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A B S T R A C T   

Background: Vitiligo is a common clinical disorder caused by the destruction of epidermal me-
lanocytes, which is often associated with autoimmune mechanisms. Autophagy plays a crucial 
role in maintaining cellular homeostasis and exhibits close associations with various autoimmune 
disorders. While dysautophagy of melanocytes is associated with vitiligo pathogenesis, there is a 
lack of studies on autophagy-related genes (ARGs) in blood samples from individuals with 
vitiligo. 
Methods: Blood samples from individuals with vitiligo and healthy controls were compared to 
identify differentially expressed genes (DEGs), which were subsequently subjected to further 
analysis. Then, miRNAs correlated with core genes were predicted by five distinct online tools, 
and those miRNAs that appeared in three or more tools at the same time were chosen for further 
enrichment analysis. Furthermore, in vitro experiments of targeting core genes were conducted. 
Results: The results showed that there were a total of 30 ARGs among DEGs, with 13 up-regulated 
genes and 17 down-regulated genes. Based on the functional enrichment analysis of DEGs and 
projected miRNAs, we hypothesized that autophagy and apoptosis may synergistically contribute 
to the progression of vitiligo, with the TNFSF10/hsa-let-7a-5p axis potentially playing an 
important role that should not be ignored. In addition, epigallocatechin-3-gallate (EGCG) was 
found to be the common component in BAI GUO, CHA YE, and MEI ZHOU JIN LV MEI, which 
were discovered to be potential in vitiligo treatment by inducing cell autophagy and apoptosis 
targeting TNFSF10. 
Conclusion: It was the first time that TNFSF/hsa-let-7a-5p was discovered to be involved in the 
development of vitiligo through autophagy and apoptosis. Meanwhile, we observed that BAI 
GUO, CHA YE, and MEI ZHOU JIN LV MEI were promising to treat vitiligo by regulating auto-
phagy and apoptosis via TNFSF10. These findings could lead to new directions for investigating 
the pathogenesis and therapy of vitiligo.   
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1. Introduction 

Vitiligo is a complex disease caused by the selective destruction of melanocytes, resulting in patchy loss of skin pigmentation [1]. 
The pathogenesis of melanocyte deficiency in vitiligo is multifaceted, in which autoimmune reaction playing a key role. However, 
there is currently a lack of specific treatment for vitiligo [2]. Previous studies have reported a high prevalence of autoimmune diseases 
among vitiligo patients, suggesting that studying blood transcriptomics could provide new insights into the disease [3,4]. 

A few pieces of evidence have recently emerged to support the role of autophagy in autoimmune diseases and other auto-
inflammatory diseases, such as vitiligo [5], This suggested that autophagy may be an common mechanism involved in the development 
of vitiligo and other autoimmune diseases. Autophagy is an essential intracellular degradation system that plays a crucial role in 
maintaining cellular homeostasis and enhancing resistance against pathogen invasion [6]. Moreover, autophagy and apoptosis are two 
fundamental pathophysiological processes involved in regulating cells, exhibiting intricate interplay that profoundly influences the 
occurrence and progression of diverse diseases [7,8]. The analysis of autophagy-related genes (ARGs) in blood samples from vitiligo 
patients may offer novel insights into the pathogenesis and therapy of vitiligo. However, research surrounding the role of autophagy in 
vitiligo pathogenesis were focused on melanocyte cell lines and lesional areas of patients [9,10], as well as melanocytes and fibroblasts 
from non-lesional vitiligo skin [11], but not blood. 

Microarray platforms are gradually gaining popularity as a method for identifying disease-related biomarkers and detecting 
genomic alterations [12]. Previous studies using microarray data have implicated several biomarkers and pathways in the develop-
ment of vitiligo [13,14], but no research has focused on the autophagy-related biomarkers in the blood of vitiligo patients. 

In this study, we used integrated bioinformatics methods to merge significant genes from two datasets, including blood samples 
from segmental vitiligo, non-segmental vitiligo, generalized vitiligo and healthy controls. The differentially expressed genes (DEGs) 
that overlapped with ARGs were used for hub gene discovery, enrichment analysis, interaction network creation, and pathway 
analysis. More importantly, we utilized online tools to predict the target miRNAs and then performed enrichment analysis of those 
miRNAs to identify potential therapeutic targets in the blood of individuals with vitiligo. Eventually, we discovered potential herbs 
that target core genes for the treatment of vitiligo. This study improved our understanding of the pathogenesis of vitiligo, especially the 
potential co-pathogenesis between vitiligo and other autoimmune diseases. Moreover, potential herbs for vitiligo treatment targeting 
ARGs were explored. 

2. Materials and methods 

2.1. Cell culture 

The human melanocyte line PIG1 was purchased from ScienCell Research Laboratories, Inc (California, USA). The cells were 
cultured in Dulbecco’s modified Eagle’s medium (DMEM), which also contains 10 % fetal bovine serum (FBS) and 1 % streptomycin/ 
penicillin. 

2.2. Chemicals and regents 

DMEM, FBS, and streptomycin/penicillin were purchased from Gibco (California, USA). Epigallocatechin-3-gallate (EGCG) and 3- 
Methyladenine (3-MA) were purchased from Sigma-Aldrich (Darmstadt, Germany). The CCK-8 assay kit was purchased from GlpBio 
(California, USA). HiScript® III All-in-one RT SuperMix Perfect for qPCR and Taq pro Universal SYBR qPCR Master Mix were pur-
chased from Vazyme (Nanjing, China). 

2.3. Dataset collection 

Gene expression datasets were obtained from the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo), a public 
functional genomics database with high throughput gene expression sequencing data and microarrays data [15,16]. ARGs were ac-
quired from the Human Autophagy Database (http://www.autophagy.lu/index.html), an autophagy-dedicated database that provides 
information on human genes involved in autophagy [17,18]. Immune-related genes (IRGs) were downloaded from the ImmPort 
database (https://immport.niaid.nih.gov), an open repository of participant-level large-scale human immunology data [19,20]. 

2.4. Data processing and differential expression analysis 

The GSE dataset was used to download the normalised expression matrix of the microarray data. The annotation files from the 
dataset were then utilized for probe annotation. Next, the “limma R″ package was applied to identify DEGs in the dataset [21] (| 
Log2FC| > 1, p < 0.05), and a Venn plot was drawn between DEGs, ARGs and IRGs. Moreover, heatmap and box plot were conducted 
using the “heatmap” and “ggplot2” packages of R software. Spearman’s correlation analysis was employed to analyze 
autophagy-related DEGs [22]. 
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2.5. Functional correlation analysis 

The “clusterProfiler” package was used to perform Gene Ontology (GO) analysis on DEGs [23,24]. GO is a standardized vocabulary 
for annotating gene functions [25,26]. GAGE was used to perform Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www. 
genome.jp/kegg) pathway analyses [27], followed by visualization using the ggplot2 R package. The KEGG database integrates 
genomic and functional information, providing the gene and pathway annotations [28,29]. Significant enrichment was defined as false 
discovery rate (FDR) < 0.25 and p < 0.05 were considered significant enrichment. Engaged genes were red-labeled using the KEGG 
mapper. 

2.6. Construction of the protein-protein interaction (PPI) network 

To characterize the crucial DEGs, we used the online tool STRING (https://string-db.org/) to construct PPI networks with a 
minimum required interaction score of 4 [30]. STRING is a PPI network database based on public databases and literature information 
[31]. For further analysis, Cytoscape software was used to download interaction information. Significant genes were identified as hub 
genes using the cytoHubba plugin [32,33]. 

2.7. Functional insights of TNFSF10 

GeneMANIA (http://www.genemania.org/) is an online platform that can predict the function of a gene or gene lists, as well as 
identify the physical interaction, genetic interaction, co-expression, pathway, co-localization, and shared protein domain [34,35]. 
Initially, we accessed the GeneMANIA database to acquire an interaction network of related connected genes for TNFSF10. The 
screening parameters were set as follows: Organism: Homo sapiens; Query Gene: TNFSF10; Maximum Resultant Gene: 20; Maximum 
Resultant Attributes: 10; Query-Dependent Weighting: Automatically selected weighting method. Then, the enrichment analysis of 
those genes was performed. Analyzing the sensitivity and specificity of TNFSF10 in vitiligo using the receiver operating characteristic 
(ROC) curve. To quantify the ROC, the area under the ROC curve (AUC) was calculated [36]. 

2.8. miRNA-mRNA network construction and functional insights of correlated miRNAs 

The miRNA target predicting algorithms miRDB (http://mirdb.org/miRDB/) [37], TargetScan [38] (http://www.targetscan.org/), 
miRTarbase [39] (http://mirtarbase.cuhk.edu.cn/), ENCORI (https://starbase.sysu.edu.cn/) [40] and Diana-Tarbase V8.0 [41] 
(https://dianalab.e-ce.uth.gr/) were used to predict miRNAs targeting core genes. Only miRNAs predicted in 3 or more databases were 
used for subsequent network construction. Then, the interactions between those miRNAs and the differentially expressed mRNAs were 
obtained from DIANA-Tarbase and ENCORI. Cytoscape 3.6.0 software was used to visualize the target network, and the top 10 
high-degree nodes were obtained using the cytoHubba plugin. An online tool, miEAA (https://ccb-compute2.cs.uni-saarland.de/ 
mieaa2/), was used to perform the enrichment analysis of miRNAs [42]. 

2.9. Acquisition of Chinese herbs targeting core genes and vitiligo 

HERB is a high-throughput experiment- and reference-guided database of traditional Chinese medicine (http://herb.ac.cn), which 
contains comprehensive information on Chinese herbs and their ingredients [43]. Firstly, we searched in the ‘Disease’ section of the 
website with ‘vitiligo’, while core genes were searched as the keyword in the ‘Target’ section. All correlated herbs were downloaded, 
and the overlapped herbs as well as the overlapped ingredients of those herbs were shown in Venn plots. 

2.10. Cell viability assay 

Using the CCK-8 test kit, cell viability was determined in accordance with the manufacturer’s instructions. Briefly, PIG1 were 
seeded into 96-well plates at an initial density of 5000 cells/well and incubated in an incubator at 37 ◦C for 24 h. Subsequently, the 
cells were incubated with serum-free DMEM for 12 h and then treated with fresh medium containing different concentrations of 3-MA 
for 24 h. After cell treatment, 10 μL of kit reagent was added into 100 μL cell solution and incubated for further 90 min at 37 ◦C. 
Absorbance at 450 nm was measured with an enzyme-labeler and cell survival was calculated. 

After that, The PIG1 cells were divided into control group, 3-MA group and 3-MA + EGCG group for another CCK-8 test. The 
medium without 3-MA and EGCG was selected as the control. The other two groups were starved for 12 h in serum-free DMEM, then 
treated for 24 h with medium containing 10 mM 3-MA, with or without 30 μM EGCG. Each sample was examined in triplicate, and each 
CCK-8 assay was repeated at least three times [44]. 

2.11. Quantitative real-time PCR 

The total mRNA of the treated cells was isolated using Trizol and 1 μg RNA was used to synthesize cDNA using the HiScript® III All- 
in-one RT SuperMix Perfect for qPCR according to the manufacturer’s protocol. Quantitative real-time PCR was conducted with the 
SYBR Premix Ex TaqII and the iQ5 PCR Detection System (Bio-Rad Laboratories, Hercules, Calif). The denaturing, annealing, and 
extension conditions of each PCR cycle were 95 ◦C for 30 s, 95 ◦C for 10 s, and 60 ◦C for 30 s, respectively. Real-Time PCR primer 
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sequences are listed in Table 3. The 2− ΔΔCq method was used to quantify the expression levels of target genes, with GAPDH as the 
internal control. All primers were synthesized by Sangon Biotech (Shanghai, China). Each sample was examined in triplicate, and each 
quantitative real-time PCR experiment was repeated at least three times [45]. 

2.12. Statistical analysis 

All data were analyzed using GraphPad Prism 7 and presented as mean ± standard deviation (SD). The statistical significance was 
calculated using the Student’s t-test. P < 0.05 (*) was considered statistically significant. 

3. Results 

3.1. Data preprocessing 

Two datasets (GSE80009 and GSE90880) were found after searching the Gene Expression Omnibus database with the inclusion 
criteria of (1) patients with vitiligo; (2) blood samples. Specifically, 12 samples (4 healthy controls, 4 segmental vitiligo, and 4 
generalized vitiligo) from GSE80009 and 14 samples (6 healthy controls and 8 non-segmental vitiligo) from GSE90880. Moreover, 
three other datasets were used for validation: skin samples from patients with vitiligo from GSE75819, blood samples from patients 
with systemic lupus erythematosus (SLE) from GSE50772 and rheumatoid arthritis (RA) from GSE15573. 

3.2. Differentially expressed ARGs in vitiligo 

We identified DEGs between vitiligo patients and normal controls from the GSE80009 and GSE90880 datasets. DEGs were 
determined by setting the cutoff to FDR <0.05 and |log2 (FC)| ≥1. A total of 2389 DEGs were obtained from the GSE80009 dataset and 
11 DEGs from the GSE90880 dataset. We then analyzed the overlapped DEGs between vitiligo-related genes, ARGs and IRGs. As shown 

Fig. 1. Identification of DEGs. (A–B) Venn diagram was used to visualize common IRGs and ARGs shared between GEO datasets. (C) Information on 
the overlapping DEGs screened from the datasets. (D) Heat map visualization showing alternation for the 30 differentially expressed ARGs between 
vitiligo and normal groups. 
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in Fig. 1A, there were 30 ARGs among all DEGs from the two datasets, including 6 IRGs, all of which were from the GSE80009 dataset. 
Among them, 13 genes were up-regulated and 17 genes were down-regulated (Fig. 1B). The detail information of those genes was 
shown in Fig. 1C. After analyzing the GSE80009 dataset using R software, a heatmap was generated to present the differential 
expression of 30 ARGs between the vitiligo and normal groups (Fig. 1D). In addition, box plots were used to display the expression 
patterns of 30 ARGs that were differentially expressed between vitiligo and normal samples (Fig. 2A–C). There were 7 up-regulated 
genes (CASP1, RAB33B, TNFSF10, LAMP2, CALCOCO2, DAPK1, BID) and 9 down-regulated genes (SPHK1, WIPI2, SPNS1, ATG4D, 
RHEB, IKBKE, IRGM, DNAJB1 and HSP90AB1). Among them, TNFSF10, BID, HSP90AB1 and IKBKE were both autophagy-related and 
IRGs. 

3.3. PPI network and correlation analysis of the differentially expressed ARGs 

We performed PPI analysis to determine the interactions among differentially expressed ARGs. Fig. 3A illustrates the PPI network of 
these ARGs, while Fig. 3B displays the number of interactions for each gene. Fig. 3C presents the results of correlation analysis 
conducted to explore the expression correlation of these ARGs. According to the result of interaction number and expression pattern, 3 
up-regulated genes (CALCOCO2, TNFSF10 and LAMP2) and 2 down-regulated genes (WIPI2 and HSP90AB1) were focused. Among 
them, only TNFSF10 and HSP90AB1 were also IRGs. 

3.4. GO and KEGG enrichment analysis of autophagy-related DEGS 

Using R software, we performed GO and KEGG enrichment analysis to analyze the underlying biological roles of these differentially 
expressed ARGs. Enrichment of various functions was initially demonstrated through GO enrichment analysis (Fig. 4A). Subsequently, 
GO and KEGG enrichment analysis elucidated the expression of associated genes in distinct functional enrichment sets (Fig. 4B and 
5A), while also highlighting potentially associated genes in several functions exhibiting significant enrichment (Fig. 4C and 5B). The 
results demonstrated that the most significant GO enriched terms were involved in processes utilizing autophagic mechanism, auto-
phagy, cellular response to external stimulus and macroautophagy (biological process); vacuolar membrane, autophagosome, auto-
phagosome membrane and phagophore assembly site (cellular component); GTP binding, phosphatase binding, protein phosphatase 
binding and CARD domain binding (molecular function) (Fig. 4A–D). In KEGG enrichment analysis, the differentially expressed ARGs 
were mainly involved in the processes of autophagy, influenza A, protein processing in endoplasmic reticulum and apoptosis 
(Fig. 5A–C). 

3.5. Validation of autophagy-related DEGS in vitiligo lesions 

Vitiligo is characterized by depigmentation of the skin; therefore, we also conducted an analysis of the gene expression profile in 
ivitiligo-affected skin. There were 30 samples from 15 individuals’ lesional and non-lesional skin of vitiligo patients in GSE75819. A 
total landscape of gene expression in GSE75819 was presented in a volcano plot (Fig. 6A), and the top 30 DEGs were shown in the heat 
map (Fig. 6B). Then, GO and KEGG enrichment analyses were performed to explore the potential biological functions of DEGs. The 
findings revealed that the most enriched GO keywords were nuclear part, nuclear lumen, intracellular non-membrane-bounded 
organelle, non-membrane-bounded organelle, nucleoplasm, RNA binding, microtubule cytoskeleton, mitotic cell cycle, mitotic cell 
cycle process and spindle (Fig. 6C). According to the KEGG enrichment study, DEGs played significant roles in Thermogenesis, 
Ribosome, Oxidative phosphorylation, Huntington disease, Parkinson disease, Spliceosome, RNA transport, Cell cycle, Nucleotide 
excision repair and Homologous recombination (Fig. 6D). Additionally, the vitiligo skin-derived DEGs were intersected with the 
vitiligo blood-derived DEGs, resulting in the identification of a single common gene, TNFSF10 (Fig. 6E). 

Fig. 2. The box plots of the 30 differentially expressed ARGs between vitiligo and normal samples.  
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3.6. Validation of autophagy-related DEGS in SLE and RA patients 

Combined with the results of interactive score in PPI network and the expression patterns in vitiligo patients, we obtained one hub 
gene (TNFSF10). To verify the role of TNFSF10 in the pathogenesis of vitiligo and other autoimmune diseases, we analyzed the 
expression patterns of TNFSF10 in blood samples from patients with RA and SLE. As shown in Fig. 7A and 7B, we found that TNFSF10 
was upregulated in both RA and SLE patients. Therefore, we speculated that TNFSF10 might be the crucial gene related to the 
overlapped pathogenesis of other autoimmune diseases that co-occur in vitiligo patients. To gain more detailed mechanistic knowledge 
about such cases, we conducted further analysis focusing on TNFSF10. 

3.7. Functional insights of TNFSF10 

We obtained 20 genes related to TNFSF10 from GeneMania (Fig. 8A), and then conducted GO and KEGG enrichment analyses. As 
shown in Fig. 8B and C, the significant GO enriched terms involved in apoptotic and tumor necrosis related processes. In KEGG 
enrichment analysis, the TNFSF10-related genes are mainly involved in the processes of apoptosis, necroptosis and TNF signaling 
pathway. Apoptosis was an overlapping pathway combined with the result of enrichment analysis of those 30 ARGs. Moreover, ROC 
analysis of TNFSF10 was performed in the vitiligo dataset, and it was found that the AUC value was 0.906 (Fig. 8D), which meant 
TNFSF10 also had a diagnostic value for vitiligo. 

Fig. 3. Construction of the PPI network of the target genes to determine the interactions between differentially expressed ARGs. (A) The PPI 
network of target ARGs. (B) The interaction number of each gene. (C) The expression correlation of each gene. 
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3.8. miRNA-mRNA network construction 

Firstly, as shown in Fig. 9A, a total of 13 miRNAs were eligible (in 3 and more databases at the same time). Then, the interaction 
between these miRNAs and 16 differentially expressed mRNAs was predicted using StarBase and Tarbase. As depicted in Fig. 9B, the 
network included 12 miRNA nodes and 11 mRNA nodes. The top 10 high-degree nodes were presented in Fig. 9C. Among them, 1 
miRNA (hsa-let-7a-5p) and 2 mRNAs (LAMP2, TNFSF10) were found to have the highest interaction number count (Fig. 9D and E). 

3.9. Functional insights of engaged miRNAs 

The miRNAs involved in the network were analyzed for enrichment using an online tool called miEAA, which is accessible at 
https://ccb-compute2.cs.uni-saarland.de/mieaa2/. As shown in Table 1, almost all engaged miRNAs were involved in autophagy and 
apoptosis as well as the signaling pathways associated with both. These signaling pathways included mTOR, AMPK, p53, NF-kappa B 
signaling pathway and etc. Moreover, it was found that has-let-7a-5p was specifically found in blood (Table 2). 

3.10. Potential herbs targeting core genes and vitiligo 

Based on the above results, we speculated that autophagy and apoptosis might synergistically promote the development of vitiligo. 
TNFSF10, BID, MAPK1, ATF4 and EIF2AK3 were found to participate in apoptosis (Fig. 5B), while MAPK1, BID, IKBKE and CASP1 
showed interaction with TNFSF10 in PPI network (Fig. 3A). Thus, TNFSF10, MAPK1 and BID were searched for herbs in ‘Target’ 
section. Besides, ‘vitiligo’, ‘rheumatoid arthritis’ and ‘lupus erythematosus, systemic’ were searched in ‘Disease’ section. As shown in 
Fig. 10A and 3 herbs (BAI GUO, CHA YE, MEI ZHOU JIN LV MEI) were explored targeting all targets. In addition, we found that those 
three herbs shared one common ingredient, called EGCG (Fig. 10B). 

Fig. 4. Distribution of 30 ARGs for GO enrichment. (A) Bubble plot of enriched GO enrichment. (B) Circle plot of enriched GO enrichment. (C) 
Chordal graph of enriched GO enrichment. (D) The description of the GO labels. BP: The biological process; CC: cellular component; MF: molec-
ular function. 
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3.11. EGCG decreases death in 3-MA-treated melanocytes 

To verify this assumption, we treated PIG1 melanocytes with 3-MA and EGCG. We found that treatment with 3-MA decreased the 
viability and proliferation of PIG1 melanocytes (Fig. 11A). However, treatment with EGCG promoted the viability and proliferation of 
3-MA-treated PIG1 melanocytes (Fig. 11B). To assess the involvement of TNFSF10, MAPK1 and BID in autophagy and apoptosis in 
vitiligo, we evaluated the relative expressions of these genes using real-time PCR. As shown in Fig. 11C, treatment with 3-MA induced 
the expression of TNFSF10, MAPK1 and BID, while EGCG inhibited this phenomenon. 

4. Discussion 

In this study, we focused on the expression patterns of ARGs in blood samples from vitiligo patients and conducted various analyses 
on those DEGs. 

Firstly, mitophagy and ER processing were both revealed to be down-regulated according to the results of enrichment analysis of 
blood samples from vitiligo patients. According to prior research, defective ER-phagy and mitophagy were assumed to contribute to 
melanocyte destruction in vitiligo lesions under oxidative stress and an inflammatory microenvironment [46]. However, previous 
studies have primarily focused on the lesions of skin in vitiligo patients, such as Kyle J. Gellatly et al. who elucidated the intricate 
autoimmune network in vitiligo skin samples through scRNA-seq [47]. This study is the first to demonstrated that vitiligo blood also 
had deficient ER-phagy and mitophagy. Although our enrichment analysis of skin lesions from vitiligo patients did not reveal a direct 
correlation with autophagy, the GO keywords and KEGG pathways obtained through the analysis also exhibited certain associations 
with autophagy. For instance, studies have demonstrated that oxidative stress can induce cell death modes like apoptosis, autophagy, 
and ferroptosis in melanocytes, leading to immune responses and subsequent skin depigmentation [48]. Secondly, TNFSF10 was 
eventually discovered to be a critical autophagy-related gene linked to vitiligo and other autoimmune disorders. When the findings of 
enrichment analysis with TNFSF10 associated genes and 30 autophagy-related DEGs were combined, apoptosis was recognized as 
another overlapping pathway. As a result, we hypothesize that apoptosis and autophagy might work together to accelerate the 

Fig. 5. Distribution of 30 ARGs for KEGG enrichment. (A) Circle plot of enriched KEGG enrichment. (B) Chordal graph of enriched KEGG 
enrichment. (C) The description of the KEGG labels. 
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Fig. 6. Data analysis for vitiligo-affected skin. (A) Volcano plot of DEGs for normal vitiligo skin and leisional vitiligo skin. (B) Heatmap of DEGs for 
normal vitiligo skin and leisional vitiligo skin. (C, D) GO and KEGG enrichment analyses of DEGs for normal vitiligo skin and leisional vitiligo skin. 
(E) Venn diagram for the overlap between vitiligo-affected skin dataset and DEGs from vitiligo blood. 

Fig. 7. The box plots show the expression level of TNFSF10 in blood samples of patients with RA(A) and SLE(B).  
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development of vitiligo and perhaps other autoimmune diseases. The relationship between autophagy and apoptosis is intricate, as 
they collaborate in eliminating numerous cells, with autophagy also promoting apoptosis [49,50]. Similarly, the results of this study 
demonstrated that autophagy and apoptosis could synergistically contribute to the development of vitiligo through related genes, such 
as TNFSF10, BID and MAPK1. Apoptosis and autophagy might share common upstream signals [51], such as mTOR pathway and ROS 
[52,53]. We red-labeled 30 autophagy-related DEGs engaged in autophagy and apoptosis pathways (Supplementary Figs. 1 and 2), and 
we found that pieces of those autophagy-related DEGs also engaged in ER processing and MAPK pathway, which presented as common 
upstream signals of apoptosis and autophagy. TNFSF10, also known as ‘Tumor Necrosis Factor-Related Apoptosis Inducing Ligand’ 
(TRAIL, CD253), along with other closely related ligands (FasL, CD95L) [54], induces the signal transduction of apoptosis in tumor 
cells [55]. As reported, TNFSF10 is a promising anticancer agent for treating solid tumors, which has the unique property of inducing 
apoptosis in tumor cells while sparing normal ones [56–58]. It has also been reported that TNFSF10 was able to induce autophagy in 
certain cancer cells, however, how TNFSF10 induces autophagy has not been clearly elucidated [59]. MAPK8 activation mediated by 
TRAF2 and RIPK1 might be crucial for TNFSF10-induced autophagy [60]. Similarly, we found that TNFSF10 participated in both 
apoptosis and autophagy promoting the development of vitiligo. 

In addition, we conducted enrichment analysis of predicted miRNAs in correlation with TNFSF10 and other 15 DEGs. The outcome 
revealed that most miRNAs are involved in apoptosis, autophagy, and correlated pathways such as the mTOR pathway, AMPK 
pathway, p53 pathway and so on. All these results suggested that the aforementioned miRNAs involved in the network had consid-
erable credibility and might provide new insights into the potential cross-pathogenesis of vitiligo and other autoimmune diseases. 
Among them, hsa-let-7a-5p had the highest number of interactions and also exhibits blood specificity. The TNFSF10/hsa-let-7a-5p axis 
might offer novel insights into the pathogenesis and therapy of vitiligo. Moreover, we further explored the potential herbs that target 
autophagy and apoptosis for treating vitiligo. It was found that BAI GUO, CHA YE and MEI ZHOU JIN LV MEI meet the requirements, 
which shared a common ingredient called EGCG. While previous studies have utilized herbal medicines for treating vitiligo, this study 
delves deeper into elucidating its potential therapeutic mechanism [61]. 

Taken together, this study presented a novel approach by linking vitiligo and other autoimmune diseases with ARGs through blood 
analysis, which differed from the conventional studies on skin lesions. These findings suggested that an imbalance of autophagy and 

Fig. 8. Functional analysis of TNFSF10. (A) The related connected genes of TNFSF10 were analyzed using GeneMANIA. (B–C) Results of GO and 
KEGG enrichment Analysis of TNFSF10 related connected genes. (D) Results of ROC analysis of TNFSF10 in the vitiligo dataset. 
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apoptosis also existed in the blood of patients with vitiligo, and TNFSF10 might play an unignoring role in promoting the development 
of vitiligo through both apoptosis and autophagy. The TNFSF10/hsa-let-7a-5p axis might offer novel insight into the pathogenesis and 
treatment of vitiligo and other concomitant autoimmune diseases. In addition, Bai Guo, CHA YE and MEI ZHOU JIN LV MEI might be 
the promising herbs targeting autophagic and apoptotic pathways for the treatment of vitiligo. However, certain aspects of this study 
could be enhanced, such as the inclusion of a larger number of blood samples from vitiligo patients would obtain more scientific and 
convincing results. Furthermore, additional in vitro and in vivo experiments can be conducted in the future to reinforce the experi-
mental evidence. 

Fig. 9. The exploring and analysis of miRNAs. (A) Upset plot of overlapped predicted miRNAs targeting core genes using different online tools. (B) 
The miRNA-mRNA network. (C) The top 10 hub genes with the highest degrees of connectivity. (D) The interaction number of 12 miRNAs. (E) The 
interaction number of 11 differentially expressed mRNAs. 

Table 1 
Enrichment analysis of miRNAs in different signaling pathways.  

Subcategory Enrichment P-value Observed miRNAs/precursors 

Autophagy - animal over-represented 0.009362 13 all 
Autophagy - other over-represented 1.90E-06 11 besides hsa-miR-670-3p; hsa-miR-494-3p 
Apoptosis - multiple species over-represented 6.34E-04 11 besides hsa-miR-670-3p; hsa-miR-545-3p 
Necroptosis over-represented 0.017446 12 besides hsa-miR-545-3p 
lnfluenza A over-represented 0.002959 13 all 
NF-kappa B signaling pathway over-represented 2.39E-04 13 all 
TNF signaling pathway over-represented 6.82E-04 13 all 
p53 signaling pathway over-represented 0.006088 13 all 
mTOR signaling pathway over-represented 0.01067 13 all 
Protein processing in endoplasmic reticulum over-represented 0.008512 13 all 
lnsulin signaling pathway over-represented 0.004056 13 all 
Natural killer cell mediated cytotoxicity over-represented 5.30E-04 13 all 
Calcium signaling pathway over-represented 0.015013 12 besides hsa-miR-545-3p 
AMPK signaling pathway over-represented 0.028354 12 besides hsa-miR-670-3p  
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5. Conclusion 

In summary, our study had revealed the dysregulation of autophagy and apoptosis within the blood of vitiligo patients, and un-
derscores the potential significance of the TNFSF10/hsa-let-7a-5p axis in regulating these processes. Additionally, Bai Guo, CHA YE 
and MEI ZHOU JIN LV MEI, which contain the common ingredient EGCG, exhibit promise as treatments for vitiligo. Our study presents 
a novel perspective on potential therapeutic approaches for vitiligo, yet further investigations are warranted to elucidate the intricate 
roles of autophagy and apoptosis in the initiation and progression of vitiligo. 

Table 2 
Enrichment analysis of miRNAs in different organs.  

category subcatagory Enrichment P-value miRNAs/precursors 

Organs 
(miRWalk) 

Lung over- 
represented 

2.66E-04 hsa-let-7b-5p; hsa-let-7e-5p; hsa-miR-98-5p; hsa-let-7i-5p; hsa-let-7a-5p; hsa-let-7c-5p; 
hsa-let-7f-5p; hsa-let-7g-5p 

Organs 
(miRWalk) 

Blood Platelets over- 
represented 

1.29E-06 hsa-let-7e-5p; hsa-miR-98-5p; hsa-let-7i-5p; hsa-let-7a-5p; hsa-let-7c-5p; hsa-let-7f-5p; 
hsa-let-7g-5p 

Organs 
(miRWalk) 

Fetal Blood over- 
represented 

5.81E-05 hsa-miR-129-5p; hsa-let-7e-5p; hsa-let-7i-5p; hsa-let-7a-5p; hsa-let-7c-5p; hsa-let-7g-5p 

Organs 
(miRWalk) 

Blood over- 
represented 

0.0036772 hsa-miR-129-5p; hsa-let-7e-5p; hsa-let-7i-5p; hsa-let-7a-5p; hsa-let-7c-5p; hsa-let-7g-5p 

Organs 
(miRWalk) 

Eukaryotic Cells over- 
represented 

1-17E-05 hsa-let-7e-5p; hsa-let-7i-5p; hsa-let-7a-5p; hsa-let-7c-5p; hsa-let-7g-5p 

Organs 
(miRWalk) 

Erythrocytes over- 
represented 

1.97E-05 hsa-let-7e-5p; hsa-let-7i-5p; hsa-let-7a-5p; hsa-let-7c-5p; hsa-let-7g-5p 

Organs 
(miRWalk) 

Megakaryocytes over- 
represented 

1.97E-05 hsa-let-7e-5p; hsa-miR-98-5p; hsa-let-7a-5p; hsa-let-7c-5p; hsa-let-7f-5p 

Organs 
(miRWalk) 

Erythroid Cells over- 
represented 

3.15E-05 hsa-let-7e-5p; hsa-let-7i-5p; hsa-let-7a-5p; hsa-let-7c-5p; hsa-let-7g-5p 

Organs 
(miRWalk) 

Plasma over- 
represented 

0.0022014 hsa-let-7e-5p; hsa-let-7i-5p; hsa-let-7a-5p; hsa-let-7c-5p; hsa-let-7g-5p 

Organs 
(miRWalk) 

Mucus over- 
represented 

5.80E-06 hsa-miR-98-5p; hsa-let-7i-5p; hsa-let-7f-5p; hsa-let-7g-5p  

Table 3 
Primers used for quantitative real time PCR assays.  

Gene Direction Primer sequence (5′ to 3′) 

TNFSF10 Forward GACCTGCGTGCTGATCGTGATC 
Reverse GCTGACGGAGTTGCCACTTGAC 

MAPK1 Forward TCGCCGAAGCACCATTCAAGTTC 
Reverse TCCTGGCTGGAATCTAGCAGTCTC 

BID Forward GGCCTACCCTAGAGACATGGAGAAG 
Reverse GCAAGGACGGCGTGTGACTG  

Fig. 10. Screening of potential herbs. (A) Upset plot illustrating the predicted herbs. (B) Venn diagram showing the common components of BAI 
GUO, CHA YE, and MEI ZHOU JIN LV MEI. 
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Fig. 11. Effects of EGCG on the 3-MA-treated PIG1 melanocytes. (A) The percentages of viable cells change in PIG1 after treatment with varying 
concentrations of 3-MA (0–10 mM). (B) The cell viability of PIG1 treated with 3-MA and 3-MA + EGCG by the CCK-8 assay. (C) Real-time PCR of 
changes in mRNA levels of TNFSF10，MAPK1 and BID in PIG1. Data were presented as mean ± SEM of three independent experiments; **P < 0.01 
compared with the control group; ##P < 0.01 compared with the 3-MA group. 
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T. Johansen, G. Juhász, V. Karantza, C. Kraft, G. Kroemer, N.T. Ktistakis, S. Kumar, C. Lopez-Otin, K.F. Macleod, F. Madeo, J. Martinez, A. Meléndez, 
N. Mizushima, C. Münz, J.M. Penninger, R.M. Perera, M. Piacentini, F. Reggiori, D.C. Rubinsztein, K.M. Ryan, J. Sadoshima, L. Santambrogio, L. Scorrano, H.- 
U. Simon, A.K. Simon, A. Simonsen, A. Stolz, N. Tavernarakis, S.A. Tooze, T. Yoshimori, J. Yuan, Z. Yue, Q. Zhong, L. Galluzzi, F. Pietrocola, Autophagy in major 
human diseases, EMBO J. 40 (2021), https://doi.org/10.15252/embj.2021108863. 

[50] L. Ma, Z. Wang, M. Xie, Y. Quan, W. Zhu, F. Yang, C. Zhao, Y. Fan, N. Fang, H. Jiang, Q. Wang, S. Wang, J. Zhou, X. Chen, Y. Shu, Silencing of circRACGAP1 
sensitizes gastric cancer cells to apatinib via modulating autophagy by targeting miR-3657 and ATG7, Cell Death Dis. 11 (2020) 169, https://doi.org/10.1038/ 
s41419-020-2352-0. 

[51] Y. Wang, C. Xia, L. Chen, Y.C. Chen, Y. Tu, Saponins extracted from tea (camellia sinensis) flowers induces autophagy in ovarian cancer cells, Molecules 25 
(2020) 5254, https://doi.org/10.3390/molecules25225254. 

[52] C. He, G. Liu, S. Zhuang, J. Zhang, Y. Chen, H. Li, Z. Huang, Y. Zheng, Yu nu compound regulates autophagy and apoptosis through mTOR in vivo and vitro, 
Diabetes Metab Syndr Obes 13 (2020) 2081–2092, https://doi.org/10.2147/DMSO.S253494. 

[53] K.-Y. Kim, K.-I. Park, S.-H. Kim, S.-N. Yu, S.-G. Park, Y.W. Kim, Y.-K. Seo, J.-Y. Ma, S.-C. Ahn, Inhibition of autophagy promotes salinomycin-induced apoptosis 
via reactive oxygen species-mediated PI3K/AKT/mTOR and ERK/p38 MAPK-dependent signaling in human prostate cancer cells, Int. J. Mol. Sci. 18 (2017) 
1088, https://doi.org/10.3390/ijms18051088. 

[54] D. Sag, Z.O. Ayyildiz, S. Gunalp, G. Wingender, The role of TRAIL/DRs in the modulation of immune cells and responses, Cancers 11 (2019) 1469, https://doi. 
org/10.3390/cancers11101469. 

W. Wang et al.                                                                                                                                                                                                         

https://doi.org/10.1093/genetics/iyad031
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1186/1471-2105-10-161
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gkac1000
https://doi.org/10.1186/1752-0509-8-S4-S11
https://doi.org/10.1038/s41598-020-79235-9
https://doi.org/10.1093/nar/gky311
https://doi.org/10.1093/nar/gky311
https://doi.org/10.1093/nar/gkq537
https://doi.org/10.3389/fpsyt.2021.645927
https://doi.org/10.1093/nar/gkz757
https://doi.org/10.1093/nar/gkz757
https://doi.org/10.7554/eLife.05005
https://doi.org/10.7554/eLife.05005
https://doi.org/10.1093/nar/gkz896
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1093/nar/gkx1141
https://doi.org/10.1093/nar/gkw345
https://doi.org/10.1093/nar/gkw345
https://doi.org/10.1093/nar/gkaa1063
https://doi.org/10.1155/2018/6721530
https://doi.org/10.1155/2018/6721530
https://doi.org/10.1248/bpb.b15-00331
https://doi.org/10.7150/thno.30398
https://doi.org/10.1126/scitranslmed.abd8995
https://doi.org/10.1155/2022/8498472
https://doi.org/10.15252/embj.2021108863
https://doi.org/10.1038/s41419-020-2352-0
https://doi.org/10.1038/s41419-020-2352-0
https://doi.org/10.3390/molecules25225254
https://doi.org/10.2147/DMSO.S253494
https://doi.org/10.3390/ijms18051088
https://doi.org/10.3390/cancers11101469
https://doi.org/10.3390/cancers11101469


Heliyon 9 (2023) e23220

16

[55] J. Cao, Y. Zhang, Y. Chen, S. Liang, D. Liu, W. Fan, Y. Xu, H. Liu, Z. Zhou, X. Liu, S. Hou, Dynamic transcriptome reveals the mechanism of liver injury caused by 
DHAV-3 infection in pekin duck, Front. Immunol. 11 (2020), 568565, https://doi.org/10.3389/fimmu.2020.568565. 

[56] A. Mohr, T. Chu, G.N. Brooke, R.M. Zwacka, MSC.sTRAIL has better efficacy than MSC.FL-TRAIL and in combination with AKTi blocks pro-metastatic cytokine 
production in prostate cancer cells, Cancers 11 (2019) 568, https://doi.org/10.3390/cancers11040568. 

[57] V. Kedinger, S. Muller, H. Gronemeyer, Targeted expression of tumor necrosis factor-related apoptosis-inducing ligand TRAIL in skin protects mice against 
chemical carcinogenesis, Mol. Cancer 10 (2011) 34, https://doi.org/10.1186/1476-4598-10-34. 

[58] P. O’Reilly, C. Ortutay, G. Gernon, E. O’Connell, C. Seoighe, S. Boyce, L. Serrano, E. Szegezdi, Co-acting gene networks predict TRAIL responsiveness of tumour 
cells with high accuracy, BMC Genom. 15 (2014) 1144, https://doi.org/10.1186/1471-2164-15-1144. 

[59] L. Xue, W. Zhang, Y. Ju, X. Xu, H. Bo, X. Zhong, Z. Hu, C. Zheng, B. Fang, S. Tang, TNFSF10, an autophagy related gene, was a prognostic and immune 
infiltration marker in skin cutaneous melanoma, J. Cancer 14 (2023) 2417–2430, https://doi.org/10.7150/jca.86735. 

[60] W. He, Q. Wang, J. Xu, X. Xu, M.T. Padilla, G. Ren, X. Gou, Y. Lin, Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway 
involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation, Autophagy 8 (2012) 1811, https://doi.org/10.4161/auto.22145. 

[61] Y. Li, J. Huang, J. Lu, Y. Ding, L. Jiang, S. Hu, J. Chen, Q. Zeng, The role and mechanism of Asian medicinal plants in treating skin pigmentary disorders, 
J. Ethnopharmacol. 245 (2019), 112173, https://doi.org/10.1016/j.jep.2019.112173. 

W. Wang et al.                                                                                                                                                                                                         

https://doi.org/10.3389/fimmu.2020.568565
https://doi.org/10.3390/cancers11040568
https://doi.org/10.1186/1476-4598-10-34
https://doi.org/10.1186/1471-2164-15-1144
https://doi.org/10.7150/jca.86735
https://doi.org/10.4161/auto.22145
https://doi.org/10.1016/j.jep.2019.112173

	Identification of the role of autophagy-related TNFSF10/ hsa-let-7a-5p axis in vitiligo development and potential herbs exp ...
	1 Introduction
	2 Materials and methods
	2.1 Cell culture
	2.2 Chemicals and regents
	2.3 Dataset collection
	2.4 Data processing and differential expression analysis
	2.5 Functional correlation analysis
	2.6 Construction of the protein-protein interaction (PPI) network
	2.7 Functional insights of TNFSF10
	2.8 miRNA-mRNA network construction and functional insights of correlated miRNAs
	2.9 Acquisition of Chinese herbs targeting core genes and vitiligo
	2.10 Cell viability assay
	2.11 Quantitative real-time PCR
	2.12 Statistical analysis

	3 Results
	3.1 Data preprocessing
	3.2 Differentially expressed ARGs in vitiligo
	3.3 PPI network and correlation analysis of the differentially expressed ARGs
	3.4 GO and KEGG enrichment analysis of autophagy-related DEGS
	3.5 Validation of autophagy-related DEGS in vitiligo lesions
	3.6 Validation of autophagy-related DEGS in SLE and RA patients
	3.7 Functional insights of TNFSF10
	3.8 miRNA-mRNA network construction
	3.9 Functional insights of engaged miRNAs
	3.10 Potential herbs targeting core genes and vitiligo
	3.11 EGCG decreases death in 3-MA-treated melanocytes

	4 Discussion
	5 Conclusion
	Funding
	Data availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Supplementary data
	References


