
RESEARCH METHODS IN NEUROLOGY OPEN ACCESS

Measuring Resilience and Resistance in Aging
and Alzheimer Disease Using Residual Methods
A Systematic Review and Meta-analysis

Diana I. Bocancea, MSc, Anna C. van Loenhoud, PhD, Colin Groot, PhD, Frederik Barkhof, MD, PhD,

Wiesje M. van der Flier, PhD, and Rik Ossenkoppele, PhD

Neurology® 2021;97:474-488. doi:10.1212/WNL.0000000000012499

Correspondence

Ms. Bocancea

d.i.bocancea@

amsterdamumc.nl

Abstract
Background and Objective
There is a lack of consensus on how to optimally define andmeasure resistance and resilience in
brain and cognitive aging. Residual methods use residuals from regression analysis to quantify
the capacity to avoid (resistance) or cope (resilience) “better or worse than expected” given a
certain level of risk or cerebral damage. We reviewed the rapidly growing literature on residual
methods in the context of aging and Alzheimer disease (AD) and performed meta-analyses to
investigate associations of residual method–based resilience and resistance measures with
longitudinal cognitive and clinical outcomes.

Methods
A systematic literature search of PubMed andWeb of Science databases (consulted until March
2020) and subsequent screening led to 54 studies fulfilling eligibility criteria, including 10
studies suitable for the meta-analyses.

Results
We identified articles using residual methods aimed at quantifying resistance (n = 33), cognitive
resilience (n = 23), and brain resilience (n = 2). Critical examination of the literature revealed
that there is considerable methodologic variability in how the residual measures were derived
and validated. Despite methodologic differences across studies, meta-analytic assessments
showed significant associations of levels of resistance (hazard ratio [HR] [95% confidence
interval (CI)] 1.12 [1.07–1.17]; p < 0.0001) and levels of resilience (HR [95% CI] 0.46
[0.32–0.68]; p < 0.001) with risk of progression to dementia/AD. Resilience was also associated
with rate of cognitive decline (β [95% CI] 0.05 [0.01–0.08]; p < 0.01).

Discussion
This review and meta-analysis supports the usefulness of residual methods as appropriate
measures of resilience and resistance, as they capture clinically meaningful information in aging
and AD. More rigorous methodologic standardization is needed to increase comparability
across studies and, ultimately, application in clinical practice.
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Heterogeneity in brain and cognitive aging has been observed
in numerous studies, with some individuals aging more suc-
cessfully than others. Some people are less susceptible to age-
associated or neurodegenerative pathologic changes, while
others preserve brain integrity and cognitive abilities despite
emerging neuropathology. Various heuristic constructs (e.g.,
cognitive/brain reserve, neural compensation, brain mainte-
nance) have been proposed to describe different aspects of the
observed individual differences in brain and cognitive aging
trajectories.1,2 Here, we adopt and expand upon a previously
proposed framework3,4 that conceptualizes 2 distinct phe-
nomena under the umbrella terms resistance and resilience.
Resistance is defined as the brain’s ability to avoid age-related
senescent and pathologic changes, thereby preserving brain
integrity and cognition, despite risk factors such as advanced
age or genetic predisposition to Alzheimer disease (AD) pa-
thology. Resilience refers to the brain’s ability to cope with
accumulating senescent and pathologic changes and preserve
brain integrity (brain resilience) or cognitive function (cog-
nitive resilience) in the face of significant pathologic
burden.3,4 For example, an elderly APOEe4/e4 carrier is at
increased risk of accumulating AD neuropathology and sub-
sequent cognitive impairment. Remaining relatively free of
neuropathology would indicate resistance, while preserving
normal cognition despite β-amyloid and tau accumulation
indicates (cognitive) resilience. Furthermore, cognitive pres-
ervation could be explained by maintenance of structural in-
tegrity despite pathology, indicating brain resilience. The
conceptual model in Figure 1 characterizes an individual’s
level of cognitive aging as a combination of resistance and
resilience to senescent and pathologic changes. These 2
modes of cognitive preservation are distinct, yet not mutually
exclusive, determinants of successful cognitive aging.

Measuring Resistance and Resilience
Resistance and resilience in the aging brain exist by virtue of
both genetics and environmental exposures across the life-
span; for example, education, intellectually engaging leisure
activities, or physical exercise.5,6 There is no consensus on
how to optimally define and measure these constructs. Soci-
odemographic variables7,8 and questionnaire-derived metrics9

are commonly used as proxy measures of cognitive reserve, a
related construct representing a potential mechanism of
resilience. These measures, however, explain only part of the
observed variance in successful aging and hamper the study of
determinants and mechanisms of resilience and resistance.
More recently, statistical methods using residuals from re-
gression analyses (henceforth referred to as “residual meth-
ods”) have been developed as alternative operational

measures. These methods are based on the observed imbal-
ance between risk factors, age-related neurobiological
changes, and clinical expression and therefore enable the
computation of individualized measures of resistance and
resilience in a more objective manner.

The Residual Approach
The residual approach operationalizes resistance and resil-
ience as discrepancies between risk factors, cognition, and
brain status. Resistance is generally determined by the mis-
match between risk factors and brain integrity, while resilience
is determined by the mismatch between senescent/
neuropathologic changes and cognition (cognitive resil-
ience) or brain structure (brain resilience).

How Are Residuals Calculated?
Residual measures result from statistical models that predict
the association between variables of brain status (e.g., cerebral
volumes or tau accumulation) and participant-specific char-
acteristics (e.g., age or cognition). A residual is calculated as
the difference between predicted and observed outcome
variables for an individual relative to the population estimate,
and therefore, quantifies the extent to which the observed
outcome positively or negatively deviates from normative
values (Figure 2A). Individuals with better outcome than
expected are considered resistant/resilient.

Aims
Despite decades of study, quantitative assessment of an in-
dividual’s level of resilience or resistance is not yet imple-
mented in clinical practice and clinical trials. We
systematically reviewed the literature on residual measures of
resistance- and resilience-related constructs, following the
conceptual framework described above. First, we provide a
detailed overview of the different residual methods, their
methodologic characteristics, analytical approaches, and vali-
dation. Second, we investigate how residual measures help
explain heterogeneity in brain and cognitive aging by meta-
analyzing their associations with cognitive decline and disease
progression. Third, we critically appraise the challenges with
residual approaches as surrogate measures of resistance and
resilience and discuss future perspectives.

Methods
Study Selection
This study was conducted following preestablishedmethods and
is reported following Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines10 (eTable 1,
available from Dryad, doi.org/10.5061/dryad.tx95x69xr). We
performed a systematic literature search in PubMed/Medline

Glossary
AD = Alzheimer disease; CI = confidence interval; GM = gray matter; HR = hazard ratio;MCI = mild cognitive impairment;
WM = white matter.
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andWeb of Science databases from inception throughMarch 10,
2020. We searched studies that operationalized resistance/
resilience-related constructs with a residual method using a
combination of relevant terms (see full search queries in eTa-
ble 2, available from Dryad, doi.org/10.5061/dryad.tx95x69xr).
We included peer-reviewed articles, written in English and pre-
senting original research with human data. Excluding review
articles and meta-analyses, all other study designs were eligible.
We included studies that (1) operationalized any type of a
resistance- or resilience-related construct with residuals, (2) in-
cluded at least a measure of brain status (i.e., neuroimaging-
based brain integrity or brain-derived molecular markers of
senescence or pathology) in the model from which residuals
were computed, irrespective of where the variables were entered
in the regression model, (3) involved samples of individuals
across normative aging or AD-related trajectories, (4) derived
individual-level residuals, and (5) utilized the residual measure
beyond methodologic validation of the model.

Articles were screened at the title/abstract level in Rayyan11

(rayyan.qcri.org/). Reference lists were additionally cross-

checked for eligible studies. Two authors (D.I.B., A.C.v.L.)
reviewed the studies for inclusion and abstracted the data, and
ambiguous records/discrepancies were discussed with a third
author (R.O.) to reach consensus. For each study, we
extracted the sample characteristics, type of residual
(i.e., residualized outcome variable), modeled variables and
their operationalization, covariates, and analytical methods
used for modeling and quantifying the residual measure.

Meta-analysis
Using meta-analytical approaches, we investigated associa-
tions between residual method–based resilience or resistance
and cognitive decline or disease progression in individuals
across normative aging or AD-related trajectories. We se-
lected studies with appropriate analyses and extracted stan-
dardized regression coefficients for cognitive decline and
hazard ratios (HRs) for disease progression. Effect estimates
were adjusted for multiple variables as they came frommodels
that included varying covariate combinations. HRs and their
error estimates were log-transformed for analysis and sub-
sequently transformed back for reporting purposes.12 Missing

Figure 1 Conceptual Model of Resistance and Resilience in Normative and Pathologic Brain and Cognitive Aging

An individual’s level of (successful) cognitive aging is determined by 2 distinctmodes of cognitive preservation, resistance, and (brain and cognitive) resilience.
Recent research in the cognitive decline and dementia field posits neurodegenerative disorders as the product of multiple proteinopathies and other
pathologic events occurring in conjunction. Similarly, heterogeneity in cognitive aging trajectories is determined by varying degrees of resistance- and
resilience-related mechanisms that interact with these processes and synergistically contribute to successful aging. Icons in this figure are modified from
Servier Medical Art, licensed under a Creative Commons Attribution 3.0 Unported License (smart.servier.com/).
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data were requested from the authors of 6 studies13-18 (6/6
responded). Due to high heterogeneity in samples, methodol-
ogy, and outcomes among studies, we hypothesized that the true
effect size might be study-dependent. We therefore assessed
overall effects using random-effect models12 in the R (v3.6.1)
metafor package (v2.4-0).19 Statistical heterogeneity was
assessed using the I2 statistic and Q-test p value,20 with I2 ≥75%
indicating substantial heterogeneity. Significance for random
effects was set at p < 0.05. Publication bias was assessed by visual
inspection of funnel plots.12 Two authors (D.I.B., C.G.) in-
dependently assessed risk of bias with a domain-based tool.21

Furthermore, we evaluated in sensitivity analyses the effect of
removing those studies that were rated at a potential risk of bias.

Results
The systematic literature search yielded 1,501 records, with
210 studies assessed at full-text level. Among 54 studies ful-
filling inclusion criteria (Figure 2, B and C), we identified 33
resistance-related residuals and 25 resilience-related residuals
(Figure 3 and eTable 3, available from Dryad, doi.org/10.
5061/dryad.tx95x69xr).

Figure 2 Generic Diagram of the Residual Approach, Study Selection Flowchart, and Histogram of Selected Studies Pub-
lication Year

(A) Person-specific residuals (e) are computed as the difference between an observed outcome variable and that predicted by a number of variables of
interest. Individuals who present a better outcome than predicted (generally) have a higher level of resilience or resistance. Note however that the
directionality of the residuals ultimately depends on the outcome and predictor variables in the model, and hence, in some studies a negative residual
indicates higher resilience/resistance. (B) Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart of study selection. (C)
Distribution of publication year for the 54 studies eligible for inclusion in the systematic review. This figure illustrates an increasing number of studies over the
past decade that use a residual method–based measure of resilience or resistance.
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Residual Measures of Resistance
Resistance-related residuals were typically based on re-
gression models including chronological age and measures of
brain integrity, more often with age (age-based residuals) than
brain integrity (brain-based residuals) as dependent variable
(Table 1 and eTable 5). The specifics of age-based and brain-
based residual approaches are outlined below.

Age-Based Residuals
Age-based residuals (commonly known as “brain age gap”
measures) are derived frommodels that infer the apparent age
of an individual from variables reflecting brain status (e.g.,
whole-brain atrophy) or senescence (e.g., DNAmethylation).
These models are built to capture the normative aging process
in healthy individuals. When subsequently applied to new
individuals, residual measures are computed as the difference
between the chronological age and predicted brain age. These
residuals capture deviation from the population norm, mea-
suring the extent to which patients preserve (structural,
functional, or molecular) brain integrity despite chronological
aging. A negative residual (i.e., lower predicted than chro-
nological age) reflects resistance; a positive residual indicates
accelerated aging.22 For example, positive residuals derived
from a model that regresses age on neuroimaging measures of
gray matter (GM) volume indicate increased brain atrophy
for a given age and thus accelerated brain aging.

Different measures of brain integrity served as predictors of
chronological age in age-based residual methods (Table 1).

Structural MRI measures were most commonly used, in the
form of whole-brain voxel-wise maps of segmented GM23-37

or white matter (WM),24,29-31,34,38 regional cortical and sub-
cortical volumes,39-42 regional cortical thickness or surface
area,42-45 and raw images.29,46,47 Two studies additionally
incorporated information on brain function like resting-state
fMRI-derived functional connectome40,43 and regional ho-
mogeneity.40 Three others additionally used diffusion tensor
imaging tract-based fractional anisotropy and diffusivity
measures.41,48,49 Another study calculated age-based residuals
from PET-derived measures of glucose metabolism, oxygen
consumption, and blood flow,50 while another employed
EEG-derived features of sleeping patterns.e1

Two studies derived age residuals from epigenetic data with
senescence markers measured from postmortem tissue sam-
ples (dorsolateral prefrontal cortex DNA methylation lev-
else2,e3 and gene expression levelse3) used as predictors of age.

Brain-Based Residuals
In inverse models, chronological age can be used to predict
brain status, as demonstrated by 2 studies in which data
structures composed of imaging-derived measures of brain
structure48,e4 and function48 were regressed onto chrono-
logical age.

Residual Measures of Resilience
Similar to resistance-related residuals, several distinct yet
comparable variations of resilience-related residuals were

Figure 3 Residuals Measures of Resistance and Resilience-Related Constructs

Schematic diagram depicting a gross categorization of the different residual methods we identified in the reviewed studies. Within the framework of
resistance and (brain and cognitive) resilience, according to what outcome variable has been modeled and subsequently residualized, we identified age-
based, brain-based, and cognition-based residual methods. Arrows point from the predictor variables to the outcome variable residualized (e.g., we found 2
different ways of calculating age-based residuals: predicting chronological age with respect to molecular change measures or with respect to brain integrity
measures). Note that while resistance and brain resilience concepts partially overlap, as both include preservation of brain structure (brain integrity), we
distinguish themdepending onwhether risk factor (age) or pathology (molecular changes) is included in the equation. Similarly, brain and cognitive resilience
partially overlap, as both may include pathology (molecular changes) as predictors, and we distinguish them based on whether the residualized outcome
represents brain integrity or cognition. These 2modelsmay reflect different phenotypes of resilience, as cognitive resilience relative to themolecularmarkers
could (partly) be explained by brain resilience. Icons in this figure are modified from Servier Medical Art, licensed under a Creative Commons Attribution 3.0
Unported License (smart.servier.com/).
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Table 1 Methodologic Characteristics of Resistance-Related Residual Measures

Study Brain measures Model
Training
dataset

Test sample

Dataset

Sample, n

All CN MCI Dementia

Age-based residuals (chronological
age predicted by brain status)

Franke et al., 201023 Brain structure (sMRI) Linear RVR IXI + own data ADNI 334 232 — 102

Franke et al., 201224 Brain structure (sMRI) Linear RVR IXI ADNI 406 108 148 150

Gaser et al., 201325 Brain structure (sMRI) Linear RVR IXI + OASIS ADNI 195 — 195 —

Franke et al., 201426 Brain structure (sMRI) Linear RVR IXI ADNI 228 228 — —

Levine et al., 2015e2 Postmortem DNA
methylation levels

Regression NR ROS + MAP 700 NR NR 303

Löwe et al., 201627 Brain structure (sMRI) Linear RVR IXI + OASIS ADNIa 405 107 148 150

Steffener et al., 201639 Brain structure (sMRI) Scaled subprofile
modeling

— Own data 331 331 — —

Luders et al., 201628 Brain structure (sMRI) Linear RVR NR Own data 100 100 — —

Habes et al., 201638 Brain structure (sMRI) SVR SHIP SHIP >65 yb 372 NR NR NR

Liem et al., 201743 Brain structure and
function (sMRI, rs-
fMRI)

Linear SVR + RF LIFE LIFEa 1,612 729 632 251

Cole et al., 201729 Brain structure (sMRI) CNN BAHC TwinsUKa 62 NR NR NR

McDonough, 201745 Brain structure (sMRI) SVR — HABSb 129 129 — —

Scheller et al., 201830 Brain structure (sMRI) RVR IXI Own data 34 34 — —

Eavani et al., 201840 Brain structure and
function (sMRI, rs-
fMRI)

SVR — BLSAb 400 400 — —

Cole et al., 201831 Brain structure (sMRI) GPR Multiple
datasets

LBC1936 669 669 — —

Beheshti et al., 201832 Brain structure (sMRI) Linear SVR IXI + OASIS J-ADNI 507 146 214 147

Richard et al., 201841 Brain structure and
function (sMRI, DTI)

Gradient boosting Cam-CAN Stroke MRI 265 265 — —

Varikuti et al., 201836 Brain structure (sMRI) Lasso regression 1000Brains ADNI 471 244 64 163

Wang et al., 201933 Brain structure (sMRI) CNN Rotterdam
Study

Rotterdam
Study

1808 NR NR NR

Goyal et al., 201950 Brain metabolism
(PET)

Random forest — Own data 205 205 — —

Jonsson et al., 201934 Brain structure (sMRI) CNN Own data + IXI UK Biobank 12,378 NR NR NR

Smith et al., 201948 Brain structure and
function (sMRI, dMRI,
rs-fMRI, t-fMRI)

Regularized
regression

— UK Biobankb 19,000 NR NR NR

Elliott et al., 201944 Brain structure (sMRI) Model in Liem
et al., 201743

NR Dunedin Study 869 869 — —

Glorioso et al., 2019e3 Postmortem gene
expression; DNA
methylation levels

Elastic net
regression

CM ROS + MAPa 438 NR NR 212

Ly et al., 202035 Brain structure (sMRI) GPR ADNI + IXI +
OASIS

ADNI + PITT 491 134 283 74

Ning et al., 202042 Brain structure (sMRI) Lasso regression UK Biobank UK Biobank 12,115 12,155 — —

Continued
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proposed in the literature, in the form of cognition-based or
brain-based (Table 2 and eTable 6).

Cognition-Based Residuals
Twenty-one studies operationalized cognitive resilience with
a residual approach modeling cognition as outcome variable.
The difference between observed and expected cognitive
ability, as predicted by measures of brain structure or patho-
logic burden, yields an individual’s deviation (from population
norms) and captures resiliency or vulnerability to cerebral
changes. Among the earliest proposed models is the residual
memory variance model,e5 where cognitive resilience is con-
ceptualized as residual variance in memory performance not
explained by brain structure and demographics. Thirteen
other studies derived comparable cognitive resilience mea-
sures from structural MRI data. The most common brain
variables were volumes of whole-brain GM, hippocampus,
and WM hyperintensities.13,e4,e6-e16 Three studies similarly

regressed cognition onto postmortem neuropathologic
measures.e17-e19 Two studies leveraged in vivo CSF bio-
markers of AD pathology15,18 and 2 others explored a mul-
timodal approach combining measures of brain structure and
neuropathology to predict cognition.14,e20 The most com-
monly residualized cognitive abilities were (episodic or se-
mantic) memory13,15,18,e4,e5,e7,e10-e13,e15-e17 and global
cognition.15,e9,e14,e18,e19 Residuals of other cognitive domains
were also explored15,18,e4,e6,e8,e13,e17 (eTable 5).

Brain-Based Residuals
Two studies proposed a brain-based residual measure of
cognitive resilience where MRI-based whole-brain voxelwise
GM maps17 or regional GM volumes16 were regressed onto
global cognition scores.

Similarly, 2 other studies used brain-based residuals to
quantify the degree to which structural integrity is preserved

Table 1 Methodologic Characteristics of Resistance-Related Residual Measures (continued)

Study Brain measures Model
Training
dataset

Test sample

Dataset

Sample, n

All CN MCI Dementia

Smith et al., 202049 Brain structure and
function (sMRI, dMRI,
rs-fMRI, t-fMRI)

Multiple
regression

— UK Biobank 18,707 NR NR NR

Boyle et al., 202137 Brain structure (sMRI) Elastic net
regression

Multiple
datasets

DEU 175 175 — —

CR/RANN 380 380 — —

TILDA 487 487 — —

Feng et al., 202046 Brain structure (sMRI) CNN Multiple
datasets

Cam-CAN 652 652 — —

Nam et al., 202047 Brain vasculature
(MRA)

CNN Multiple
datasets

Own data 354 NR NR NR

Paixao et al., 2020e1 Brain function during
sleep (EEG)

Regularized
regression

MGH Sleep SHHS 4,877 NR NR NR

Brain-based residuals (brain status
predicted by chronological age)

Habeck et al., 2017e4 Brain structure and
function (sMRI, dMRI)

kNN — Own data 368 NR NR NR

Smith et al., 201948 Brain structure and
function (sMRI, DTI,
fMRI)

Regularized
regression

— UK Biobankb 19,000 NR NR NR

Abbreviations: ADNI = Alzheimer’s Disease Neuroimaging Initiative; BAHC = Brain-Age Healthy Control; BLSA = Baltimore Longitudinal Study of Aging; Cam-
CAN = Cambridge Centre for Ageing andNeuroscience; CM = CommonMinds cohort; CN = cognitively normal; CNN = convolutional neural network; CR/RANN
= Cognitive Reserve/Reference Ability Neural Network Study; DEU = Dokuz Eylül University; dMRI = diffusion MRI; DTI = diffusion tensor imaging; GPR =
Gaussian process regression; HABS = Harvard Aging Brain Study; ICA = independent component analysis; IXI = Information eXtraction from Images; J-ADNI =
Japanese Alzheimer’s Disease Neuroimaging Initiative; kNN = k nearest neighbor; LBC1936 = Lothian Birth Cohort 1936; LIFE = Leipzig Research Centre for
Civilization Diseases; MAP = Rush Memory and Aging Project; MCI = mild cognitive impairment; MGH Sleep = Massachusetts General Hospital Sleep dataset;
MRA =magnetic resonance angiography; NNMF = non-negativematrix factorization; NR = not reported; OASIS =Open Access Series of Imaging Studies; PCA =
principal component analysis; PITT = Pittsburgh community dataset; RF = random forest; ROS = Religious Orders Study; rs-fMRI = resting-state fMRI; RVR =
relevance vector regression; SHHS = Sleep Heart Health Study; SHIP = Study of Health in Pomerania; sMRI = structural MRI; SVD = singular value de-
composition; SVR = support vector regression; t-fMRI = task fMRI; TILDA = The Irish Longitudinal Study on Ageing; TwinsUK = UK Adult Twin Registry;
Training sample = the data used to train themodel (i.e., to predict the chosen outcome variable from the predictor variables). Test sample = the study sample
from which residuals were derived and posteriorly used in analyses of interest. See a detailed version of this table in eTable 5.
a This study uses several test samples. The test sample related to themost relevant analysis (i.e., analyses involving the application of the residualmeasure) is
reported here.
b Residuals estimated within a cross-validation framework.
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Table 2 Methodologic Characteristics of Resilience-Related Residual Measures

Study Cognition Brain status Model Dataset

Sample, n

All CN MCI Dementia

Cognitive resilience

Cognition-based residuals
(cognition predicted by brain
status)

Reed et al., 2010e5 Episodic memory Brain structure (sMRI) LVM–SEM UCD own
data

305 162 100 43

Reed et al., 2011e17 Multiple
domainsa

Postmortem neuropathology LVM–SEM ROS + MAP 652 214 160 278

Mukherjee et al., 2012e6 Executive function Brain structure (sMRI) Regression ADNI 750 207 365 178

Zahodne et al., 201313 Episodic memory Brain structure (sMRI) LVM WHICAP 703 533 170 —

Negash et al., 2013e18 Global cognition Postmortem neuropathology Linear
regression

ROS + MAP 964 308 242 414

Mukherjee et al., 2014e8 Executive function Brain structure (sMRI) Regression ADNI 681 189 330 162

Zahodne et al., 2015e7 Memory Brain structure (sMRI) Linear
regression

WHICAP 244 NR NR —

Marques et al., 2016e9 Global cognition Brain structure (sMRI) LVM–SEM Own data 96 NR NR —

Hohman et al., 201618 Memory,
executive
functiona

Neuropathology (CSF) Regression +
PLSpath

ADNI 729 297 432 —

Franzmeier et al., 2017ae10 Episodic memory Brain structure (sMRI) Regression TUM 40 16 24 —

ISD 55 32 23 —

Franzmeier et al., 2017be11 Memory-related
fMRI-task
accuracy

Brain structure (sMRI) Regression Own data 54 37 17 —

Habeck et al., 2017e4 Multiple
domainsa

Brain structure (sMRI, dMRI) Regression Own data 368 NR NR NR

White et al., 2017e19 Global cognition Postmortem neuropathology Multivariate
linear
regression

ROS + MAP 979 NR NR 393

Ji et al., 2018e12 Memory Brain structure (sMRI) LVM–SEM Own data 26 26 — —

Lee et al., 2019e20 Global cognition Brain structure (sMRI),
neuropathology (Aβ-PET, tau-PET)

Regression Own data 87 34 32 21

Bettcher et al., 2019e15 Episodic memory Brain structure (sMRI) LVM–SEM UCD
Diversity
Cohort

338 203 105 22

Petkus et al., 2019e13 Multiple
domainsa

Brain structure (sMRI) LVM–SEM WHIMS,
WHISCA

972 972 — —

Serra et al., 2019e14 Global cognition Brain structure (sMRI) PLS regression Own data 117 38 40 39

Beyer et al., 201914 Global cognition Brain structure, metabolism, and
neuropathology (sMRI, FDG-PET,
CSF)

Regression Own data 110 — 32 78

McKenzie et al., 2020e16 Episodic memory Brain structure (sMRI) LVM–SEM ADNI 870 269 458 143

Ossenkoppele et al., 202015 Global cognition;
multiple
domainsa

Neuropathology (tau-PET) Linear
regression

Multicenter 260 83 117

Brain-based residuals (brain
status predicted by cognition)

van Loenhoud et al., 201717 Global cognition Brain structure (sMRI) Linear
regression

ADC 511 56 108 347

Continued
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despite pathologic changes. Investigating brain resilience in
the context of AD, these residual methods regressed MRI-
based measures of brain structure, such as hippocampal vol-
umes18 and cortical thickness,15 onto CSF biomarkers of
β-amyloid18 and tau.15,18

Analytical Approaches
Given that residuals quantify the difference between observed
and predicted values of an outcome variable, a prediction
model lies at the core of residual methods. Models built to
capture normative patterns of brain and cognitive aging ad-
dress a regression problem, that is, the prediction of contin-
uous outcome measures such as cognition, age, and brain
volumes. While the regression problem was virtually the same
across studies, a wide range of analytical approaches was used
to predict expected outcome values for the variables of in-
terest, including data-driven and theory-driven approaches.

Analytical Models
Resistance-related residuals emerged from the notion of
predicting chronological age from an individual’s brain image,
put forward by the machine learning community. Studies
generally used a data-driven prediction-focused approach,e21

with models selected based on maximizing prediction accu-
racy in independent datasets. Consequently, increasingly so-
phisticated regression algorithms were employed to build
accurate prediction models of the normative brain aging
process. Models ranged from (regularized) multiple re-
gression,36-38,42,48,49,e1-e3 nearest-neighbor,e4 linear support-
vector32,40,43-45 and relevance-vector regression,23-28,30

Gaussian process regression,31,35 random forest,43,50 gradient
boosting,41 and scaled subprofile modeling39 to most recently
deep learning models such as convolutional neural

networks.29,34,46,47 Residuals were generally calculated out-of-
sample, with models trained on a training set and applied
independently on the test individuals or within a cross-
validation framework.

Residual measures capturing cognitive and brain resilience
were developed within the field of psychometrics, hence the
task was primarily addressed from a (more) theory-driven
perspective. Rather than selecting models based on how well
they predicted outcome variables of interest in test data, more
causally plausible descriptive models that maximizedmodel fit
on the study sample were used. This is reflected in the sta-
tistical approaches used to model relationships between
cognition, brain integrity, and neuropathology. The most
prominent models were multivariable linear regression14-
17,e4,e6-e8,e10,e11,e18-e20 and latent variable frameworks such as
structural equationmodels13,e5,e9,e12,e13,e15-e17 and partial least
squares regression.18,e14 Contrary to resistance residuals,
resilience residuals were primarily derived in-sample. A priori
defined measures of brain status (e.g., whole-brain atrophy)
were more commonly used in resilience models, while re-
sistance models relied more often on data-driven feature se-
lection (e.g., principal component analysis of voxel-wise GM
images).

Validation of Residual Measures
The brain age methods (measures of resistance) have un-
dergone a more extensive methodologic validation, focusing
on the model’s predictive accuracy and generalizabil-
ity,23,25,28,29,31-37,40-43,45-47,50,e3 test–retest24,29,33,44,46 and
between-scanner reliabilities,29 longitudinal stability,50 and
statistical robustness to different model measures.23,34,36,49

These measures were validated as biomarkers of brain health

Table 2 Methodologic Characteristics of Resilience-Related Residual Measures (continued)

Study Cognition Brain status Model Dataset

Sample, n

All CN MCI Dementia

van Loenhoud et al., 201916 Global cognition Brain structure (sMRI) Linear
regression

ADNI 839 175 437 227

Brain resilience

Brain-based residuals (brain
status predicted by
neuropathology)

Hohman et al., 201618 Brain structure
(sMRI)

Neuropathology (CSF) Regression +
PLSpath

ADNI 729 297 432 —

Ossenkoppele et al., 202015 Brain structure
(sMRI)

Neuropathology (tau-PET) Linear
regression

Multicenter 260 — 83 117

Abbreviations: Aβ = β-amyloid; ADC = Amsterdam Dementia Cohort; ADNI = Alzheimer’s Disease Neuroimaging Initiative; CN = cognitively normal; dMRI =
diffusionMRI; ISD = sample recruited at Institute for Stroke and Dementia Research; MCI =mild cognitive impairment; LVM = latent variablemodeling; MAP =
Rush Memory and Aging Project; NR = not reported; PLS = partial least squares; PLSpath = partial least squares path analysis; ROS = Religious Orders Study;
SEM = structural equationmodeling; sMRI = structural MRI; TUM = sample recruited at Technical University München; UCD = University of California at Davis
Alzheimer’s Disease Centre; WHICAP = Washington Heights/Hamilton Heights Inwood Columbia Aging Project; WHIMS = Women’s Health Initiative Memory
Study; WHISCA = Women’s Health Initiative Study of Cognitive Aging.
Studies using a residual measure of resilience calculated residuals within one single sample. Note that in addition to brain and cognition variables, these
models also included a varying set of demographics and other related covariates (see a detailed version of this table in eTable 6).
a Residuals derived in separate models for each outcome or predictor variable described here and tested separately or combined into one global resilience
measure at a later stage.
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associated with cognitive decline,24,25,27,44,e2,e3 disease
progression,25,27,33 and mortality.31,e1 Residual measures of
cognitive and brain resilience were in turn more commonly
tested for construct validity, that is, assessing whether resid-
uals truly reflect the intended construct. This is challenging
given the abstract conceptual nature of these constructs and
absence of a gold standard. Researchers have predominantly
used theoretical hypotheses derived from models of cognitive
reserve5 to infer how a measure of cognitive resilience ought
to operate. Tests of construct validity for cognitive
resilience–related residuals assessed whether they correlated
with established proxy variables (e.g., education, reading
ability),13,14,16,17,e4,e5,e17,e18,e20 were associated with longitu-
dinal cognitive decline13-16,18,e5,e15,e16 or with disease pro-
gression,13,16-18,e5,e7,e13,e15 and whether they moderated the
effects of cerebral damage on cognition.13,e5,e7,e14,e15,e20

Role of Covariates
Models also differed in the selection of covariates. For ex-
ample, some studies derived education-independent resil-
ience measures,13,14,e5-e9,e12-e16,e19 measuring resilience
beyond what is likely captured by education. Similarly, other
studies estimated resilience while controlling for APOE
genotype,e11,e20 thereby isolating resilience that is in-
dependent of this genetic component, which is known to
contribute to people’s resiliency or vulnerability to AD. In
this way, a more environmentally driven resilience pheno-
type results from removing variance explained by certain
genetic components, while a more genetically driven resil-
ience measure results from removing influence of socio-
economic or lifestyle factors.

Applications of Residuals
The lack of effective pharmacologic therapies for neurode-
generative disorders demands increased scientific efforts fo-
cused on identifying modifiable environmental and lifestyle
factors that enhance resistance and resilience (Figure 4).
Residual measures capturing cognitive resilience were asso-
ciated with education,14-17,e4,e18,e20 reading ability,13,e4,e5,e18

socioeconomic status,e18 occupation complexity,e20 and past
leisure cognitive activity.e17,e18 Physical activity,39

education,39,42 and meditation28 were identified as protective
factors associated with higher resistance, while various health
factors26,31,47,48 (e.g., body mass index, blood pressure) and
behaviors like smoking and alcohol consumption42,48 were
identified as risk factors associated with lower resistance.

A promising application of residual measures is their use to
identify genetic and functional mechanisms of resilience or
resistance. Several studies have indicated that residuals par-
tially capture heritable traits29,34,e2,e6 and can be utilized as
primary phenotypes in genome-wide and pathway-based
analyses34,42,49,e6,e8,e19 aiming to reveal genetic underpinnings
of these phenomena. Furthermore, relating residuals to fMRI-
based measures of brain’s functional connectivity have
revealed potential neural substrates of resilience and its un-
derlying mechanistic processes (e.g., network efficiency and
compensatory mechanisms).30,e9-e12,e20

Calculating residuals within a longitudinal framework allows
investigation of the dynamic nature of resilience and re-
sistance, as resilience capacity can be enhanced but also de-
pleted over time. In this context, studies have shown that on

Figure 4 Applications of Residual-Method Based Measures of Resistance and Resilience

This figure illustrates a summary of
the diverse range of applications and
analyses for which residual measures
were employed. The studies included
in the systematic review demon-
strated the use of residual measures
to facilitate research aimed to better
understand the role of resistance and
resilience in brain and cognitive aging.
AD = Alzheimer disease; GWAS = ge-
nome-wide association study; MCI =
mild cognitive impairment; SES = so-
cioeconomic status.
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Figure 5 Forest Plots Illustrating Associations of Residual Method–Based Measures of Resistance and Resilience With
Longitudinal Cognitive Outcomes

(A) Random-effects meta-analysis of association between resistance and risk of progression to dementia/Alzheimer disease (AD). Note that in the age-based
residual measures of resistance, a negative value indicates higher resistance level. Therefore, a hazard ratio >1 indicates a favorable outcome, such that a
higher resistance level is associated with a reduced risk of converting to AD/dementia. (B) Random-effects meta-analysis of association between cognitive
resilience and risk of progression to dementia/AD. In this case, the cognition-based or brain-based residual measures are proportional to the level of
cognitive resilience, with a higher positive value indicating a higher cognitive resilience level. A hazard ratio <1 indicates a favorable outcome, where a higher
cognitive resilience level is associated with a reduced risk of converting to AD/dementia. (C) Random-effects meta-analysis of association between cognitive
resilience and rate of cognitive decline. A positive standardized regression coefficient indicates a favorable outcome, where a higher cognitive resilience level
is associated with a slower rate of decline. The outcome indicates the specific cognitive domain/neuropsychological test used to assess cognitive decline in
each study. Size of rectangles are proportional to theweight of the study in the random-effectsmodel. CI = confidence interval; CN = cognitively normal; MCI =
mild cognitive impairment;MMSE =Mini-Mental State Examination; nCN =number of cognitively normal patients; nDem=number of patientswith dementia/
AD; nMCI = number of patients with mild cognitive impairment; RE = random effects. aRE model: random-effects model using the DerSimonian-Laird
estimator. bThese 2 studies contain a partially overlapping sample of patients as they used the same cohort.
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average, levels of resilience and resistance decrease over
time.24,27,e7,e15 Nevertheless, the rate of depletion might
contain useful information in addition to baseline measures, as
longitudinal change in residual measures of cognitive resil-
ience was reported to predict dementia incidencee7 and cog-
nitive decline.e15 Similarly, age-based resistance residuals
changed more in individuals with progressive vs stable mild
cognitive impairment (MCI).24,27

Meta-analysis
Several studies investigated the association of residual mea-
sures with longitudinal cognitive decline and with risk of di-
agnostic progression. Of 54 studies, 10 were eligible for the
meta-analysis13-18,25,33,e5,e13 (see excluded studies in eTable 4,
available from Dryad, doi.org/10.5061/dryad.tx95x69xr),
from which we extracted independent effect estimates for 3
separate meta-analyses.

Resistance and Risk of Progression
Two studies (n = 2,003) had suitable effect estimates for
quantifying the association between baseline residual mea-
sures of resistance (based on structural MRI) and conversion
to MCI or dementia25,33 (eTable 7, available from Dryad, doi.
org/10.5061/dryad.tx95x69xr). The pooled effect of re-
sistance residual measures (HR [95% confidence interval
(CI)] 1.12 [1.07–1.17], p < 0.0001; Figure 5A) indicates that
a lower level of resistance is associated with a higher risk of
dementia. Moderate heterogeneity was detected (I2 =
70.18%, p = 0.07).

Cognitive Resilience and Risk of Progression
Six studies (4 cognition-based, 2 brain-based, total n = 3,394)
had suitable effect estimates for assessing associations be-
tween baseline residual measures of cognitive resilience and
risk of disease progression13,16-18,e5,e13 (eTable 8, available
from Dryad, doi.org/10.5061/dryad.tx95x69xr). The pooled
analysis indicates an overall positive effect of cognitive resil-
ience residual measures on risk of progression (HR [95% CI]
0.46 [0.32–0.68]; p < 0.001; Figure 5B). This suggests that
across studies, a higher level of cognitive resilience is associ-
ated with reduced risk of MCI or dementia. High heteroge-
neity was detected (I2 = 94.15%, p < 0.0001).

Cognitive Resilience and Rate of Cognitive Decline
Six studies (5 cognition-based, 1 brain-based, total n = 2,946)
provided suitable effect estimates to assess associations be-
tween baseline residual measures of cognitive resilience and
rate of cognitive decline.13-16,18,e5 Across studies, different
cognitive and brain measures were used to calculate the re-
siduals. Similarly, residuals were associated with decline in
different cognitive outcomes while controlling for different
covariates (eTable 9, available from Dryad, doi.org/10.5061/
dryad.tx95x69xr). There was an overall positive effect of
cognitive resilience residual measures on rate of cognitive
decline (β[95% CI] 0.05 [0.01–0.08]; p < 0.01; Figure 5C).
High heterogeneity was detected (I2 = 80.26%, p = 0.0001).

As is evident from Figure 5, a few studies14,17 present con-
flicting results, possibly due to differences in disease severity
across samples.16 Subgroup analyses or metaregression to
further investigate this were precluded by the limited number
of studies; nonetheless we provide stratified forest plots in
eFigures 2 and 3, available from Dryad (doi.org/10.5061/
dryad.tx95x69xr).

Risk of Bias and Publication Bias
Visual inspection of funnel plots indicated potential presence
of publication bias (eFigure 1, available from Dryad, doi.org/
10.5061/dryad.tx95x69xr). According to the domain-based
assessment of bias, 3 studies14,15,18 showed moderate risk of
bias (eTable 10, available from Dryad, doi.org/10.5061/
dryad.tx95x69xr). Sensitivity analyses excluding these studies
showed similar overall effects (eFigures 4 and 5, available from
Dryad, doi.org/10.5061/dryad.tx95x69xr).

Discussion
We reviewed and classified the residual measures proposed in
the literature under the framework of resistance and resilience
to brain and cognitive aging. We observed an increasing trend
in employing residuals as operational measures of resistance
and cognitive and brain resilience. There is considerable
variability in how residuals are computed. Our meta-analyses
show that despite large heterogeneity across studies, residual
measures of resistance and cognitive resilience are associated
with longitudinal cognitive trajectories. Higher resistance and
resilience levels at baseline were associated with lower risk of
clinical disease progression. Keeping the substantial between-
study heterogeneity in mind, these results suggest that re-
sidual measures contain meaningful information as they
explain individual variability in brain and aging trajectories.

The diverse implementations of residual methods and use of
different samples across studies impair conclusions regarding
superiority of one approach over others. The choice of
method likely depends on the research question, available
data, and expertise. For example, the brain and cognitive
measures depend on what MRI sequences and neuro-
psychological tests are available. Similarly, model covariates
must be selected with the research question in mind, that is,
whether the researcher aims at isolating a more particular
(e.g., genetically or environmentally driven) aspect of resil-
ience that could potentially reveal a mechanistic process in
more detail. Furthermore, the analytical implementation of
these methods is expected to continue to change with the
advent of further technological advancements (both in im-
aging technologies and in multivariate statistical models ca-
pable of handling increasing amounts of data).

Critical Appraisal of Residual Methods
The operationalization of cognitive resilience with residual
methods, initially proposed in the context of the overlapping
framework of cognitive reserve,e5 has been scrutinized for its
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underlying methodology. With this approach, an error term is
conceptualized as a quantitative measure of a theoretically
significant concept. This appears somewhat problematic, es-
pecially given the lack of a gold standard that impedes a
straightforward verification of construct validity. Although
coined as (more) direct measures of resilience,17,e5 residuals
are ultimately a parametrization of abstract concepts from
observable variables, and ultimately embody the sum of what
we are currently not able to measure and input directly in the
model.e15 They were also referred to as “negative definitions”
as they capture nonexplained variance, rather than appre-
hending what it does explain.e4 Residual measures, therefore,
remain virtually agnostic of the underlying neural processes
through which brain resilience, cognitive resilience, and re-
sistance operate.1 A second critique of the residual approach is
that its validity may depend on the variables included in the
model.e7,e22,e23 For example, atrophy operationalized in dif-
ferent ways will result in different resilience scores for the
same individual and there is currently no consensus about the
optimal operationalization. Similarly, residuals also depend on
how well all relevant pathologies are captured. In practice,
often a resilience/resistance phenotype is measured (e.g.,
resilience to a specific pathology or in a specific cognitive
domain), rather than overall capacities. A third methodologic
challenge is that residuals also contain measurement error
inherent to the imaging techniques and neuropsychological
assessments,3,e24 and the extent to which this error (or the
often encountered lack of accounting for it in the modeling
framework) affects the residual measures is not clear. Taken
together, this calls for a more comprehensive methodologic
validation of residual measures; for example, one that assesses
the implications of different variables and implementations on
common well-characterized and representative datasets. De-
spite these limitations, the last decade has seen an increasing
use of residual measures, as they present several advantages
over established proxies. Residual methods are based on
measures of brain integrity and pathologic burden, as well as
cognition or chronological age, that is, elements that are
fundamental to the theoretical definitions of resilience and
resistance.7 Furthermore, they provide a straightforward and
objective way to quantify between-individual variability with a
person-specific score reflecting both its direction and its
magnitude. This is useful because continuous-valued pheno-
types are preferred over dichotomization of patients into re-
silient and nonresilient groups contingent on arbitrary
thresholds.e18 When computed in a longitudinal framework,
residuals enable measuring within-individual changes in
resilience and resistance.24,e7,e15 This more accurately reflects
the dynamic nature of these concepts, contrary to proxy
variables, which often constitute static measures; for example,
the maximum level of education attained. With incipient ce-
rebral changes (e.g., aggregation of pathogenic proteins or
atrophy), resilience manifests at the system-level in the form
of an adaptive functional response; for example, hyper-
connectivity.e25 During early stages of pathology, compensa-
tory mechanismse26 are triggered in resilient individuals,
preserving cognitive function. However, as pathology

progresses, resilience becomes depleted, resulting in acceler-
ated decline. As shown by several studies,14,16,e7,e15 residual
measures (essentially a function of cognition and pathology)
can likely capture this dynamic “inverse U-curve” phenome-
non. The findings summarized here provide cumulative evi-
dence for residual methods as practical measures of resilience
and resistance. Taken together, the results of the meta-
analyses are consistent across studies and compatible with
current theoretical models of brain and cognitive aging. This
suggests that residual measures reflect resilience and re-
sistance constructs and capture clinically meaningful in-
formation that explains future cognitive decline and disease
progression.

With advancing technology, access to more accurate and
detailed MRI-based measures of cerebral damage as well as
PET-based measures of pathologic and physiologic processes
is expected to increase. A more diverse and comprehensive set
of pathology measures might explain a larger proportion of
variance in clinical outcomes, resulting in smaller residuals.
Several studies hypothesized that although residuals would
decrease in magnitude, they would capture cognitive resil-
ience more accurately.13,e5,e17 This hypothesis remains to be
investigated. Because resilience and resistance arise from the
complex interplay of genetics, environment, and experience,
we are unlikely to be able to measure and model all the rel-
evant variables (in a cost-effective way) in the near future. For
that reason, the residual approach plays an important role in
guiding current and future research into the aspects of ge-
netics, biology, and environment that contribute to successful
cognitive aging.

The Road to Clinical Application
Research into determinants and mechanisms of successful
cognitive aging, conveniently enabled by residual measures,
has the potential to drive the development of early interven-
tions to enhance resilience and resistance capacities. Due to
their continuous and dynamic nature, residual measures could
also be used as outcomes measured when assessing the effect
of such interventions. Similarly, subject-level metrics of
resilience could enable a more individualized prognosis of
clinical outcomes (e.g., risk of cognitive decline/dementia).18

Converging evidence on the prognostic value of resistance
and resilience residual measures suggests a potential role for
these measures in patient management and clinical trial se-
lection. Nonetheless, several questions remain to be in-
vestigated to establish feasibility, starting with a more rigorous
methodologic validation. A comprehensive evaluation of dif-
ferent implementations of the residual measures is necessary
to converge towards a clinically useful method. Furthermore,
efforts should focus on developing practical measures that can
be inferred from brain and cognitive data readily available in
clinics. Other critical aspects are establishing accurate nor-
mative data representative of comprehensive reference groups
and assessing their predictive value beyond other prognostic
biomarkers. Further construct validation may be provided by
observational studies replicating results of the studies
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reviewed here, or by use of residuals as outcomes in ran-
domized controlled trials aimed at boosting resistance and
resilience (e.g., lifestyle or pharmacologic interventions).

The implications of high scores on resilience and resistance
scales in terms of predicting future disease progression need
better understanding. Research to date suggested paradoxical
effects, with cognitively resilient individuals showing slower
decline in initial phases of disease18,e5 (relative to the less
resilient), but more pronounced decline in later stages.16,e15

Finally, an important open research question is how resilience
is differently manifested in normative aging compared to
pathologic aging. Resilience is considered to represent a re-
sponse to adverse changes, and is therefore expected to be
measurable only when pathologic changes start or reach
certain levels.e16 In our conceptual framework, we envisioned
that resilience to normative aging-related processes also oc-
curs and is appropriately quantifiable with residual methods
that include a comprehensive set of senescent molecular,
structural, or functional changes. However, the heterogeneity
of samples used across the reviewed literature impedes de-
termining the implications of residual measures in aging vs
pathology. For example, many studies included community-
dwelling elderly patients who are not fully characterized as
being on a pathologic or nonpathologic aging trajectory. This
question therefore needs further investigation, with some
studies already taking steps in this direction.e16,e20

Limitations
Our meta-analyses have several limitations. First, there were
few studies available and the residuals of these studies likely
capture distinct (yet overlapping) aspects of cognitive resil-
ience (i.e., different phenotypes) as methods and variables
varied. This warrants careful interpretation of the overall re-
sults. Second, the small number of studies precluded quanti-
tative sensitivity analyses to explore sources of heterogeneity.
Third, visual inspection of funnel plots indicated a potential
risk of publication bias. Fourth, 2 studies contained over-
lapping samples16,18 and 314,15,18 had moderate risk of bias
(although their removal did not affect the overall effects
greatly).

Our review and meta-analyses suggest that, despite meth-
odologic differences, residual measures of resilience and re-
sistance constitute useful measures that capture clinically
meaningful information. Residuals facilitate, arguably to a
larger extent than proxies, the ongoing research into deter-
minants and mechanisms of resilience and resistance. Fur-
thermore, they exhibit prognostic value in assessing risk of
cognitive decline and progression to dementia that could ul-
timately be harnessed in clinical settings.
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