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Purpose: This study aims to develop amulti-gene assay predictive of the clinical benefits of chemotherapy in non-
small cell lung cancer (NSCLC) patients, and substantiate their protein expression as potential therapeutic tar-
gets.
Patients and methods: The mRNA expression of 160 genes identified from microarray was analyzed in qRT-PCR
assays of independent 337 snap-frozen NSCLC tumors to develop a predictive signature. A clinical trial JBR.10
was included in the validation. Hazard ratio was used to select genes, and decision-trees were used to construct
the predictive model. Protein expression was quantified with AQUA in 500 FFPE NSCLC samples.
Results: A 7-gene signaturewas identified from training cohort (n=83)with accurate patient stratification (P=
0.0043) andwas validated in independent patient cohorts (n=248, P b 0.0001) in Kaplan-Meier analyses. In the
predicted benefit group, there was a significantly better disease-specific survival in patients receiving adjuvant
chemotherapy in both training (P = 0.035) and validation (P = 0.0049) sets. In the predicted non-benefit
group, there was no survival benefit in patients receiving chemotherapy in either set. The protein expression
of ZNF71 quantified with AQUA scores produced robust patient stratification in separate training (P = 0.021)
and validation (P = 0.047) NSCLC cohorts. The protein expression of CD27 quantified with ELISA had a strong
correlation with its mRNA expression in NSCLC tumors (Spearman coefficient= 0.494, P b 0.0088). Multiple sig-
nature genes had concordant DNA copy number variation, mRNA and protein expression in NSCLC progression.
Conclusions: This study presents a predictivemulti-gene assay and prognostic protein biomarkers clinically appli-
cable for improving NSCLC treatment, with important implications in lung cancer chemotherapy and
immunotherapy.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Lung cancer is the leading cause of cancer-related deaths in the
world, and non-small cell lung cancer (NSCLC) accounts for almost
80% of lung cancer deaths [1]. The heterogeneous nature of lung cancer
makes it a very difficult disease to treat. Major histology of NSCLC in-
cludes lung adenocarcinoma and squamous cell lung carcinoma. Surgi-
cal resection is the major treatment for early stage NSCLC. However,
about 22–38% of stage I NSCLC patients will develop tumor recurrence
within five years following the surgery [2]. It is therefore important to
select early stage NSCLC patients for more aggressive treatment. While
a University Cancer Institute,

. This is an open access article under
adjuvant chemotherapy of stage II and stage III disease has resulted in
10–15% increased overall survival [3], the prognosis for early stage
NSCLC remains poor [4]. Currently, there are no clinically available mo-
lecular assays to predict the risk for tumor recurrence and the clinical
benefits of chemotherapy in NSCLC patients.

Immunotherapy has rapidly gained attention of oncologists as an
effective and less toxic treatment than chemotherapy in patientswith ad-
vanced lung cancers [5–8]. A recent study used paired single cell analysis
to compare normal lung tissue and blood with tumor tissue in stage I
NSCLC, and found that early-stage tumors had already begun to alter
the immune cells in their microenvironment [8]. These results suggest
that immunotherapy could potentially be used to treat early stage lung
cancer patients. However, predictive biomarkers of immunotherapy are
not well established except PD-1 or PD-L1, and it is unlikely that a single
marker is sufficient.
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High-throughput technologies, such as microarray and RNA-seq,
promise the discovery of novel biomarkers from genome-scale studies.
The FDA conducted a systematic evaluation and suggested continued
usefulness of legacy microarray data and established microarray bio-
markers and predictive models in the forthcoming RNA-seq era [9].
However, several disadvantages have limited the application of high-
throughput techniques in routine clinical tests, including costs, repro-
ducibility, and data analyses [10]. Compared with microarray and
RNA-seq, quantitative real-time RT-PCR (qRT-PCR) is more efficient,
consistent, and able tomeasure gene expression over a greater dynamic
range. It requires only a small sample and can be modified to quantify
gene expression in formalin-fixed and paraffin-embedded (FFPE) tis-
sues [11]. The combined use of real-time qRT-PCR with high-through-
put analysis can overcome the inherent biases of the high-throughput
techniques and is emerging as the optimalmethod of choice to translate
genome research into clinical practice [12]. The protein expression val-
idation of the identifiedmRNA biomarkers could substantiate their ulti-
mate functional involvements in disease, and may lead to the discovery
of potential proteomic biomarkers in abundant FFPE samples for
broader applications in community hospitals.

DNA microarray-based studies identified gene expression-based
NSCLC prognostic [13] and predictive biomarkers [14,15]. A qRT-PCR
based 14-gene assay by Kratz et al. [16] is prognostic of non-squamous
NSCLC outcome in FFPE tissues and is ready for wide-spread clinical ap-
plications. However, this 14-gene assay is limited to non-squamous
NSCLC and is not shown to be predictive of the clinical benefits of
chemotherapy.

In this study, a combined analysis of genome-wide transcriptional
profiles and qRT-PCR was utilized to develop a multi-gene assay both
prognostic of NSCLC outcome and predictive of the benefits of chemo-
therapy. Patient cohorts from multiple hospitals in the US and JBR.10
data [14] were used to validate this multi-gene assay. Protein expres-
sion of the identified biomarkers was also evaluated in patient tissue
Table 1
Clinical information of non-small cell lung cancer patient cohorts collected for the qRT-PCR an

CWRU (n = 89) M

Age Mean (Std error) 70.11 (0.94) 6
b60 15 (15.15%) 7
≥60 84 (84.85%) 3
Missing 3

Sex F 52 (52.53%) 2
M 47 (47.47%) 2
Missing

Smoking Current 43 (43.43%) 1
Former 40 (40.40%) 3
Never 8 (8.08%)
Passive 1 (1.01%)
Other 1 (1.01%)
Missing 6 (6.06%) 4

AJCC stage I 46 (46.46%) 2
II 46 (46.46%) 1
III 6 (6.06%) 6
Missing 1 (1.01%)

Chemotherapy Yes 29 (29.29%) 2
No 52 (52.53%) 2
Missing 13 (13.13%) 2

Histology Adenocarcinoma 65 (65.66%) 2
Squamous 27 (27.27%) 1
Other 7 (7.07%) 8
Missing 5 (5.05%)

Differentiation Well 5 (5.05%)
Moderate 44 (44.44%)
Moderate to Poorly 4 (4.04%)
Poorly 35 (35.35%)
Missing 11 (11.11%)

Tumor Grade 1 5 (5.05%) 3
2 44 (44.44%) 1
3 36 (36.36%) 2
Other 3 (3.03%)
Missing 11 (11.11%) 6
samples and correlated with themRNA expression and DNA copy num-
ber variation to substantiate their functional involvement and potential
as therapeutic targets in chemotherapy and immunotherapy, in addi-
tion to companion tests.

2. Materials and Methods

2.1. Patient Samples

Clinical characteristics of patient cohorts used in qRT-PCR assays is
summarized in Table 1. All NSCLC patients were staged I, II, or IIIA at
the time of diagnosis. Tumor tissues were collected in surgical resec-
tions and were snap-frozen at −80 °C until used for RNA extraction.
Tumor cell content was above 50% for qRT-PCR assays. Thosewithmiss-
ing AJCC staging information,missing histology, deathwithin 30 days of
resection or from other disease conditions were excluded from further
analysis. A total of 122 NSCLC patient samples were obtained from
Case Western Reserve University (CWRU) Comprehensive Cancer Cen-
ter. Total RNA of good quality was extracted from 89 tumor specimens.
Good quality RNA from101 lung adenocarcinoma tumor specimenswas
obtained from University of Michigan (UM) Comprehensive Cancer
Center, with detailed description of patients, tissue specimens and
mRNA quality check provided in [17]. A total of 65 NSCLC tumor speci-
mens from NorthShore University HealthSystem Kellogg Cancer Center
and 49 specimens fromWest Virginia University Cancer Institute [Mary
Babb Randolph Cancer Center (MBRCC)] generated good quality mRNA.
The tissue collection in this study was approved by an Institutional Re-
view Board (IRB) at each institution.

2.2. RNA Extraction, and Quality and Concentration Assessments

Total RNA was extracted from snap-frozen tumor tissues using a
RNeasy mini kit according the manufacturer's protocol (Qiagen, USA),
alysis.

BRCC (n = 49) UM (n = 101) NorthShore (n = 65)

6.70 (1.25) 67.04 (0.96) 69.64 (1.02)
(14.29%) 28 (27.72%) 7 (10.77%)
9 (79.59%) 73 (72.28%) 48 (73.85%)
(6.12%) 10 (15.38%)
3 (46.94%) 53 (52.48%) 34 (52.31%)
6 (53.06%) 48 (47.52%) 21 (32.31%)

10 (15.38%)
(2.04%) Yes 60 (92.31%)
(6.12%)

No 5 (7.69%)

5 (91.48%)
7 (55.10%) 59 (58.42%) 46 (70.77%)
6 (32.65%) 16 (15.84%) 15 (23.08%)
(12.25%) 26 (25.74%) 4 (6.15%)

7 (55.10%) 24 (23.76%) 28 (40.03%)
0 (40.82%) 77 (76.24%) 36 (55.38%)
(4.08%) 1 (1.54%)
7 (55.10%) 101 (100%) 43 (66.15%)
4 (28.57%) 11 (16.92%)
(16.33%) 6 (9.23%)

5 (7.69%)
28 (27.72%) 20 (30.77%)

4 (6.15%)
39 (38.61%) 22 (33.85%)
34 (33.66%) 17 (26.15%)

2 (3.08%)
(6.12%) 20 (30.77%)
8 (36.73%) 19 (29.23%)
2 (4.90%) 21 (32.31%)

(12.25%) 5 (7.69%)
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followed by elution in 30 μL of RNase-free water and storage at−80 °C.
The quality and integrity of the RNA, the 28S to 18S ratio, and a visual
image of the 28S and18S bandswere evaluated on the 2100 Bioanalyzer
(Agilent Technologies, CA). RNA assessed as having good quality from
304 tumor samples was included for further analysis. The RNA concen-
tration of each sample was assessed using a Nanodrop-1000 Spectro-
photometer (NanoDrop Tech, Germany).
2.3. Generation of Complementary DNA (cDNA)

The reverse transcriptase polymerase chain reaction was used to
convert the high-quality single-stranded RNA samples to double-
stranded cDNA, using an Applied Biosystems GeneAmp® PCR 9700
machine (Foster City, CA). For standardization across all samples, one
microgram of RNA was used to generate cDNA.
2.4. Real-time Quantitative RT-PCR Low-density Arrays

Real-time qRT-PCR assays of independent patient cohorts of NSCLC
tumor samples were used to further select biomarkers to form a
multi-gene assay from prognostic genes identified from microarray
data in our previous studies [18–21]. The identified prognostic genes
were initially validated with multiple independent NSCLC microarray
data publically available [18–21]. Based on the validation results, 160
prognostic genes and three housekeeping genes were included in the
qRT-PCR experiments. The three housekeeping genes were 18S, UBC,
and POLR2A due to their confirmed constant mRNA expressions across
samples [18].

We analyzed 337 tumor samples with good RNA quality using
TaqMan microfluidic low-density array (LDA) plates on an ABI
7900HT Fast RT-PCR instrument (Applied Biosystems). Total RNA sam-
ples were analyzed on an Agilent 2100 Bioanalyzer RNA 6000 Nano
LabChip. The report was generated by the SDS2.3 software (Applied
Biosystems). In the report, the number of cycles required to reach
threshold fluorescence (Ct) andΔCT for each sample relative to the con-
trol gene defines the expression pattern for a gene. The gene expression
data were further analyzed using the 2−ΔΔCT method [22].
2.5. Statistical and Computational Analysis

Prognostic biomarkers were evaluated with Cox proportional hazard
model. Hazard ratio was used in the evaluation of prognostic perfor-
mance of biomarkers. If a biomarker gives a hazard ratio N 1, it means
that patient samples predicted as high risk are more likely to have a
poor outcome. In the evaluation of genes in qRT-PCR assays, ΔCT was
used as a covariate in Cox model. If a gene as a hazard ratio N 1, it
means that down-regulation of this gene is associated with a poor out-
come and up-regulation of this gene is associated with a good outcome
in NSCLC patients; otherwise, if a gene has a hazard ratio b 1, it means
that down-regulation of this gene is associated with a good outcome
and up-regulation of this gene is associated with a poor outcome in
NSCLC patients. During the evaluation, UBC (Hs00824723_m1) was cho-
sen as the house keeping gene to normalize gene expression. The CWRU
cohort was used as the training set, and seven genes were selected to
form a prognostic classifier based on decision trees. These seven genes
are ABCC4 (Hs00988717_m1), CCL19 (Hs00171149_m1), SLC39A8
(Hs00223357_m1), CD27 (Hs00154297_m1), FUT7 (Hs00237083_m1),
DAG1 (Hs00189308_m1), and ZNF71 (Hs00221893_m1). The 7-gene
prognostic model was validated with independent patient cohorts (UM,
MBRCC, and NorthShore). In Kaplan-Meier analysis, log-rank tests or
Wilcoxon tests were used to assess the difference in probability of sur-
vival of different prognostic groups. All the analyses were performed
with packages in R or SAS unless otherwise specified.
2.6. Validation on Clinical Trial JBR.10

Data from JBR.10was obtained fromNCBI Gene Expression Omnibus
with accession number GSE14814 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=gse14814). A total of 133 non-small cell lung cancer
samples were profiled for gene expression using Affymetrix 133A plat-
form [14]. Patients were all in early stage (I or II). Patient samples
assayed in the same batch with consecutive accession numbers ranging
from GSM370913 to GSM371002 (n = 90) were used in the validation
of the 7-gene signature. Among these patient samples, those who died
from other disease conditions were excluded from further analysis.
ABCC4 (203196_at), CCL19 (210072_at), CD27 (206150_at), DAG1
(205417_s_at and 212128_s_at), FUT7 (210506_at and 217696_at),
SLC39A8 (209266_s_at, 209267_s_at, 216504_s_at, and 219869_s_at),
and ZNF444 (218707_at and 50376_at) were used in validating the
qRT-PCR based multi-gene assay. For a gene with multiple probe
sets, the one with the highest expression value (yielding the clearest
signal) in each sample was chosen to represent the gene expression.
ZNF71 was not available in the GSE14814 dataset. ZNF444 was cho-
sen to replace ZNF71 to validate the qRT-PCR results, because both
ZNF444 and ZNF71 are at locus NC_000019.10 in Chromosome 19
and belong to zinc finger protein family. To be compatible with the
ΔCt values in qRT-PCR data, log2 transformed microarray data was
used in the analysis, and the expression values of UBC minus those
of selected probes were used in the normalization of the microarray
data.

2.7. Tissue Microarrays (TMA)

Samples from 2 retrospective collections of lung cancer were ex-
amined in TMA format from Yale University Pathology Archives; Co-
hort A (YTMA 250 [n = 298]) and Cohort B (YTMA 79 [n = 202]).
TMAs consisted of 0.6 mm cores in 1 (Cohort A) and 2 fold (Cohort
B) redundancy. TMAs were prepared according to standard
methods. Cohort A comprises 314 serially collected NSCLC who
underwent surgical resection of their primary tumor between
2004 and 2011. Cohort B comprises of 202 serially collected NSCLC
patients who underwent surgical resection of their primary tumor
between 1988 and 2003. All tissue was used after approval from
the Yale Human Investigation Committee protocol #9505008219,
which approved the patient consent forms or in some cases waiver
of consent. The actual number of samples analyzed for each study
is lower, due to unavoidable loss of tissue or the absence or limited
tumor cells in some spots as is commonly seen in TMA studies.
NSCLC patients in stage I, II, and IIIA were included in the analysis.
Those who died with no evidence of disease were excluded from fur-
ther analysis.

2.8. Quantitative Immunofluorescence

FFPE whole-tissue sections, tissue microarrays (TMAs) and cell pel-
lets were processed at Yale Cancer Center/Pathology Tissue Microarray
Facility with details provided in Supplementary File 1.

Primary antibodies were followed by incubation with Alexa 546–
conjugated goat anti-mouse secondary antibody (Life Technologies) di-
luted 1:100 in rabbit EnVision reagent (Dako) for 1 h. ZNF71 signal was
amplified with Cy5-Tyramide (Perkin Elmer) for 10 min, and then nu-
clei were stained with 0.05 mg DAPI in BSA-tween for 10 min. Slides
were mounted with ProlongGold (Life Technologies). Two TBS-T and
one TBS wash was performed between each step after the primary
antibody.

Immunofluorescence was quantified using automated quantitative
analysis (AQUA) Fluorescent images of DAPI, Cy3 (Alexa 546-
cytokeratin), and Cy5 (ZNF71) for each TMA spot were collected.
Image analysis was carried out using the AQUAnalysis software (Navi-
gate Biopharma Inc.), which generated an AQUA score for each

ncbi-geo:GSE14814
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse14814
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse14814
ncbi-geo:GSE14814
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compartment by dividing the sum of target pixel intensities by the area
of the compartment in which the target is measured. AQUA scores were
normalized to the exposure time and bit depth at which the images
were captured, allowing scores collected at different exposure times
to be directly comparable. Specimens with b5% tumor area per region
of interestwere not included in AQUA analysis for not being representa-
tive of the corresponding tumor specimen.
2.9. Enzyme-Linked Immunosorbent Assay (ELISA)

A total of 38NSCLC patient tissue sampleswere selected for ELISA as-
says, including 29 tumor resections of lung adenocarcinoma and squa-
mous cell lung cancer and 9 matched adjacent normal lung tissue
samples. The DuoSet ELISA Development Systems from R&D Systems
(Minneapolis, MN; catalog number: DY382-05) were used for quantify-
ing protein expression of T-Cell Activation Antigen CD27 (CD27)/Tumor
Necrosis Factor Receptor Superfamily, Member 7 (TNFRSF7) in NSCLC
patient tissue samples, according to manufacturer's protocol. The
ELISA assay results were quantified using the Synergy H1 Hybrid
Multi-Mode Microplate Readers from BioTek Instruments, Inc. (Winoo-
ski, VT). Samples that yielded a positive OD values were included for
further analysis. Statistical analysis was done using a two-sample t-
test assuming unequal variances. The concordance between CD27
mRNA and protein expression was evaluated with Spearman correla-
tion coefficient.
Training Set 

High-risk

Low-risk

Fig. 1. Kaplan-Meier analyses of the 7-gene model. Patient stratification in training cohort CWR
set high-risk group (E), and validation set low-risk group (F). ACT: Adjuvant chemotherapy g
cohorts from MBRCC, UM, JBR.10, and Northshore. The 7-gene signature stratified patients int
risk groups from training (B) and validation (E) sets, there were significant survival benefits i
did not receive any chemotherapy (the OBS group). In the low-risk groups from training (C)
adjuvant chemotherapy (the ACT group) compared with those who did not receive any chemo
3. Results

3.1. A 7-Gene NSCLC Prognostic and Predictive Assay

The NSCLC prognostic biomarkers identified with hybrid feature se-
lection models [18,19] and molecular network approach [20,21] in our
previous studies were validated with multiple independent microarray
datasets. Based on the validation results in microarray data, 160 genes
were selected for assays using low-densitymicrofluidic qRT-PCR arrays.
Among 160 genes analyzed in the qRT-PCR assays, a 7-gene signature
was identified from training cohort obtained from Case Western Re-
serve University (CWRU; n = 83). Details of the decision tree based 7-
gene prognostic and predictive model are provided in Supplementary
Fig. 1. In the training cohort (CWRU), the 7-gene model stratified pa-
tients into two prognostic groups with significantly different disease-
specific survival (P = 0.0043; Fig. 1A). Moreover, in the 7-gene assay
predicted chemotherapy benefit (high-risk) patient group, there was a
significantly prolonged disease-specific survival (P = 0.035; Fig. 1B) in
adjuvant chemotherapy treated patients (ACT) compared with the ob-
servation group (OBS) who did not receive any chemotherapy. Specifi-
cally, the 30 months survival rate was b0.4 in the high-risk patients
who did not receive chemotherapy (the OBS group), and the 30months
survival rate was 100% (5/5) in patients receiving adjuvant chemother-
apy (the ACT group). In contrast, therewas no survival benefit in receiv-
ing chemotherapy (P=0.31; Fig. 1C) in the7-gene assay predictednon-
benefit (low-risk) group. Consistent prognostic and predictive results
Valida�on Set 

High-risk

Low-risk

U (A), CWRU high-risk group (B), CWRU low-risk group (C), validation set (D), validation
roup; OBS: observation group without chemotherapy. The validation set includes patient
o high-risk and low-risk groups in both training (A) and validation (D) sets. In the high-
n patients receiving adjuvant chemotherapy (the ACT group) compared with those who
and validation (F) sets, there were no significant survival benefits in patients receiving
therapy (the OBS group). P values were assessed with log-rank tests.

Image of Fig. 1
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were confirmed in the validation set (n = 248), including NSCLC pa-
tients from another three hospitals (UM, MBRCC, and NorthShore) as
well as a clinical trial JBR.10 [14] (Fig. 1D–F). In the validation set, the
7-gene signature generated significant prognostic stratification (P b

0.0001; Fig. 1D). In the predicted benefit (high-risk) patient group,
there was a significant prolonged disease-specific survival in the ACT
group compared with the OBS group (P= 0.0049; Fig. 1E). Specifically,
the 5-year survival rate was 70.9% (39/55) in the high-risk patients who
received adjuvant chemotherapy (the ACT group), whereas the 5-year
survival rate was 45.8% (22/48) in high-risk patients who did not re-
ceive adjuvant chemotherapy (the OBS group). In contrast, in the pre-
dicted non-benefit (low-risk) group, there was no survival benefit in
the ACT group compared with the OBS group (P = 0.46, Fig. 1F). It is
noteworthy that in the predicted non-benefit (low-risk) group, patients
who received adjuvant chemotherapy (ACT) had a worse post-surgical
survival in the long term compared with those who did not receive
any chemotherapy (OBS) in both training and validation sets (Fig. 1C
and F). These results further corroborate the 7-gene model prediction
of non-benefit that patients would suffer from unnecessary cytotoxicity
side-effects of chemotherapy instead of benefiting from it. Overall, these
results demonstrate that the 7-gene assay is both prognostic of NSCLC
clinical outcome and predictive of the benefits from chemotherapy.

The chemoresponse prediction for specific therapeutic agents was
examined in the identified 7 biomarkers. In particular, gene expression
of ATP binding cassette subfamily C member 4 (ABCC4) was predictive
of chemoresistance in patients receiving carboplatin, cisplatin, and
Taxol, with under-expressed mRNA (higher ΔCt) value associated with
significantly decreased hazard ratio of death fromdisease and tumor re-
currence (Table 2). In patients treatedwith carboplatin plus Taxol, using
ΔCt value of ABCC4 in Cox model, the hazard ratio of death from disease
of was 0.43 (95% CI: [0.208, 0.888], P=0.02) and the hazard ratio of re-
currence was 0.343 (95% CI: [0.122, 0.968], P = 0.04), both statistically
significant. In patients treatedwith Taxol, the hazard ratio of death from
disease of ABCC4 ΔCt value was 0.403 (95% CI: [0.194, 0.834], P = 0.01,
Coxmodel) and the hazard ratio of recurrence was 0.48 (95% CI: [0.253,
0.912], P = 0.02, Cox model), both statistically significant. In patients
treated with either carboplatin plus Taxol, carboplatin plus Taxotere,
cisplatin plus Taxotere, or cisplatin plus Taxol, the hazard ratio of
death from disease of ABCC4ΔCt valueswas borderline significant (haz-
ard ratio: 0.528 [0.271, 1.028], P = 0.06, Cox model) and the hazard
ratio of recurrence was significant at 0.545 (95% CI: [0.298, 0.998], P =
0.049, Cox model; Table 2). The expression of fucosyltransferase 7
(FUT7) was predictive of chemosensitivity to carboplatin, with under-
expressed mRNA (higher ΔCt value) associated with significantly in-
creased hazard ratio of death from disease (hazard ratio: 1.605 [1.058,
2.435], P = 0.026, Cox model; Table 2). The expression of zinc finger
protein 71 (ZNF71) was also predictive of chemosensitivity in patients
treated with either carboplatin plus Taxol, carboplatin plus Taxotere,
Table 2
Predictive biomarkers of chemoresponse in non-small cell lung cancer. Hazard ratios were com

Genes Chemotherapeutic agents Hazard ratio of death from disease with

ABCC4 Carboplatin + Taxol 0.43 [0.208, 0.888]⁎

Taxol 0.403 [0.194, 0.834]⁎

Carboplatin + Taxol 0.528 [0.271, 1.028]#

Carboplatin + Taxotere
Cisplatin + Taxotere
Cisplatin + Taxol

FUT7 Carboplatin 1.605 [1.058, 2.435]⁎

ZNF71 Carboplatin + Taxol 1.986 [1.001, 3.938]⁎

Carboplatin + Taxotere
Cisplatin + Taxotere
Cisplatin + Taxol

SLC39A8 Taxol –
Alimta –

⁎ Hazard ratio significant at P b 0.05.
# Hazard ratio borderline significant at P b 0.08.
cisplatin plus Taxotere, or cisplatin plus Taxol, with a significant hazard
ratio of death from disease 1.986 (95% CI: [1.001, 3.938], P=0.049, Cox
model; Table 2). Solute carrier family 39 member 8 (SLC39A8) was pre-
dictive of chemoresistance to Taxol, with a borderline significant hazard
ratio of recurrence 0.584 (95% CI: [0.33, 1.03], P = 0.06, Cox model;
Table 2). The expression of SLC39A8 was also predictive of
chemoresistance to Alimta, with a borderline significant hazard ratio
of recurrence 0.49 (95% CI: [0.219, 1.098], P=0.08, Coxmodel; Table 2).

The 7-gene NSCLC prognostic and predictive signature is involved in
cell to cell signaling and interaction, inflammatory response, and cellu-
lar movement in Ingenuity Pathway Analysis (Qiagen, Redwood City,
CA). Based on the molecular network of the 7 NSCLC biomarkers (Sup-
plementary Fig. 2A), these identified biomarkers have interactions
with major inflammatory and cancer signaling hallmarks such as TNF,
PI3K, NF-κB, and TGF-β. The top pathways involving the 7 signature
genes and their interaction partners are nNOS signaling in skeletal mus-
cle cells,CD27 signaling in lymphocytes, and agrin interactions at neuro-
muscular junction (Supplementary Fig. 2B). The 7-gene signature
identified in this study does not overlapwith theNSCLC gene signatures
reported in previous studies [13,15–17,23–25].

3.2. Protein Expression of ZNF71 is Prognostic of NSCLC Outcome

To substantiate the functional involvement of the identified 7 signa-
ture genes, protein expression of these biomarkers was evaluated with
immunohistochemistry (IHC). Based on the IHC results, biomarkers
with staining of good quality in FFPE NSCLC tumor tissues were further
quantified with AQUA. Protein expression of ZNF71 was identified as
prognostic of NSCLC outcome in two TMA cohorts (Fig. 2A). Details of
the AQUA assays and results are provided in Supplementary File 1.
Based on the quantitative AQUA scores representing ZNF71 protein
expression levels in tumor tissues, a cutoff pointwas defined for patient
prognostic stratification in training cohort YTMA250 (n = 145).
Specifically, when loge-transformed ZNF71 AQUA scores were greater
than or equal to 7.9, patients had significantly better disease-specific
survival (P=0.021) than those with a lower ZNF71 protein expression
level (Fig. 2B). This cutoff was further validated with significant
patient stratification (P = 0.047, Fig. 2C) in an independent cohort
YTMA79 (n = 46). Higher protein expression of ZNF71 is significantly
associated with better patient survival, which is concordant with its
mRNA results in multiple independent patient cohorts and its observed
association with chemosensitivity in Taxol (Taxotere) plus platinum-
based treatment in NSCLC patients (Table 2). These results indicate
that ZNF71 is a prognostic protein biomarker and might be a potential
therapeutic target of NSCLC. Furthermore, ZNF71 had a 7% (19/271) of
loss of DNA copy number in tumors vs. normal lung tissues in a NSCLC
patient cohort from Starczynowski et al. [26] (n=271; Supplementary
Table 1). These results suggest the concordance in the loss of DNA copy
puted with Cox proportional hazard model using ΔCt values in qRT-PCR assays.

95% CI Hazard ratio of recurrence with 95% CI Chemosensitive/resistant

0.343 [0.122, 0.968]⁎ Chemoresistant
0.48 [0.253, 0.912]⁎ Chemoresistant
0.545 [0.298, 0.998]⁎ Chemoresistant

– Chemosensitive
Chemosensitive

0.584 [0.33, 1.03]# Chemoresistant
0.49 [0.219, 1.098]# Chemoresistant



Time (months)

Su
rv

iv
al

 P
ro

ba
bi

lit
y

n=90
n=55

P=0.021

YTMA250

(b)

(a)

B C

Time (months)

Su
rv

iv
al

 P
ro

ba
bi

lit
y

P=0.047

n=19

n=27

YTMA79

loge(ZNF71 AQUA Score) ≥ 7.9
loge(ZNF71 AQUA Score) < 7.9

ZNF71 High Expression ZNF71 Medium Expression ZNF71 Low Expression ZNF71 Nega�ve

Fig. 2.Kaplan-Meier analyses of ZNF71 protein expression quantified by AQUA. ZNF71 immunofluorescence images of different expression levels in TMA. Patients were stratified into two
groups based on ZNF71 AQUA scores. Patients with loge(ZNF71 AQUA Score) ≥ 7.9 had a low-risk and those with loge(ZNF71 AQUA Score) b 7.9 had a high-risk for tumor metastasis in
training cohort YTMA250 (B) and validation cohort YTMA79 (C). P values were assessed with Wilcoxon tests.
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number, down-regulated mRNA and protein expression of ZNF71 in
lung cancer progression.
3.3. Concordant mRNA and Protein Under-expression of CD27 in NSCLC
Progression

The protein expression level of CD27 was quantified with ELISA as-
says in NSCLC tumor tissues (n=29) and normal adjacent lung tissues
(n = 9). Spearman correlation coefficient between mRNA and protein
expression of CD27 is 0.494 (P b 0.0088; Fig. 3A) in tumor tissues.
CD27had an average protein expression of 599.06 pg/mL in low-risk pa-
tients with a better disease-specific survival, and an average protein ex-
pression of 245.5 pg/mL in high-risk patients with a poorer disease-
specific survival in ELISA assays. CD27 had significant under-expression
in high-risk patients vs. low-risk patients at mRNA level with a fold-
change of 0.17 (P b 0.00001) and a fold-change of 0.41 (P b 0.02) at pro-
tein level (Fig. 3B). CD27 had an average protein expression of
191 pg/mL in normal lung tissues. CD27 had significant protein over-ex-
pression inNSCLC tumor vs. normal tissueswith a fold-change of 2.56 (P
b 0.025), while mRNA expression in tumor vs. normal tissues was not
significantly different (Fig. 3B). The over-expressed CD27 protein in
NSCLC tumors is concordant with an observed 4% (11/271) of gain or
amplification of DNA copy number in tumors vs. normal lung tissues
in the NSCLC patient cohort from Starczynowski et al. [26] (n = 271;
Supplementary Table 1). Overall, these results demonstrate that CD27
had concordant under-expression at both mRNA and protein levels in
NSCLC patients with a poor outcome and a greater chance of tumor re-
currence and metastasis. The overexpressed CD27 protein level in
NSCLC tumor vs. normal lung tissues indicates that CD27 regulation in
tumorigenesis andmetastatic processes is different. Our results confirm
the potential role of CD27 as a target in lung cancer immunotherapy
[27,28].
4. Discussion

Lung cancer is the second most common cancer in both men and
women, and remains the highest cancer-related mortality with a
death rate higher than colon, prostate, and breast cancer combined. Cur-
rently, there is no clinically available multi-gene assay to prognosticate
and predict the benefits of chemotherapy in NSCLC patients for im-
proved personalized treatment. Immunotherapy is more effective and
less toxic than chemotherapy in advanced lung cancers [5–8,29,30],
and recent studies show promise of immunotherapy in early stage
lung cancer patients [8]. Nevertheless, predictive biomarkers and thera-
peutic targets of immunotherapy are not well established.

Therewere abundant publically availablemicroarray data generated
in NSCLC patient tissues. Although microarray platforms are phasing
out, the legacy data and biomarkers identified in microarray platforms
are still useful in the RNA-seq era [9]. However, high-throughput plat-
forms such asmicroarrays and RNA-seq are not suitable for routine clin-
ical tests. Validation of biomarkers identified from high-throughput
technologies with qRT-PCR emerges as themost promising experimen-
tal protocol for developing multi-gene assays for clinical applications.

NSCLC prognostic biomarkers were identified with hybrid feature
selection models [18,19,31] and molecular network approach [20,21]
in our previous studies. The hybrid feature selection models [18,19,31]
contain multiple layers of gene selection algorithms in the process of
biomarker identification. This scheme takes advantage of different algo-
rithms in different stages of gene shaving, in order to identify the gene
signatures with the optimal performance. The molecular network ap-
proach [20,21] constructs genome-scale co-expression networks in
good-prognosis and poor-prognosis patient groups separately, and
compares the network structures of these two patient groups to identify
disease-specific network modules. Next, genes with concurrent co-ex-
pression with multiple major lung cancer signaling hallmarks were
pinpointed from disease-specific network modules for further gene
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Fig. 3. Comparison of mRNA and protein expression of CD27 in NSCLC patient samples. (A) Scatterplot with regression line for CD27mRNA (relative quantity) in qRT-PCR and protein
expression (pg/mL) in ELISA assays of 29 NSCLC tumor resections. RQ: relative quantity, measured as 2−Δct values in qRT − PCR with UBC as the control gene. R: Spearman correlation
coefficient. (B). Comparison of CD27 fold-change in NSCLC vs. normal lung tissues and high-risk vs. low-risk NSCLC tumors in qRT-PCR and ELISA assays. High-risk NSCLC patients had
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signature identification. This approach embedded biological relevance
into biomarker identification. The signature genes identified with
these sophisticated approaches were validated with multiple indepen-
dent publically available microarray datasets. Genes with consistent ex-
pression patterns in multiple validation sets were included in qRT-PCR
assays. The 7-gene signature identified in qRT-PCR assays were prog-
nostic and predictive of chemoresponse in patient cohorts from multi-
ple hospitals and JBR.10.

The identified 7 signature genes have interactions with major in-
flammatory and cancer signaling hallmarks including TNF, PI3K, NF-κB,
and TGF-β (Supplementary Fig. 2A).Multiple signature genes are poten-
tial targets in cancer immunotherapy. Specifically, reduction of DAG1
may increase susceptibility of muscle fibers to necrosis [32]. A study
shows thatDAG-1 cells are resistant to TNF-α and IFNγ-induced apopto-
sis, with implications in bladder cancer progression and resistance to
immunotherapy [33]. CD27 is part of TNF receptor family, and overex-
pression of CD27 inducesNF-κB activation involving signaling transduc-
tion of TNF receptor-associated factors [34]. CD27was also reported as a
potential target of cancer immunotherapy [27,28]. The synergy between
PD-1 blockade and CD27 stimulation for CD8+T-cell driven anti-tumor
immunity was reported recently [35], indicating the therapeutic poten-
tial of CD27 in neoadjuvant PD-1 blockade in resectable lung cancer
[36]. The zinc finger protein ZNF71 is induced by TNF-α [37] and
ZNF71 SNP was found to be associated with asthma in human serum
[38]. CCL19 is regulated by multiple NF-κB and INF family transcription
factors in humanmonocyte-derived dendritic cells [39]. ABCC4 is associ-
ated with multiple drug resistance in cancer [40] and smooth muscle
cell proliferation [41], and interacts with PI3K in cancer prognosis and
drug resistance [42]. Our results on ABCC4 in Table 2 are consistent
with its functional role and reported drug resistance. FUT7 interacts
with TNF-α in human bronchial mucosa [43] and its induction at sites
of tumor cell arrest is involved in metastasis [44]. NF-κB was reported
to regulate expression of the zinc transporter SLC39A8 [45]. Indirect in-
teractions between TGF-β and SLC39A8 are involved in tumorigenesis
[46] and fibrogenic response [47].

The 7-gene signature identified in this study does not overlap with
the NSCLC gene signatures reported in recent studies [15,16,23–25].
However, several biomarker genes identified in this study belong to
the same families or functional categories as the biomarkers identified
in [14–16]. In particular, FUT7 from the current study and FUT3 from
Kratz et al. [16] are both fucosyltransferase and involved inmetabolism.
In the 12-gene prognostic and predictive signature from Tang et al. [15],
two genes belong to the same family or share similar functions as the 7-
gene signature. Specifically, SLC35A5 from Tang et al. [15] and SLC39A8
from this study both belong to solute carrier superfamily, and ATPase
Phospholipid Transporting 8A1 (ATP8A1) from Tang et al. [15] and ATP
Binding Cassette Subfamily C Member 4 (ABCC4) from this study are
both involved in energy metabolism. The 15-gene prognostic and pre-
dictive gene signature of JBR.10 [14] also contains two genes that
share similar functions as the 7-gene signature. ATPase Na+/K+
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Transporting Subunit Beta 1 (ATP1B1) from Zhu et al. [14] and ABCC4
from this study are again involved in energy metabolism, and ZNF236
from Zhu et al. [14] and ZNF71 identified in this study both belong to
zinc finger protein family. Overall, the 7-gene signature presented in
this study and two previous gene signatures from Zhu et al. [14] and
Tang et al. [15] are all prognostic of NSCLC outcome and predictive of
the benefits of chemotherapy. These three gene signatures all contain
a biomarker related to ATP activities and energy metabolism. Other
shared gene families between the 7-gene signature and these two sig-
natures include zinc finger protein and solute carrier superfamily. The
7-gene signature and the practical prognostic gene assay for non-squa-
mous NSCLC by Kratz et al. [16] both contain biomarkers from
fucosyltransferase family. These common gene families shared by the
NSCLC gene signatures with promise for clinical utility might be func-
tionally involved in tumor metastasis with implications in lung cancer
therapy.

The protein expression of the identified 7 signature genes was also
validated in this study. In particular, ZNF71 protein expression quanti-
fied with AQUA was a prognostic biomarker in two NSCLC patient co-
horts (n = 191). Higher mRNA and protein expression of ZNF71 is
both associated with good prognosis, and ZNF71 mRNA is predictive of
chemosensitivity in Taxol (Taxotere) plus platinum-based treatment
in NSCLC patients. These results demonstrate that ZNF71 mRNA and
protein expression can both be used in prognostication of NSCLC in clin-
ical applications and ZNF71 may be a therapeutic target. CD27 had
highly correlated mRNA and protein expression, with significant
under-expression in poor prognostic (high-risk) NSCLC patients. CD27
mRNA and protein expression could potentially be used as a biomarker
and target in lung cancer immunotherapy. Protein expression of CCL19
was also confirmedwith ELISA in NSCLC tumor and adjacent normal tis-
sues. CCL19 protein was under-expressed in NSCLC tumor tissues com-
pared with normal lung tissues, with no statistically significant
difference (results not shown). CCL19 also had lower protein expression
in poor-prognosis (high-risk) NSCLC patients compared with good-
prognosis (low-risk) patients, with no statistically significant difference
(results not shown). The trend of CCL19 protein expressionwas qualita-
tively concordant with its mRNA expression that higher expression of
CCL19 is associated with good prognostic outcome of NSCLC. CCL19
had a 12.5% (34/271) of a loss of DNA copy number in tumors vs. normal
lung tissues in the NSCLC patient cohort from Starczynowski et al. [26]
(n = 271; Supplementary Table 1), which suggests a loss of DNA copy
number and down-regulated mRNA and protein expression of CCL19
in NSCLC progression. In our previous integrated DNA copy number
and gene expression regulatory network analysis of NSCLC metastasis,
CCL19 is a driver gene and CD27 expression is modulated by CCL19 in
squamous cell lung cancer patients with good prognosis [48]. Together
with the molecular network reported in the literature (Supplementary
Fig. 2A), the interaction between CCL19 and CD27 could be through
PI3K and NF-κB complexes. In addition, FUT7 and DAG1 had concordant
loss or deletion of DNA copy number (Supplementary Table 1) and
down-regulated gene expression in NSCLC progression (Table 2 and
Supplementary Fig. 1).

5. Conclusions

This study presents a 7-gene predictive assay based on qRT-PCR to
improveNSCLC treatment in clinics. This 7-gene assay provides accurate
prognostication and prediction of the clinical benefits of chemotherapy
in multiple patient cohorts from the US hospitals and the clinical trial
JBR.10. The 7-gene assay is enriched in inflammatory response. The
protein expression of ZNF71 is prognostic of NSCLC outcome in two in-
dependent patient cohorts, which is concordant with its mRNA expres-
sion. These results demonstrate that ZNF71 is a prognostic protein
biomarker and a potential therapeutic target of NSCLC. The protein ex-
pression of CD27 was strongly correlated with its mRNA expression in
NSCLC tumor tissues, and could potentially serve as a biomarker and
target of immunotherapy in lung cancer. Multiple signature genes had
concordant DNA copy number variation, mRNA and protein expression
in NSCLC progression. The results presented in this study are important
for precision therapy in NSCLC patients with implications in developing
new therapeutic strategies to combat this deadly disease.
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