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Brain functional network (BFN) based on electroencephalography (EEG) has

been widely used to diagnose brain diseases, such as major depressive

disorder (MDD). However, most existing BFNs only consider the correlation

between two channels, ignoring the high-level interaction among multiple

channels that contain more rich information for diagnosing brain diseases.

In such a sense, the BFN is called low-order BFN (LO-BFN). In order to fully

explore the high-level interactive information among multiple channels of the

EEG signals, a scheme for constructing a high-order BFN (HO-BFN) based on

the “correlation’s correlation” strategy is proposed in this paper. Specifically,

the entire EEG time series is firstly divided into multiple epochs by sliding

window. For each epoch, the short-term correlation between channels is

calculated to construct a LO-BFN. The correlation time series of all channel

pairs are formulated by these LO-BFNs obtained from all epochs to describe

the dynamic change of short-term correlation along the time. To construct

HO-BFN, we cluster all correlation time series to avoid the problems caused

by high dimensionality, and the correlation of the average correlation time

series from different clusters is calculated to reflect the high-order correlation

among multiple channels. Experimental results demonstrate the efficiency

of the proposed HO-BFN in MDD identification, and its integration with the

LO-BFN can further improve the recognition rate.
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Introduction

Major depressive disorder (MDD) is a kind of common
brain disease that is characterized by persistent and significant
low mood, slow thinking, and cognitive function impairment
(Holma et al., 2014; LeMoult and Gotlib, 2019; Liu et al.,
2020). In the statistics of the World Health Organization
(WHO), MDD has become the second largest serious
disease in the world (Melchior et al., 2013) and has
brought a heavy burden on patients and their families
(Zhang et al., 2019). According to medical researches, the
accurate early identification of MDD is important, and it
can not only effectively relieve the pain of the patients,
but also directly reduce the tragedy of suicide (Cipriani
et al., 2018; Grunebaum et al., 2018). However, early
neuroimaging-based MDD diagnosis is very challenging,
because the changes of brain functional connectivity (FC)
are considerably complicated. Electroencephalography (EEG)
of high temporal resolution (Babajani and Soltanian-Zadeh,
2006) can well describe the temporal evolution of complex
FC during brain activity and thereby becomes the best choice
for MDD research.

Brain functional network (BFN) constructed based on
EEG has been widely used in the diagnosis of brain diseases
(Wang et al., 2015; Li et al., 2020). Since brain activity
is dynamic in nature, some studies have shown that the
dynamic change of FC over the whole scanning time may
be the intrinsic feature of brain function (Damaraju et al.,
2014; Cohen and D’Esposito, 2016; Kudela et al., 2017). Many
studies try to describe the dynamic changes of FC between
channels by using sliding windows to construct BFN and the
relationship between these dynamic changes and brain diseases
(Wee et al., 2016; Guo et al., 2017; Sun et al., 2019; Zhang
et al., 2021). Sun et al. (2019) constructed BFN based on
EEG signals by sliding windows, confirming that MDD had
abnormal cognitive processing. Zhang et al. (2021) used sliding
windows to construct BFN based on EEG signals, and the
results showed that the brain regions of MDD patients were
significantly altered.

Although the aforementioned EEG-based BFN helps us
to understand the brain activities of the MDD patients,
most of them only reflect the low-order FC (LO-FC)
between two channels (as shown in Figure 1A), ignoring
the fact that high-order FC (HO-FC) among channels
could also be changed for MDD patients (as shown in
Figure 1B). For the ease of description, we call BFN
based on conventional LO-FC as low-order BFN (LO-
BFN). In essence, brain activity is complex, and the HO-
FC usually contains more abstract information than the LO-
FC, and it helps to reveal high-level and more complex
interaction information (Chen et al., 2016). Therefore, it
is of clinical significance to investigate effective methods
of constructing a high-order BFN (HO-BFN) that better

reflects the complex interaction among multiple channels
and simulates the mechanisms of the deep brain, providing
rich discriminative information for the diagnosis of mental
disorders (Plis et al., 2014; Chen et al., 2016; Zhang et al.,
2016).

In this work, we propose a novel method to construct
HO-BFN for MDD classification. Specifically, the entire EEG
signals of a subject are divided into multiple overlapping
time series by sliding windows, and the correlation between
two channels within one window is computed as the LO-
FC. The network constructed by the LO-FC is called the
LO-BFN, reflecting the dynamic change of FC throughout
the whole scanning time. Significantly different from the LO-
BFN, each vertex of the HO-BFN represents one pair of
channels, and each edge represents the correlation between
the channel pairs. In this way, the HO-BFN involves more
channels and can reveal high-level and more interaction
among brain regions.

It is noted that the scale of the HO-BFN is very huge,
and it may suffer from the dilemmas of high dimensionality
and small size samples. The main reason lies in the fact that
the scale of HO-BFN will increase exponentially when the
number of EEG channels increases. To address the issue, we
introduce hierarchical clustering (Yu et al., 2015) to construct
HO-BFN. In other words, similar LO-FC time series are
clustered into one group, and the average LO-FC time series
are computed for each group. After that, the HO-BFN is
constructed based on the correlation between the two groups.
As a result, the HO-BFN constructed by hierarchical clustering
can not only reduce computing time and memory requirements,
but also reflect the HO-FC among multiple channel pairs
(more than four channels) and capture more useful and
complex information.

In summary, the main contributions of the paper line are
twofold: (1) A HO-FC representation strategy is proposed
to capture high-order interactions among multiple channels
of EEG signals. In fact, the HO-BFN is used to characterize
the complex interactions among brain regions, and it has
been applied in fMRI and achieved good results (Zhao
et al., 2018). However, to the best of our knowledge, few
studies have used EEG-based HO-BFN to reveal the complex
interactions among EEG channels. (2) The HO-BFN is
constructed in both time and frequency domains based on
the “correlation’s correlation” strategy. Specifically, we first
compute the correlation between two channels to obtain the
LO-BFN, and then the HO-BFN is subsequently derived by
computing the correlation between each pair of channels
from the LO-BFN. Then, we further apply HO-BFN to
computer-aided diagnosis for MDD. The experimental
results show that HO-BFN provides complementary
identification information to the LO-BFN and that combining
HO-BFN and LO-BFN can further improve the accuracy
of MDD diagnosis.
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FIGURE 1

The intuitive explanation of brain network research based on EEG signals. (A) The low-order FC (LO-FC) between two channels. (B) High-order
FC (HO-FC) among channels. (1) EEG signal acquisition(1) EEG signal acquisition, (2) calculation of correlation between two channels, and (3)
calculation of correlation among multiple channels.

Materials and data preprocessing

The EEG data used in this study came from the publicly
available Multi-modal Open Dataset for Mental-disorder
Analysis (MODMA) dataset (Cai et al., 2020). It included 24
patients with MDD (12 male and 12 female) and 29 normal
controls (NC) (20 male and 9 female). The MDD group was
16–52 years old, and the NC group was 19–51 years old;
all the subjects were right-handed, and their education level
was primary school or above. In addition, MDD patients
had a health Questionnaire 9-item (PHQ-9) (Spitzer et al.,
1999) score greater than or equal to 5 and had not received
psychotropic medication for 2 weeks.Table 1 shows the statistics
of the subjects.

In data acquisition, 128-channel HydroCel Geodesic Sensor
Net and Net Station acquisition software were used to record
EEG signals for five minutes. Taking Cz as the reference, the
sampling rate was 250 Hz. In order to reduce the interference
of EEG data, the subjects were required to close their eyes
and keep awake to avoid any unnecessary eye movement,
saccade, and blink. The collected EEG data were filtered by
0.1–40 Hz and inhibited by 48–52 Hz to eliminate the data
interference caused by baseline drift and electrical interference.

TABLE 1 Demographic information of the subjects.

MDD NC p-value

Gender (M/F) 12/12 20/9 0.1600a

Age (mean± SD) 30.9± 21.1 30.9± 20.1 0.9880b

PHQ-9 (mean± SD) 18.3± 7.3 2.6± 2.6 0.0000b

GAD-7 (mean± SD) 13.4± 11.4 2.1± 4.9 0.0000b

MDD, major depression disorder; NC, normal control; M, male; F, female; PHQ-
9, Patient Health Questionnaire-9item; GAD-7, generalized anxiety disorder-7. pa :
Statistical significance level was calculated by χ2-test; pb : Statistical significance level was
obtained by two-sample, two-tailed t-test.

The processed data was then re-referenced against REST (Yao,
2001). Finally, after the above steps, some high-power content
was contained in the remaining data points and some EEG
epochs were removed by the Artifact Subspace Reconstruction
(ASR) plugin (Chang et al., 2018; Pion-Tonachini et al., 2018).
In this study, theta (4–8 Hz), alpha (8–13 Hz), and beta (13–
40 Hz) bands calculated by fast Fourier transform were selected
in the frequency domain, which had been proved to be much
distinct in the identification of depression (Nyström et al., 1986;
Knott et al., 2001; Jaworska et al., 2012).

Methods

Figure 2 shows the overall pipeline of our method,
which includes six steps: (1) constructing LO-BFN by sliding
window; (2) clustering all low-order correlation time series; (3)
constructing HO-BFN by calculating the correlation between
clusters; (4) selecting and extracting features from each
constructed BFN; (5) constructing support vector machines
(SVMs) based on the selected features in both LO-BFN and HO-
BFN; and (6) fusing the decision scores of multiple SVMs to
predict whether each subject is MDD or NC.

Construction of low-order BFN

In order to construct LO-BFN, we first use the
sliding window to divide the entire EEG signals into
H = [(M −W)/s] + 1 overlapping windows, where M is
the image volume during the entire scan period, and W and s
are the window width and step size of the sliding window,
respectively. Then, we calculate the correlation between xli

(
h
)

and xlj
(
h
)
, where xli

(
h
)

and xlj
(
h
)

denote the i-th and j-th
channels under the h-th window of the l-th subject, respectively.
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FIGURE 2

The flowchart of the proposed BFN classification framework, including six main steps: (1) constructing LO-BFN; (2) clustering the time series; (3)
constructing HO-BFN; (4) feature selection; (5) constructing SVM model; and (6) classification fusion.

In the frequency domain, we use the phase lag index (PLI)
(Stam et al., 2007; Peraza et al., 2012) to calculate the channel
correlation, which is robust to volume conduction artifacts. The
PLI is denoted as:

Cl
ij =

∣∣∣∣∣ 1
N

N∑
n=1

sign
(
ϕl
i (tn)− ϕl

j (tn)
)∣∣∣∣∣ (1)

where N is the sample number, sign is the sign function, and
ϕl
i (tn)− ϕl

j (tn) is the phase synchronization of channels xli and
xlj at time tn . Among them, ϕl (tn) can be obtained by analyzing
the signal based on Hilbert transform (Bruns, 2004).

On the other hand, in the time domain, we calculate the
channel correlation by using the Pearson correlation coefficient
(PCC) (Eslami and Saeed, 2018) as follows:

Cl
ij = corr(xli, x

l
j) (2)

Therefore, for the l-th subject, the h-th subnetwork
of LO-BFN is constructed as Gl

L
(
h
)
=

({
xli
(
h
)}

,
{
Cl
ij
(
h
)})

(as shown in Figure 3A), where
{
xli(h)

}
is vertices and{

Cl
ij(h)

}
is the weights of the edges connecting the i-th

and j-th nodes. Then, we construct H subnetworks to form
LO-BFN Gl

L =
[
Gl
L (1) ,Gl

L (2) , . . . ,Gl
L (H)

]
for each subject,

which describes the change in FC strength of all channel
pairs over time.

FIGURE 3

Schematic diagram of different BFNs. (A) Schematic diagram of
the brain region of LO-BFN. (B) Schematic diagram of brain
regions of HO-BFN before clustering. (C) Schematic diagram of
brain regions of HO-BFN after clustering.

Construction of high-order BFN

In order to capture high-level FCs, we adopt the strategy of
“correlation’s correlation”. That is, based on the LO-BFN, the
PCC is used to calculate the correlation between the LO-FC time
series of the l-th subject, which is called HO-FC, denoted as:

Hl
ij,pq = corr(Cl

ij,C
l
pq) (3)

where Cl
ij is the LO-FC time series between the i-th and the

j-th channels of the l-th subject and Cl
pq is the LO-FC time
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FIGURE 4

Recognition accuracy of HO-BFN with different number of clusters.

TABLE 2 MDD classification using different BFNs.

Network ACC (%) TPR (%) TNR (%) PPV NPV F1 (%)

Alpha-LO 60.67 59.17 60.83 64.81 54.86 61.78

Alpha-HO 79.78 80.83 78.33 82.25 77.08 81.48

Alpha-Fu 83.98 84.34 82.67 85.80 81.39 85.01

Beta-LO 64.52 66.17 62.17 68.17 59.96 67.07

Beta-HO 70.90 71.50 69.83 74.39 66.68 72.71

Beta-Fu 76.63 77.83 74.00 78.82 73.24 78.25

Theta-LO 69.63 71.50 68.50 73.43 66.29 72.23

Theta-HO 65.58 64.50 67.17 70.46 60.68 67.13

Theta-Fu 77.65 80.83 74.00 79.44 76.04 80.08

Frequency domain-Fu 86.62 89.17 82.67 86.48 86.19 87.77

Time domain-LO 59.16 60.50 58.17 63.75 54.56 61.94

Time domain-HO 61.23 62.67 60.33 65.85 56.85 64.11

Time domain-Fu 65.79 69.67 60.33 68.17 61.92 68.78

LO = LO-BFN; HO = HO-BFN; Fu, the fusion of LO-BFN and HO-BFN. For example, alpha-LO means the LO-BFN in the alpha band, and note that frequency domain-Fu means the
fusion of all BFNs of three bands in the frequency domain. Values highlighted in bold indicate the best results.

series between the p-th and the q-th channels of the l-th subject.
Therefore, Hl

ij,pq can represent the HO-FC among the four
channels of the l-th subject at most, that is, the correlation
between the FC between the i-th and j-th channels and the FC
between the p-th and q-th channels. Physiologically, difference
in FC among different channels in MDD patients and healthy
individual subjects can be used to identify MDD.

If we have 128 channels in our study, the dimensionality
of the constructed LO-BFN is 128 × 128. Thus, a large-scale
HO-BFN will be constructed (as shown in Figure 3B) in Eq. 3;
that is, the dimensionality is (128 × 128)2, and the constructed

network contains at least thousands of nodes and millions of
edges. It is a critical problem that the dimensionality is too large,
and it will introduce high computational complexity for the
subsequent feature extraction and selection procedures. Besides,
the generalization performance of the HO-BFN learning system
may also degrade.

To this end, we will reduce the network dimensionality
by clustering the LO-FC time series. Specifically, the LO-FC
time series of the subjects are clustered into different clusters
to find the potential interaction patterns. Then, the HO-FC
between the respective average LO-FC time series in clusters
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TABLE 3 Brain regions corresponding to channels of interest.

Brain area Channels

Frontal (F) E2, E3, E4, E5, E9, E10, E11, E12, E15, E16, E18, E19,
E22, E23, E24, E26, E27, E123, E124

Left temporal (LT) E28, E33, E34, E35, E39, E40, E41, E45, E46, E47, E50,
E51, E52, E58

Central (C) E6, E7, E13, E20, E29, E30, E31, E36, E37, E42, E53,
E54, E55, E79, E80, E86, E87, E93, E104, E105, E106,
E111, E112, E118

Right temporal (RT) E92, E96, E97, E98, E101, E102, E103, E108, E109,
E110, E115, E116, E117, E122

Posterior (P) E59, E60, E61, E62, E65, E66, E67, E70, E71, E72, E75
E76, E77, E78, E83, E84, E85, E90, E91,

The channels in Table 3 are channels of interest, while the other channels are marginal
and do not belong to the brain regions classified above.

is calculated. Compared with the previous large-scale HO-
BFN, the dimensionality of the HO-BFN constructed in this
way is greatly reduced (as shown in Figure 3C). This method
not only preserves important interactive information, but also
avoids the problems of high computational complexity and low
generalization performance.

In order to ensure that the clustering results in different
subjects are consistent, the FC matrices of all subjects are
first accumulated together, so that to connect the time series
of LO-FC in the same channel pairs in all subjects into a
long vector. That is, the long vector connected by the time
series {Cl

ij}1<=l <=R of the LO-FC between the i-th and j-th

channels of all subjects is Cij =
[
C1
ij,C

2
ij, · · · ,C

R
ij

]
, where R is

the number of subjects.
After the Cij is obtained, we divide it into k clusters by

hierarchical clustering. The cluster centers are calculated by
averaging all the FC long vectors in the k-th cluster of the l-th
subject as the following Eq. 4:

C̃l
k =

∑
Cij∈ωk

Cl
ij

|ωk|
(4)

where |ωk| denotes the total number of FC long vectors in
cluster k. Finally, the PCC between the two clusters C̃l

k1 and C̃l
k2

of the l-th subject is calculated as follows:

H̃l
k1,k2 = corr(C̃l

k1, C̃
l
k2) (5)

Finally, we obtain a small-scale HO-BFN
Gl
H̃
=

({
C̃l
k1

}
,
{
H̃l
k1,k2

})
, taking

{
C̃l
k1

}
as vertices and{

H̃l
k1,k2

}
as the weights of edges.

Feature extraction, selection,
classification, and fusion

Both LO-BFN and HO-BFN of the l-th subject, i.e., Gl
L

and Gl
H̃

, are used for the subsequent classification. Due to the

possible phase mismatch of all FC matrices of LO-BFN in each
subject, the dynamic characteristics of different subjects do not
completely correspond. Therefore, to avoid this situation, we
calculate the average FC matrix of each subject’s LO-BFN as the
low-order feature. For the ease of computation, we vectorize
the averaged LO-FC matrix of the l-th subject into f lL , which
is called the low-order feature vector. Similarly, we vectorize
the FC matrix H̃l of HO-BFN of the l-th subject to f l

H̃
as the

high-order feature vector.
Both low-order feature vectors and high-order feature

vectors have a large number of features, introducing irrelevant
or redundant information for subsequent MDD classification.
Therefore, we use t-test and Least Absolute Shrinkage and
Selection Operator (LASSO) (Tibshirani, 2011) methods to
select features for high-order and low-order feature vectors,
which can effectively remove redundant features. Specifically, we
first perform t-test on both the low-order feature vector fL and
the high-order feature vector fH̃ on the training set and select
the features that are significantly different from fL and fH̃ as
preliminary features, denoted f̄L and f̄H̃ , respectively.

Then, we use LASSO to further remove redundant features
and select the features most related to MDD. Let Il be the labels
for the l-th subject. Specifically, if the l-th subject is MDD,
Il = −1; if the l-th subject is NC, Il = +1; and α is set to be
the weight vector for feature selection. The objective of LASSO
is defined as:

min
α

1
2

N∑
l=1

∣∣∣∣∣∣Il 〈−f̄ l, α
〉∣∣∣∣∣∣2

2
+ λ||α||1 (6)

where 〈·, ·〉 is the inner product operator and λ is the
regularization parameter. For simplicity, let f L and f H̃ denote
selected the final feature sets from the feature vectors f L and
f H̃ , respectively.

Finally, the MDD is classified by using SVM with a linear
kernel in this paper. Herein, we train two linear SVM classifiers
by using both f L and f H̃ features, respectively. The final
results are obtained by fusing the decision scores of two SVM
classifiers by linear combination. Among them, we set the weight
β ∈ [0.1, 0.2, . . . , 0.9] for each SVM. The weights of the F
classifiers to be fused are set to be β1, β2, . . . , βF and satisfy
β1 + β2 + . . .+ β F = 1.

Experiments results

To evaluate the effectiveness of our proposed method, we
analyze the impact of clustering parameters on HO-BFN. The
classification ability of LO-BFN, HO-BFN, and their fusion
for MDD is evaluated by six different indicators, i.e., accuracy
(ACC), sensitivity or true positive rate (TPR), specificity or
true negative rate (TNR), precision or positive predictive value
(PPV), negative predictive value (NPV), and F1 score. Finally,
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FIGURE 5

The 10 most frequently selected connection diagrams for different LO-BFNs.

we conduct feature analysis to understand the role of each
channel in MDD diagnosis.

Furthermore, we adopt a nested ten-fold cross-validation
(CV) strategy consisting of two nested loops to evaluate the
effectiveness of our proposed method. In the outer loop, all
data are randomly divided into ten subsets of roughly the same
size, where one subset is selected as the testing set, while the
other nine subsets are selected as the training set. In the inner
loop, the data of the training set are merged and redivided
into ten subsets of similar size, nine of which are used to

adjust the hyper-parameters and one for model evaluation. We
report the average accuracy of classification results across the
ten-fold CV. Then, in order to avoid any possible bias in fold
selection, this procedure is repeated 10 times, with a different
random partitioning of samples each time. Finally, the average
accuracy of 10 repetitions is reported. Since the performance
of our method also depends on hyper-parameters, such as W
and s in sliding window, k in clustering, p in t-test, λ in
LASSO, and c in SVM model. The optimal hyper-parameters
can be determined when the average classification accuracy
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TABLE 4 The brain regions selected from different HO-BFNs.

Cluster Alpha Beta Theta Time
domain

Cluster 1 LT, LC, LP-RP LF-RF, RC, RT LT, LC LC, LP, RT

Cluster 2 LF-RF, LT-RT,
LC-RC, RP

LF, LT, RC, RP LF-RF, LC-RC,
RT

LF-RF, LT-RT,
LC-RC

Cluster 3 LF-RF RC, RT, RP LF-RF, LC LF-RF, LT, LC

Cluster 4 LF-RF, LT,
LP-RP

LF-RF, LT-RT,
LC-RC, LP-RP

LF, LC LF-RF, LT-RT,
LC-RC

reaches its optimum. In our experiment, we fix the size of
the sliding window, i.e., W = 10000, s = 1000, and determine
the optimal values of other parameters within the following
range: k ∈ [100, 200, . . . , 800], p ∈ [0.01, 0.02, . . . , 0.05],
λ ∈ [0.1, 0.2, ..., 0.9], and c ∈ [2−4, 2−3, . . . , 24

].

The clustering effectiveness on
high-order BFN

To reduce the computational complexity of the HO-BFN,
the hierarchical clustering is employed to construct HO-BFNs.
The hyper-parameter k in hierarchical clustering indicates the
cluster number, and it has a crucial influence on the constructed
HO-BFN, and further affects the final classification results.
In the experiment, we optimize HO-BFN by adjusting the
clustering number k. Figure 4 shows the classification results
when k takes different numbers.

As can be seen from Figure 4 that for the clustering
parameter k, when the time domain takes the value of 500,
alpha takes the value of 200, beta takes the value of 100, and
theta takes the value of 600, the HO-BFN generates a relatively
satisfactory classification result. The ACC is greatly affected by
k; i.e., classification performance is very sensitive to clustering
parameters. Different HO-BFNs have different performances,
indicating that different HO-BFNs contain different levels of
MDD diagnosis information. Therefore, we can conclude that
it is necessary to select k carefully toward a better understanding
of dynamics in brains.

Comparison of major depressive
disorder diagnosis using different brain
functional networks

In this subsection, we further study how HO-BFN
contributes to MDD diagnosis. We construct and analyze
HO-BFN from the time domain and alpha, beta, and theta
bands in the frequency domain, respectively. In the experiment,
we train and test the classifiers of LO-BFN and HO-BFN,
respectively, and determine the parameter combination that can
produce the best ACC.

Due to the complex connections in the brain, it is difficult
to fully capture the relationship between different brain regions
through a single type of BFN. In order to further improve
the classification performance, we adopt the linear fusion
of the SVM integrated decision score to combine LO-BFN
and HO-BFN (Zhao et al., 2020) and analyze their fusion
performance. In addition, we also believe that different BFNs
constructed by the three bands in the frequency domain can
reflect FC between channels from different views, which are
complementary. Therefore, we further linearly fuse the decision
scores of BFNs in three bands. Table 2 shows the classification
performance of different BFNs, and the best classification results
are highlighted in bold.

From Table 2, we can draw the following conclusions: (1)
BFNs constructed in different ways have different performance,
implying that each BFN provides meaningful and various
information for MDD identification; (2) fusing LO-BFN and
HO-BFN is better than that of a single network, and the ACC
is relatively increased in 4%, indicating that LO-BFN and HO-
BFN are complementary to each other in classifying MDD; (3)
the performance of each brain network in the frequency domain
is obviously better than that of the BFNs in the time domain,
indicating that it is more effective to extract features in the
frequency domain.

The most discriminative features for
major depressive disorder diagnosis

To identify the most discriminative features in MDD
diagnosis, we select ten frequently selected LO-FC features and
two frequently selected HO-FC features based on the t-test and
LASSO regression ten-fold cross-validations of ten times. The
higher selection frequency of FC indicates stronger reliability
and discriminative ability.

Similar to previous studies (Bian et al., 2014), we divide the
brain into five regions, i.e., frontal (F), left temporal (LT), central
(C), right temporal (RT), and posterior (P). The frontal region
is further divided into left frontal (LF) and right frontal (RF),
the central region is further divided into left central (LC) and
right central (RC), and the posterior is further divided into left
posterior (LP) and right posterior (RP).Table 3 shows the details
of these brain regions.

Figure 5 shows the 10 most discriminative FC feature maps
for the different LO-BFNs. The node color indicates the brain
region the channel belongs to, the connection line represents the
correlation between two channels, and the line width indicates
the frequency. The thicker line represents the higher frequency.
It can be seen that the frequently selected FC features in LO-
BFN often appear in the LF, RC, RT, and LP regions in the alpha
band; left central-right central (LC-RC), RT and left posterior-
right posterior (LP-RP) regions in the beta band; the left frontal-
right frontal (LF-RF), RC, RT, and LP regions in the theta band,
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FIGURE 6

The two most frequently selected connection diagrams for different HO-BFNs. Each brain diagram represents the FC of interest channels
across the brain region in a cluster.

and the LF, RC, left temporal-right temporal (LT-RT) and left
posterior-right posterior (LP-RP) regions in the time domain.

The HO-BFN is constructed based on clustering. Each
cluster is used as the vertex of the network, and the HO-FC is
used as the edge of the network. For HO-BFN, we select the two
most discriminative cluster pairs and describe the FC feature
diagram between these two cluster pairs in Figure 6, where
each brain map represents a cluster, the connection between
brain maps represents the connection between clusters, that
is, HO-FC, and the connections in the brain map represent
the FC between channels belonging to this cluster, that is, LO-
FC. Table 4 shows the brain regions involved in the most

discriminative clusters that are selected from different HO-
BFNs. From Figure 6 and Table 4, we can observe that the most
frequently selected features in HO-BFN are mainly distributed
in LF-RF, LT-RT, and LC-RC regions of the theta band, other
brain regions except RT in the time domain, as well as the whole
brain region of the alpha and beta band.

Discussion

In this paper, we propose a novel method to construct HO-
BFN based on the “correlation’s correlation” strategy, which
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can simultaneously capture low-order features reflecting FC
information between any two channels and high-order features
reflecting FC information among multiple channels, so as
to better simulate the mechanisms of the deep brain and
provide more discriminative information for the diagnosis of
mental disorders. We believe that different BFNs can mine
disease-disturbed BFN variation information from different
aspects, which has better performance in MDD classification
experiments. According to the experimental results, we will
discuss HO-BFNs in more detail.

In the experiment to explore the influence of the clustering
parameter on the classification accuracy of HO-BFN, we find
that the classification result changes with the change of the
clustering parameter. When the clustering parameter is too
small or too large, the accuracy of diagnosis will gradually
decrease. This can be understood from two aspects: (1) when
the clustering parameter is too small, the LO-FC time series with
different dynamic changes may be divided into the same cluster,
which will reduce the similarity of each cluster, so that the HO-
BFN constructed by the mean sequence of each class as the
vertex is unreliable; and (2) when the clustering parameter is too
large, the LO-FC time series with similar dynamic changes may
be divided into different clusters, which will increase the number
of features extracted from HO-BFN, thus resulting in more
redundant features and causing the decrease in accuracy and
generalization ability. Thus, choosing the suitable number of
clusters for HO-BFN is the key to achieving MDD classification
and improving the classification accuracy.

According to the experimental results in Table 2, we find
that the proposed BFNs in the frequency domain are usually
more discriminative than in the time domain, and the alpha and
theta bands in the frequency domain are more discriminative
than the beta band, indicating that the brain functional structure
of MDD patients has undergone significant changes in these
two bands. Therefore, we believe that the BFNs of alpha and
theta play an important role in the pathogenesis of MDD.
Several previous studies have also reported the same or similar
conclusion: abnormal brain function in MDD patients occurs at
certain frequency bands. For example, Fingelkurts et al. (2010)
showed that the FC in the alpha and theta bands of EEG
in MDD was impaired. Hosseinifard et al. (2013) found that
there were differences in alpha bands between the MDD group
and the NC group.

To further prove the effectiveness of BFNs in MDD disease
diagnosis, we trace the BFNs to which the features of the
classifier used for training belong. The experimental results in
Figures 5, 6 show that: (1) the channel pairs selected by LO-
BFN hardly overlap with those of HO-BFN, indicating that
the FC features extracted from LO-BFN and HO-BFN are
complementary to each other. (2) RC and RT are significantly
different in all LO-BFNs, and they are related to the regulation
of attention, long-term memory, and emotion. In previous
studies, Fan et al. (2013) found that abnormal RT superior

gyrus activity could be a potential marker of suicidal tendencies
in MDD patients. Sun et al. (2019) observed differences in
MDD patients in the F, T, and C of the theta band and in
the T and C of the alpha band. Zhang et al. (2021) found
significant modifications in brain synchrony of LF, T, and RT in
MDD patients. Our observations are generally consistent with
these studies (Fan et al., 2013; Sun et al., 2019; Zhang et al.,
2021).

However, this study has some limitations. Firstly, either the
low-order or the high-order FC is based on the correlation
instead of the inherent causality. The relatively small sample
size and unbalanced data may also affect the result of the
analysis. Although most conclusions obtained by our method
are generally consistent with the previous relevant studies,
the experimental results may have a potential bias due to
the heterogeneity of the experiment (Hassler and Thadewald,
2010). In the future work, we will focus on the influence
of nonsensical and biased correlation and investigate more
advanced models to calculate correlation, such as causality
inference, based on larger datasets to obtain more accurate
and sufficient information about the brain changes of MDD
patients. Secondly, the sliding window algorithm should set the
step size and window width, but we fixed the window width
and step length in this study. Further studies will investigate
the influence of different parameter settings. Finally, we linearly
combine the decision scores of the LO-BFN and HO-BFN at
the decision-making level, and this linear combination may not
fully mine the complementary information, thereby affecting the
classification accuracy. Therefore, in our future work, we will
further increase the accuracy of MDD diagnosis by using more
advanced information fusion strategies.

Conclusion

In this paper, we propose a framework for constructing
HO-BFN based on the “correlation’s correlation” strategy and
capture the high-order correlations across different channels
for MDD diagnosis. We use hierarchical clustering to reduce
the computational complexity of the HO-BFN. Experimental
results demonstrate that: (1) the proposed HO-BFN can
provide discriminative information for the MDD identification.
(2) Fusing high-order and low-order BFNs can significantly
improve the recognition rate of MDD patients. (3) The most
discriminative brain regions are associated with the regulation
of attention, and these findings are consistent with the daily
behavior of MDD patients.
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