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Our understanding of the role of mitochondria in biomedical sciences has

expanded considerably over the past decade. In addition to their well-

known metabolic roles, mitochondrial are also central to signalling for various

processes through the generation of signals such as ROS and metabolites that

affect cellular homeostasis, as well as other processes such as cell death and

inflammation. Thus, mitochondrial function and dysfunction are central to

the health and fate of the cell. Consequently, there is considerable interest in

better understanding and assessing the many roles of mitochondria. Further-

more, there is also a growing realization that mitochondrial are a promising

drug target in a wide range of pathologies. The application of interdisciplinary

approaches at the interface between chemistry and biology are opening up

new opportunities to understand mitochondrial function and in assessing

the role of the organelle in biology. This work and the experience thus

gained are leading to the development of new classes of therapies. Here, we

overview the progress that has been made to date on exploring the chemical

biology of the organelle and then focus on future challenges and opportunities

that face this rapidly developing field.
1. Introduction
The application of chemical biology to the mitochondrion is a rapidly expanding

area that offers the prospect of helping us understand the many facets of this fas-

cinating organelle’s rich biology. Interdisciplinary interactions between chemists,

physicists, biologists and clinicians are facilitating our ability to both assess and

intervene in mitochondrial function, for example, through the development of

new chemical tools and therapies. Here, we outline the current status of this evol-

ving field, discuss the many challenges that face us at the moment, and suggest

potential ways forward.
2. Why study mitochondria?
In considering why to take an interdisciplinary approach and use chemical biology

to investigate mitochondria the first question is why focus on mitochondria in the

first place? Our answer is that mitochondria are central to the life and death of the

cell [1–3]. It is well known that mitochondria are the site of oxidative phosphoryl-

ation; consequently, they are the major source of ATP in most eukaryotic cells

making any defects to these processes critical for cell survival [1,2] (figure 1).

The metabolic pathways, notably the Krebs cycle and fatty acid oxidation that

break down carbohydrates, amino acids and fat so that the electrons can be fed

into the respiratory chain are vital for oxidative phosphorylation, but their location

within mitochondria and their roles at the heart of intermediary metabolism

impact many other processes beyond the supply of ATP [1,2,4,5]. Furthermore,

the metabolic roles of mitochondria also include many other biosynthetic
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Figure 1. Mitochondrial dysfunction can lead to cell dysfunction and pathology. As is illustrated here, disruption to mitochondrial function can be caused by
mutation to mitochondrial or nuclear genes. In addition, mitochondrial dysfunction can arise due to causes outside the mitochondrion, such as increased oxidative
stress, disruption to calcium homeostasis and defective mitochondrial ATP synthesis. Frequently, these occur together or lead into each other. In particular, the
combination of elevated mitochondrial matrix calcium and oxidative stress leads to induction of the MPTP, which leads to necrotic cell death. In addition, mito-
chondria can induce apoptosis by mitochondrial outer membrane permeabilization that leads to the release of factors such as cytochrome c (cyt c) that activates cell
death by apoptosis.
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processes, such as the assembly of FeS centres and haem biosyn-

thesis [6,7]. An interesting recent illustration of the many roles

of mitochondrial metabolism has been the discovery that

many intermediates in the Krebs cycle also have regulatory

roles in the cytosol, such as in hypoxia sensing and altering epi-

genetic modifications to the nuclear genome, and that these can

be disrupted in some forms of cancer [8–10].

The many roles carried out by the mitochondrion are closely

integrated into the function of the cell. For example, the mito-

chondrion is intimately associated with the endoplasmic

reticulum [11], which assists in determining the fission of the

organelle, and also the movement of calcium from the ER to

the cytosol and from there into the mitochondrial matrix as a

way of modulating the activity of matrix dehydrogenases and

coupling mitochondrial ATP production to the energy require-

ments of the cell [12,13]. The coordinated, continual fission and

fusion of mitochondria is one of the ways in which the continu-

ous turnover of damaged mitochondria is brought about [11];

however, this repair of mitochondrial damage also occurs

via several parallel pathways that occur autonomously via

proteases and other enzymes within the organelle [14].
Another facet of the role of the organelle in the cell is that

mitochondria are intimately involved in cell death [1,12]. This

is because the mitochondrial pathway of apoptosis involves

the release of factors such as cytochrome c from the inter-

membrane space as a critical step in committing the cell to

activating the apoptotic cell death programme [15]. As well

as these key forms of regulated cell death, the central role

of mitochondria in ATP production means that damage to

the organelle will lead to necrotic cell death, due to the lack

of ATP preventing the cell from sustaining ion gradients.

During necrotic cell death, the induction of the mitochondrial

permeability transition pore (MPTP) is a major player, com-

mitting the cell to a rapid death [16–18]. The roles of

mitochondria also impact on whole-body physiology. For

example, in mammals the leak of protons across the inner

membrane via uncoupling protein 1 in brown adipose

tissue is a major way in which heat is generated [19].

In fact, it is likely that proton leak through the mitochon-

drial inner membrane independently of UCP1 is a major

component of the basal metabolic rate, and thus a central

component of thermogenesis in poikilotherms [20].
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Mitochondria are also a major source of reactive oxygen

species (ROS) within the cell [21–23]. These ROS come from

the respiratory chain, primarily in the form of superoxide that

then goes on to form hydrogen peroxide [21]. These ROS can

overwhelm the multitude of antioxidant defences within the

mitochondrial matrix and thereby cause extensive oxidative

damage to mitochondria, which contributes to a wide range

of pathologies [3]. More interestingly, is the growing view

that the production of ROS from mitochondria can act as a

redox signal to the rest of the cell, suggesting that the pro-

duction of ROS by mitochondria may be a way in which the

mitochondria ‘talk’ to the rest of the cell coordinating the func-

tion of the mitochondria with that of the cell [21–24]. One

situation in which mitochondrial ROS signalling seems to be

particularly important is in the activation of cells such as macro-

phages during inflammation [25], and also when mitochondria

act as signalling hubs in the response to viral infections [26,27].

These are perhaps related to a signalling role for mitochondrial

ROS in the dramatic switch from oxidative phosphorylation to

aerobic glycolysis, which occurs in several biomedically impor-

tant areas such as inflammation and most notably in cancer (i.e.

Warburg metabolism) [8,28].

So far, there has been an unstated bias towards mammalian/

human mitochondria. The reasons for this are obviously that

mitochondria are central to so many biomedically important

situations. However, it is important to remember that the

‘mammalian’ model of how mitochondria operate is not uni-

versal and that in plants, yeasts and protozoa the core design

of mitochondria is modified and modulated in many interest-

ing ways. These adaptations are fascinating to study in their

own right and it is important not to become too ‘mammalio-

centric’ in considering how mitochondria operate. One

illustration of this is the fascinating ways in which non-

mammalian enzymes can be introduced into mammalian

mitochondria to adapt their metabolism in interesting ways.

For example, the introduction of NADH dehydrogenase from

yeasts to modulate mitochondria and thereby bypass defects

in complex I is now widely used [29]. Another example is the

introduction of the alternative oxidase from other organisms

into mammalian systems in order to selectively oxidize the

CoQ pool [30]. Finally, there is the possibility that the ‘atypical’

mitochondrial processes found in protazoan parasites such as

trypanosomes or plasmodia may lead to new drugs that

affect the parasite, but not the host [31].

There is a wide range of other disorders in which mito-

chondrial disruption plays a significant role, including sepsis,

neurodegeneration, metabolic syndrome, organ transplantation,

cancer, autoimmune diseases and diabetes [1,32]. Consequently,

mitochondria are an important node for therapeutic interven-

tion, even if damage to the actual organelle is not the initial

pathological event [32,33]. Therefore, it is clear that understand-

ing mitochondria better provides new insights into many

different aspects of basic cell physiology. In addition, mitochon-

drial dysfunction will also contribute to pathologies and thus a

better understanding of mitochondria may help us better under-

standing the nature of these pathologies and thus enable us to

develop better therapies and diagnostic methods [1,2,16,34].
3. What don’t we know about mitochondria?
From the above section, it is clear that there is evidence for

multiple central roles of mitochondria in the life and death of
the cell. From this extensive list, one might assume that our

understanding of mitochondrial function is near completion;

however, the truth is there are vast areas of profound ignorance

of how mitochondria operate. We do know a lot about the struc-

ture of mitochondrial proteins, particularly of the molecular

machines that generate and use the protonmotive force to gener-

ate ATP [35]. We are also learning a lot more about how the

mitochondrial genome is expressed, about the structure of the

mitochondrial inner membrane and how mitochondrial

dynamics integrates the organelle into the rest of the cell.

However, despite these advances, there are still huge gaps

in our knowledge. In our view, one of the most intriguing of

these challenges is to understand how mitochondrial func-

tions are integrated into those of the rest of the cell and

how these adaptations and communications alter and

respond on timescales from seconds to years. For example,

we know little about how the expression of the nuclear and

mitochondrial genomes is integrated to allow cells to adapt

to environmental and developmental challenges. Another

major area is how mitochondrial redox signals and the redis-

tribution of metabolites from mitochondria to the cytosol

feedback to allow the integration of the organelle into the

cell by modulating signalling pathways and gene expression.

There are many other similar processes in which mitochon-

drial function is embedded within that of the cell and

continually feeds back on both short and long timescales to

integrate mitochondrial function into that of the cell. How-

ever, our knowledge of these processes and the web of

interactions that link mitochondrial function to the rest of

the cell is something we are only just starting to learn about.
4. Why use chemical biology to study
mitochondria?

Of course, a huge range of investigative techniques can and

should be applied to the study of mitochondrial function.

Our view is that the application of chemical biology has the

potential to make significant contributions to addressing

many of critical uncertainties facing us now in mitochondrial

studies. Namely, how do mitochondria function in the cell

and in vivo and how does this integration adapt over time to

short-term and long-term environmental challenges and to

development, pathology and ageing? In this the versatility of

biological chemistry enables us to develop tools that report

on aspects of mitochondria and also to manipulate mito-

chondrial function. Specifically, the use of tools to modify

and report on small molecules and to alter proteins and

nucleic acids has the potential to provide insights into function.

In particular, chemical biology has the potential to use

structure–function relationships in probing the biochemistry

of the organelle and also to develop new therapeutics. In

addition, these can be addressed by the development of

drugs to selectively alter mitochondrial function in pathology.
5. Current strategies for using chemical biology
to assess and intervene in mitochondrial
function

While the application of chemical biology to mitochondria

has only been going for a decade or so, a number of general
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Figure 2. General strategies to use small molecules to affect mitochondria. The first approach is by targeting compounds to mitochondria. This can be done by
conjugation to a lipophilic cation such as triphenylphosphonium (TPP), which can lead to the selective uptake of the attached bioactive moiety or pharmacophore (X)
into the mitochondrial matrix. Alternatively, peptides that accumulate within mitochondria such as the SS or MPP peptides can be used. All these mitochondria-
targeted compounds can act within the mitochondria, or the active pharmacophore can be released from the targeting moiety within the mitochondrion. In
addition, compounds that are not targeted to mitochondria but which act there by binding to specific targets can be used. Finally, many compounds can influence
mitochondria by affecting processes outside mitochondria, such as the activity of kinases, transcription factors, or transcriptional coactivators.
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strategies have emerged. For example, three broad approa-

ches have been used to assess and intervene in

mitochondria (figure 2): either designing molecules that

are targeted selectively to mitochondria in order to deliver

fluorophores, probes, sensors or inhibitors, those that acts

on factors (e.g. transcription factors) that alter mitochondria,

or to make molecules that are untargeted but which only

affect the mitochondrion. These approaches have been exten-

sively reviewed over the past few years [3,5,34,36–38], so

here we just outline these approaches. Targeting of large

molecules such as proteins, to mitochondria has been

achieved by the use of mitochondrial import sequences.

The other approaches to target small molecules to mitochon-

dria have focused on the use of lipophilic cations such as

TPP and also peptides that are taken up by mitochondria

[5,34]. These have been used to send probe molecules to

mitochondria. A second approach has been to target
transcription factors or other signalling pathways that will

alter mitochondrial function [39]. The final class of

molecule has been those that are not targeted but which

respond to targets in mitochondria, such as uncouplers or

those that act on cyclophilin D [40]. All of these approaches

are now being increasingly widely used to assess and inter-

vene in mitochondrial function and in the development

of drugs.
6. Current challenges in applying chemical
biology to mitochondria

While the field of applying chemical biology to mitochondria

has made significant progress, there are very significant chal-

lenges remaining that, if addressed, would greatly enhance

the utility of the approaches. Here, we outline some of the
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major challenges and also discuss how it may be possible to

address some of them.

While the use of lipophilic cations and targeting peptides

can deliver drugs and probes to mitochondria in vivo, the

selective delivery to mitochondria within different organs is

not possible. There is preferential uptake by some organs,

such as the heart, but this depends on a number of factors

including site and mode of delivery of the compound and

the local membrane potentials and vascularization of the

organs. A general strategy for organ selective delivery, or to

particular cells types such as cancer cells, would be of great

benefit. Ways that this might be approached are by modular

approaches, with a unit designed to deliver the compound to

the cell or tissue type, followed by its release there and mito-

chondrial uptake (figure 3). Alternatively, a mirror image of

this modular approach could be considered in which the

compound is excluded from all but the target cell or tissue,

for example, by the removal of a factor excluding the com-

pound by an enzyme on the surface of the target cells

(figure 3).

A further challenge is to develop methods for the delivery

of large molecules to mitochondria in vivo. While the ectopic

delivery of proteins can be routinely achieved by conjugation
to a mitochondrial import sequence in conjunction with

appropriate expression systems, the delivery of other large

molecules such as nucleic acids or their analogues has been

difficult. Current approaches using the protein import

machinery seem promising. However, other modes such as

the use of nanoparticles, or liposomes have yet to show

convincing evidence of delivery.

A final challenge is the ability to assess mitochondria in vivo
in real time. This can be done in cells in culture by use of a range

of fluorescent probes, but in vivo this is only possible at the sur-

faces of tissues or in small, transparent organisms such as zebra

fish embryos. The ability to monitor mitochondria in tissues in
vivo in large organisms or in patients would be very useful.

While the use of mitochondria-targeted probes assessed by

mass spectrometry has proven useful [41], this usually

requires the extraction of tissues for analysis, which compli-

cates the ability to infer what happens in vivo. The analysis

of such compounds in urine may enable a less invasive

measurement [42], but this approach is still in its infancy. Per-

haps more promising is the possibility of combining

mitochondria targeting and assessment with methods that

enable visualization in the whole organism in real time, for

example, the use of PET imaging has shown promise, but it
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may be possible to extend this to other methods such as MRS

using hyperpolarization.
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7. Conclusion
The use of chemical biology approaches to manipulate and

report on mitochondria is in its infancy. While there have

been considerable developments, this interdisciplinary field

is really just starting and the expectation is that the continued

interactions and iterations between chemists and a range of

biological and medical scientists will lead to many new
insights into how mitochondria operate in health and disease

as well as generating new therapeutic possibilities.
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