lack of 

inhibition of hIAPP amyloid formation by small molecules. ESI-IMS-MS Driftscope plots 

of hIAPP and (a) ibuprofen; (b) FG (bound peaks denoted with yellow (13+ bound) or green 

(12+ bound) circles, number of circles represents number of ligands bound); (c) 1H-B-SA 

(bound peaks denoted with blue circles; and (d) CR (colloidal aggregates are denoted nx+, 

where n is the number of CR molecules and x is the charge state of the aggregate) (320 μM 

small molecule) to hIAPP (32 μM). An example of a negative (a), a positive (b), a non-

specific (c) and a colloidal inhibitor (d) are illustrated. The numbers on the Driftscope plots 

indicate the oligomer order and the adjacent superscripted numbers show the charge state of 

those ions.
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Figure 6. 
Aβ40 alone and with non-specific, negative and specific binding small molecules. (a) 

Primary sequence of recombinantly expressed Aβ40 (with an additional N-terminal 

methionine); (b) ESI mass spectrum of Aβ40. Numbers adjacent to peaks denote oligomer 

order, with the positive charge state of the ions in superscript; (c) ESI-IMS-MS Driftscope 

plot of Aβ40 alone (32 μM in 200 mM ammonium acetate, pH 6.8) showing IMS drift time 

versus m/z versus intensity (z = square root scale); (d) positive ion ESI mass spectra showing 

320 μM tramiprosate (i), hemin (ii) or EGCG (iii) added to Aβ40 peptide (32 μM). 

Tramiprosate binds multiple copies to the 3+ and 4+ ions of Aβ40 monomer (bound peaks 

denoted with pink circles, number of circles represents number of ligands bound).This 

binding mode is classified as non-specific. Hemin (ii) does not bind and is classified as 

negative; EGCG (iii) binds to both the 3+ and 4+ ions of Aβ40 monomer (bound peaks are 
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denoted with blue circles) and is classified as specific. (e) ThT fluorescence intensity of 

Aβ40 alone (black circles) in the presence of tramiprosate (pink circles), EGCG (blue 

circles) or hemin (orange circles) at small molecule:Aβ40 molar ratios of 10:1. Inhibition of 

the formation of ThT-positive species is observed in the presence of excess EGCG and 

interference with ThT fluorescence is observed in the presence of excess hemin. (f) Negative 

stain TEM images of Aβ40 alone (i) or incubated with 10:1 molar ratios of tramiprosate (ii), 

hemin (iii) or EGCG (iv) (5 days, 25 °C, quiescent); scale bar = 100 nm. Fibrils are observed 

by Aβ40 alone and in the presence of excess tramiprosate and hemin but not in the presence 

of excess EGCG.

Young et al. Page 21

Nat Chem. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


