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Background: Rolapitant, a long-acting neurokinin (NK)1 receptor antagonist (RA), has demonstrated efficacy in prevention of
chemotherapy-induced nausea and vomiting in patients administered moderately or highly emetogenic chemotherapy. Unlike
other NK1 RAs, rolapitant does not inhibit or induce cytochrome P450 (CYP) 3A4, but it does inhibit CYP2D6 and breast cancer
resistance protein (BCRP). To analyze potential drug–drug interactions between rolapitant and concomitant medications, this
integrated safety analysis of four double-blind, randomized phase II or III studies of rolapitant examined adverse events (AEs) by
use versus non-use of drug substrates of CYP2D6 or BCRP.

Patients and methods: Patients were randomized to receive either 180 mg oral rolapitant or placebo �1–2 h before chemo-
therapy in combination with a 5-hydroxytryptamine type 3 RA and dexamethasone. Data for treatment-emergent AEs (TEAEs)
and treatment-emergent serious AEs (TESAEs) during cycle 1 were pooled across the four studies and summarized in the overall
population and by concomitant use/non-use of CYP2D6 or BCRP substrate drugs.

Results: In the integrated safety population, 828 of 1294 patients (64%) in the rolapitant group and 840 of 1301 patients (65%)
in the control group experienced at least one TEAE. Frequencies of common TEAEs were similar in the rolapitant and control
populations. Overall, 53% of patients received CYP2D6 substrate drugs, none of which had a narrow therapeutic index (like
thioridazine or pimozide), and 63% received BCRP substrate drugs. When grouped by concomitant use versus non-use of
CYP2D6 or BCRP substrate drugs, TEAEs and TESAEs occurred with similar frequency in the rolapitant and control populations.

Conclusions: The results of this study support the safety of rolapitant as part of an antiemetic triple-drug regimen in patients
receiving emetogenic chemotherapy, including those administered concomitant medications that are substrates of CYP2D6 or
BCRP, such as ondansetron, docetaxel, or irinotecan.
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Introduction

Patients receiving chemotherapy as treatment of cancer often ex-

perience nausea and vomiting. The acute phase (�24 h) of

chemotherapy-induced nausea and vomiting (CINV) is primarily

mediated by 5-hydroxytryptamine (5-HT)3-receptor signaling,

whereas the delayed phase (>24–120 h) is primarily mediated by

neurokinin (NK)1-receptor signaling [1]. A combination of a

5-HT3 receptor antagonist (RA) and dexamethasone has demon-

strated protection against acute-phase CINV but limited efficacy

against delayed-phase CINV [1, 2]; the addition of an NK1 RA to

this regimen increases overall CINV control [3]. Accordingly, the

most commonly used clinical practice guidelines recommend

this triple-drug therapy for antiemetic prophylaxis in patients
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receiving cisplatin, anthracycline/cyclophosphamide (AC), and

other highly emetogenic chemotherapy (HEC) regimens and in

patients receiving carboplatin [4–6].

On average, a patient with cancer receives five drugs concomi-

tantly as part of his or her anticancer regimen or for comorbid-

ities [7, 8]. Even before cancer diagnosis, patients who are 70

years and older generally receive five prescription medications for

underlying diseases [9]. Therefore, the use of CINV prophylactics

may be complicated by drug–drug interactions (DDIs) with these

medications. In particular, interactions with inhibitors of meta-

bolic enzymes or xenobiotic transporters could result in

increased substrate drug bioavailability, leading to adverse events

(AEs). The cytochrome P450 (CYP) class of enzymes, expressed

primarily in the liver but also in the gastrointestinal (GI) tract, is

responsible for the metabolism and disposition of many drugs,

with the isoforms CYP3A4 and CYP2D6 having the highest activ-

ity [10]. CYP3A4 is much more abundant than CYP2D6 in both

the GI tract (82% versus <1%) and the liver (40% versus 2%)

[11]. A large number of known drugs, including the NK1 RAs

aprepitant and netupitant, are inhibitors, inducers, and/or sub-

strates of CYP3A4, increasing the likelihood of DDIs with

CYP3A4 substrates [12]. Breast cancer resistance protein

(BCRP), which transports potentially harmful substances out of

cells, is expressed in the liver, kidneys, GI tract, and blood-brain

barrier; multiple tumor cells overexpress this xenobiotic trans-

porter, affecting drug distribution and absorption [13, 14].

Rolapitant, a highly selective, long-acting NK1 RA, was

approved in oral formulation in 2015 by the US Food and Drug

Administration in combination with other antiemetic agents in

adults for the prevention of delayed CINV [15]. In randomized

phase II and III trials, a single 180-mg oral dose of rolapitant with

a 5-HT3 RA and dexamethasone regimen on the same day as

chemotherapy provided superior protection against nausea and/

or vomiting on days 2–5 after chemotherapy [16–18]. The safety

profile of rolapitant was consistent across studies, with a low inci-

dence of treatment-related AEs generally comparable to that

observed in control arms [16–18]. Unlike other approved oral

NK1 RAs [19], rolapitant does not induce or inhibit CYP3A4 [20,

21]. Oral rolapitant is a moderate inhibitor of CYP2D6 and an in-

hibitor of BCRP [22, 23]. While concomitant use of rolapitant

with a CYP2D6 or BCRP substrate drug with a narrow thera-

peutic index is not contraindicated, if such concomitant use can-

not be avoided, patients should be monitored for AEs [15]. There

is no such recommendation for CYP2D6 or BCRP substrate

drugs without a narrow therapeutic index.

Here, we report an integrated analysis of safety using pooled

data from the phase II and III rolapitant studies [16–18] to assess

possible safety signals in patients administered concomitant

drugs that are substrates of CYP2D6 or BCRP.

Methods

Study designs and treatment

The phase II cisplatin-based HEC (NCT00394966) [16], phase III
cisplatin-based HEC-1 (NCT01499849) and cisplatin-based HEC-2
(NCT01500213) [17], and phase III moderately emetogenic chemother-
apy or AC-based chemotherapy (NCT01500226) [18] randomized,
double-blind, parallel-group trials enrolled patients scheduled to receive
their first chemotherapy treatment. Eligibility criteria for these studies
have been described [16–18] and are included in the supplementary ma-
terial, available at Annals of Oncology online.

Randomized: N = 2637
MEC + AC phase III: n = 1369

Cisplatin-based HEC phase II: n = 181*
Cisplatin-based HEC-1: n = 532
Cisplatin-based HEC-2: n = 555

Analyzed for safety population: n = 1294 Analyzed for safety population: n = 1301

Cisplatin-based HEC phase II: n = 91*
Cisplatin-based HEC-1: n = 266
Cisplatin-based HEC-2: n = 277

Allocated to control: n = 1319
MEC + AC phase III: n = 685

Cisplatin-based HEC phase II: n = 90*
Cisplatin-based HEC-1: n = 263

Cisplatin-based HEC-2: n = 274

Received at least one dose of study drug in cycle 1: n = 1301
MEC + AC phase III: n = 674

Cisplatin-based HEC phase II: n = 90*
Cisplatin-based HEC-1: n = 266
Cisplatin-based HEC-2: n = 278

Allocated to rolapitant 180 mg: n = 1318
MEC + AC phase III: n = 684

Cisplatin-based HEC phase II: n = 89*
Cisplatin-based HEC-1: n = 263
Cisplatin-based HEC-2: n = 272

Received at least one dose of study drug in cycle 1: n = 1294
MEC + AC phase III: n = 670

Figure 1. CONSORT diagram of integrated safety analysis. Asterisk indicates only patients randomized to placebo or the 180 mg dose group
were included in this analysis. AC, anthracycline and cyclophosphamide; HEC, highly emetogenic chemotherapy; MEC, moderately emeto-
genic chemotherapy.
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Patients received oral rolapitant or placebo�1–2 h before chemother-
apy in combination with a 5-HT3 RA and dexamethasone (active control)
(supplementary Figure S1, available at Annals of Oncology online). The
phase II trial was a dose-ranging study of rolapitant (9, 22.5, 90, or
180 mg) [16]; patients from the 180 mg rolapitant and active-control
groups were included in the current analysis. The phase III trials eval-
uated 180 mg rolapitant versus active control [17, 18]. The studies were
approved by the institutional review board at each study site and con-
ducted in accordance with the Declaration of Helsinki and International
Conference on Harmonisation Good Clinical Practice guidelines.

Integrated safety analysis

Safety was analyzed in all patients who received at least one dose of study
drug, and AEs were classified according to MedDRA v15.0 [24]. The rela-
tionship of AEs to study treatment was determined by the investigator.
Data for treatment-emergent AEs (TEAEs) during cycle 1 were pooled.
Safety was descriptively summarized in the overall population and by
concomitant use or non-use of substrates of CYP2D6 or BCRP (with
medications coded using the World Health Organization Drug
Dictionary, March 2012 [25]). Safety data were further evaluated in the
rolapitant and control arms for patients administered specific BCRP

substrate chemotherapeutic agents, e.g. docetaxel, doxorubicin, epirubi-
cin, fluorouracil, etoposide, irinotecan, methotrexate, or topotecan.

Results

Patients

Of 2637 patients, 2595 received at least one dose of study drug

during cycle 1 and were included in the integrated safety analysis

(Figure 1); 1294 patients received 180 mg oral rolapitant and

1301 received placebo. Baseline demographics were balanced be-

tween these groups (Table 1). The majority of patients were fe-

male (60%) and white (75%) and reported no alcohol

consumption (80%). The most commonly diagnosed malignan-

cies were breast cancer (37%) and lung cancer (29%).

Overall integrated safety analysis

In the integrated safety population, 828 of 1294 rolapitant-

treated patients (64%) and 840 of 1301 control patients (65%)

experienced at least one TEAE during cycle 1 (Table 2); 90

rolapitant-treated patients (7%) and 82 control patients (6%)

experienced at least one TEAE considered drug related. All pa-

tients received dexamethasone, a CYP3A4 substrate. TEAEs were

generally considered to be the result of chemotherapy or underly-

ing disease. The most common TEAEs occurred with similar fre-

quency in the rolapitant and control populations. TEAEs led to

treatment discontinuation in 40 patients (3%) in the rolapitant

group and 48 patients (4%) in the control group and to death in

21 patients (2%) in the rolapitant group and 15 patients (1%) in

the control group. The only treatment-emergent serious AE

(TESAE) reported in>1% of patients in either group was febrile

Table 2. Summary of TEAEs in cycle 1: overall integrated safety analysis

Rolapitant
180 mg
(N 5 1294)

Control
(N 5 1301)

Patients with �1 TEAE, n (%) 828 (64) 840 (65)
TEAE in� 5% of patients in either group, n (%)
Fatigue 153 (12) 146 (11)
Constipation 117 (9) 151 (12)
Neutropenia 106 (8) 88 (7)
Decreased appetite 101 (8) 100 (8)
Alopecia 98 (8) 112 (9)
Diarrhea 87 (7) 89 (7)
Headache 81 (6) 101 (8)
Asthenia 76 (6) 100 (8)
Nausea 72 (6) 104 (8)
Patients with �1 TESAE, n (%) 102 (8) 126 (10)
TESAE in� 1% of patients in either group, n (%)
Febrile neutropenia 14 (1) 22 (2)

TEAE, treatment-emergent adverse event; TESAE, treatment-emergent
serious adverse event.

Table 1. Baseline demographics

Rolapitant
180 mg
(N 5 1294)

Control
(N 5 1301)

Age, median (range) 58 (20–86) 57 (18–90)
Gender, n (%)
Female 774 (60) 782 (60)
Male 520 (40) 519 (40)
Race, n (%)
White 968 (75) 966 (74)
Black or African American 29 (2) 35 (3)
American Indian or Alaska Native 14 (1) 15 (1)
Asian 188 (15) 183 (14)
Other 95 (7) 102 (8)
Alcohol consumption, n/N (%)a,b

0 drinks/week 975/1199 (81) 950/1209 (79)
>0 to� 5 drinks/week 158/1199 (13) 168/1209 (14)
>5 drinks/week 66/1199 (6) 91/1209 (8)
Primary tumor site, n/N (%)c

Breast 431/1205 (36) 459/1211 (38)
Lung 338/1205 (28) 351/1211 (29)
Head and neck 101/1205 (8) 107/1211 (9)
Ovary 68/1205 (6) 55/1211 (5)
Colon/rectum 40/1205 (3) 28/1211 (2)
Stomach 42/1205 (3) 44/1211 (4)
Uterine 25/1205 (2) 33/1211 (3)
Other 160/1205 (13) 134/1211 (11)

aPatients in the phase II HEC study (n¼ 90 and n¼ 91 in the rolapitant
and control arms, respectively) were excluded from the alcohol con-
sumption counts because the information was not collected.
bThe denominator is based on the number of subjects with valid
answers.
cPatients in the phase II HEC study were excluded from the primary
tumor site counts because the information was not collected.
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neutropenia, occurring in 1% and 2% of patients receiving rola-

pitant and placebo, respectively (Table 2). No TESAEs or deaths

were considered drug related.

Concomitant CYP2D6 substrate drugs

In all, 1368 patients (53%) received concomitant CYP2D6

substrate drugs, none of which had a narrow therapeutic index

(like thioridazine and pimozide). The CYP2D6 substrate drugs

most commonly administered in the rolapitant and control

groups were antiemetic agents, such as ondansetron (adminis-

tered to 8% and 12% of patients, respectively) and metoclopra-

mide (administered to 7% and 9% of patients, respectively), as

well as ranitidine (administered to 8% and 10% of patients, re-

spectively). When grouped by concomitant CYP2D6 substrate

use versus non-use, common TEAEs and TESAEs occurred with

similar frequency in the rolapitant and control populations

(Table 3).

Concomitant BCRP substrate drugs

In all, 1637 patients (63%) received concomitant BCRP substrate

drugs. The most frequently administered BCRP substrate drugs

in the rolapitant and control populations were doxorubicin (ad-

ministered to 23% of patients in each group), fluorouracil (ad-

ministered to 17% and 18% of patients, respectively), docetaxel

(administered to 11% of patients in each group), and epirubicin

(administered to 9% and 10% of patients, respectively).

Common TEAEs and TESAEs occurred with comparable fre-

quencies in the rolapitant and control populations when patients

were grouped by BCRP substrate drug use versus non-use

(Table 4) or by use of specific BCRP substrate chemotherapeutic

Table 3. Summary of TEAEs according to use of concomitant CYP2D6 substrate drugs

Concomitant CYP2D6 substrate use No CYP2D6 substrate use

Rolapitant 180 mg (N 5 648) Control (N 5 720) Rolapitant 180 mg (N 5 646) Control (N 5 581)

Patients with �1 TEAE, n (%) 493 (76) 548 (76) 335 (52) 292 (50)
TEAE in� 10% of patients in any group, n (%)
Fatigue 103 (16) 101 (14) 50 (8) 45 (8)
Constipation 81 (13) 101 (14) 36 (6) 50 (9)
Decreased appetite 65 (10) 84 (12) 36 (6) 16 (3)
Nausea 52 (8) 92 (13) 20 (3) 12 (2)
Alopecia 50 (8) 48 (7) 48 (7) 64 (11)
Asthenia 43 (7) 72 (10) 33 (5) 28 (5)
Patients with �1TESAE, n (%) 74 (11) 96 (13) 28 (4) 30 (5)
TESAE in� 1% of patients in any group, n (%)
Febrile neutropenia 10 (2) 14 (2) 4 (1) 8 (1)
Neutropenia 3 (<1) 7 (1) 2 (<1) 5 (1)
Neutrophil count decreased 1 (<1) 8 (1) 1 (<1) 0

CYP, cytochrome P450; TEAE, treatment-emergent adverse event; TESAE, treatment-emergent serious adverse event.

Table 4. Summary of TEAEs according to use of concomitant BCRP substrate drugs

Concomitant BCRP substrate use No BCRP substrate use

Rolapitant 180 mg (N 5 803) Control (N 5 834) Rolapitant 180 mg (N 5 491) Control (N 5 467)

Patients with �1 TEAE, n (%) 529 (66) 568 (68) 299 (61) 272 (58)
TEAE in� 10% of patients in any group, n (%)
Fatigue 123 (15) 114 (14) 30 (6) 32 (7)
Alopecia 80 (10) 98 (12) 18 (4) 14 (3)
Constipation 77 (10) 103 (12) 40 (8) 48 (10)
Headache 57 (7) 85 (10) 24 (5) 16 (3)
Patients with �1 TESAE, n (%) 72 (9) 88 (11) 30 (6) 38 (8)
TESAE in� 1% of patients in any group, n (%)
Febrile neutropenia 12 (1) 20 (2) 2 (<1) 2 (<1)
Neutropenia 4 (<1) 11 (1) 1 (<1) 1 (<1)
Neutrophil count decreased 2 (<1) 3 (<1) 0 5 (1)

BCRP, breast cancer resistance protein; TEAE, treatment-emergent adverse event; TESAE, treatment-emergent serious adverse event.
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agents, e.g. docetaxel, doxorubicin, epirubicin, fluorouracil, eto-

poside, irinotecan, methotrexate, or topotecan (supplementary

Tables S1 and S2, available at Annals of Oncology online).

Discussion

Patients with cancer frequently receive multidrug regimens,

including treatment of the underlying disease and comorbidities

as well as supportive care therapies for analgesia, anemia, depres-

sion, neutropenia, and CINV. Thus, identification of DDIs that

may affect the safety or efficacy of these treatments is crucial. This

integrated safety analysis of 2595 patients receiving emetogenic

chemotherapies, some of which were CYP2D6 or BCRP sub-

strates [16–18], demonstrated that oral 180 mg rolapitant was

well tolerated, with an incidence and profile of TEAEs and

TESAEs similar to those in the control population. In general,

observed TEAEs (e.g. fatigue and alopecia) could be attributed to

chemotherapy or underlying disease. When analyzed by CYP2D6

or BCRP substrate drug use versus non-use, the incidence and

profile of TEAEs were similar in the rolapitant and control

groups, revealing no new safety signals for rolapitant, with the

safety profile observed consistent with that reported in individual

rolapitant studies [16–18]. In a separate post hoc analysis of these

trials, rolapitant was well tolerated over multiple cycles of emeto-

genic chemotherapy agents, with no increase in the frequency of

TEAEs and no cumulative toxicity [26].

As rolapitant is a moderate inhibitor of CYP2D6, there is a po-

tential for DDIs with CYP2D6 substrate drugs. For example, anti-

depressants are commonly prescribed to patients with cancer,

and some are metabolized by CYP2D6 [27, 28]. In this large co-

hort, specific antidepressants were not identified among the com-

monly used CYP2D6 substrate drugs, and as a class, overall use of

these medications was 6% and 7% in the rolapitant and control

groups, respectively. Instead, ondansetron, metoclopramide, and

ranitidine were the most commonly administered CYP2D6 sub-

strates. Importantly, no use of CYP2D6 substrate drugs with a

narrow therapeutic index such as thioridazine or pimozide

occurred across the nearly 2600 patients in these studies, suggest-

ing that such agents are rarely used [29]. In this analysis, inhib-

ition of CYP2D6 by rolapitant did not increase the frequency of

TEAE or TESAEs in patients using concomitant substrate drugs

of CYP2D6, consistent with the low expression of CYP2D6 versus

CYP3A4 in the GI tract (<1% versus 40%) and the liver (2% ver-

sus 80%), both of which are important for drug metabolism and

disposition [11, 30].

Oral rolapitant is an inhibitor of BCRP, and caution should

be exercised with concomitant use of BCRP substrates with a nar-

row therapeutic index (e.g. irinotecan, methotrexate, rosuvasta-

tin, or topotecan); patients requiring these substrates should be

carefully monitored for adverse reactions related to the concomi-

tant drug [15]. In this large cohort, overall use of irinotecan,

methotrexate, and topotecan was 2.7% and 2.6% in the rolapitant

and control groups, respectively. In these patients, inhibition of

BCRP did not increase the frequency of TEAEs or TESAEs associ-

ated with concomitant use of a BCRP substrate chemotherapy

agent with a narrow therapeutic index. Overall, our data indicate

that concomitant administration of rolapitant with frequently

used BCRP substrate drugs did not adversely affect its safety

profile.

Of note, some substrate drugs may have overlapping substrate

specificity with other CYP isozymes. For example, ondansetron is a

substrate of CYP1A2/CYP2D6/CYP3A4 [31]. Moreover, some

BCRP substrates are also P-glycoprotein substrates [32]. Our

in vitro and in vivo studies demonstrated that rolapitant did not in-

hibit CYP1A2, CYP3A4, CYP2E1, CYP2A6, CYP2B6, CYP2C8,

CYP2C9, and CYP2C19 [15, 21, 23]; it inhibited BCRP and, only

modestly inhibited P-glycoprotein [22]. Therefore, the specificity

of rolapitant in inhibiting CYP isozymes and drug transporters

suggested that CYP2D6 and BCRP inhibition was likely the main

mechanism of DDIs. Furthermore, for drugs with overlapping sub-

strate specificity, inhibiting CYP2D6 or BCRP alone may not lead

to a clinically relevant increase in AEs of substrate drugs since they

likely undergo other elimination pathways. Our analysis supported

this hypothesis and demonstrated that inhibition of CYP2D6 or

BCRP by rolapitant did not increase AEs of co-administered drugs

in CINV patients. However, this post hoc analysis did not investi-

gate the dose or number of concomitant CYP2D6 or BCRP sub-

strate drugs used, factors which may alter the risk of DDIs. The

overall results of this post hoc analysis support the tolerability of

rolapitant in a large number of patients as part of an antiemetic

triple-drug regimen in patients receiving emetogenic chemother-

apy, including those administered concomitant medications that

are substrates of CYP2D6 or BCRP.
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