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Impulse indicator saturation is a popular method for outlier detection in time series modeling, which outperforms the least
trimmed squares (LTS), M-estimator, and MM-estimator. However, using the IIS method for outlier detection in cross-
sectional analysis has remained unexplored. In this paper, we probe the feasibility of the IIS method for cross-sectional data.
Meanwhile, we are interested in forecasting performance and covariate selection in the presence of outliers. IIS method uses
Autometrics techniques to estimate the covariates and outlier as the number of covariates P >n observations. Besides
Autometrics, regularization techniques are a well-known method for covariate selection and forecasting in high-dimensional
analysis. However, the efficiency of regularization techniques for the IIS method has remained unexplored. For this purpose,
we explore the efficiency of regularization techniques for out-of-sample forecast in the presence of outliers with 6 and 4
standard deviations (SD) and orthogonal covariates. The simulation results indicate that SCAD and MCP outperform in
forecasting and covariate selection with 4 SD (20% and 5% outliers) compared to Autometrics. However, LASSO and
AdaLASSO select more covariates than SCAD and MCP and possess higher RMSE. Overall, regularization techniques possess
the least RMSE than Autometrics, as Autometrics possesses the least average gauge at the cost of the least average potency. We
use COVID-19 cross-sectional data collected from 1 July 2021 to 30 September 2021 for real data analysis. The SCAD and
MCP select CRP level, gender, and other comorbidities as an important predictor of hospital stay with the least out-of-sample
RMSE of 7.45 and 7.50, respectively.

1. Introduction

The ordinary least squares (OLS) approach has been a
widely chosen technique among the numerous available
methods in regression analysis because it is computationally
straightforward and possesses the best linear unbiased esti-
mate. However, it possesses strong assumptions on the dis-
tribution of error (¢) termed as €¢~N (0,0), which is
usually violated while dealing with real data analysis. The
leading cause of distortion is outliers, which violates the nor-

mality assumption of residuals. Outlying data in the depen-
dent and regressor variables pose a risk to least squares
regression since they might negatively impact the estimate
if they go unreported. Even cross-sectional data with high
quality contain outliers; however, it is rare in time series eco-
nomic data (because of the differencing variables) [1].
Robust regression techniques are used significantly in
the literature of outlier presences. Langford and Lewis [2]
well defined an outlier as data points that look inconsistent
with the rest of the data. Such influential points are
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frequently concealed from the user since they do not always
appear in the standard least-squares residual graph [3].
Zaman et al. [1] indicate that the OLS residuals are ineffec-
tive in finding outliers in small and big sample sizes, whereas
Rousseeuw and Leroy [4] demonstrate several real data sets
in which the OLS residuals miss to detect any outliers
despite significant outliers. However, new statistical proce-
dures have been proposed that are less susceptible to out-
liers; Rousseeuw [5] introduced the primary feasible robust
regression estimators (least median squares (LMS), least
trimmed squares (LTS), and variations) that perform cor-
rectly even when a high number of outliers are present.
Huber M estimation, MM estimation, least absolute value
method (LAV), and S estimation are examples of robust
approaches [6-8]. A conspicuous technique is established
on Huber’s M-estimators, which offer robustness in location
parameters. Regrettably, generalizations to regression
models miss the mark to accomplish robustness. As Rous-
seeuw [5] illustrates, regression M-estimators likewise have
a 0% breakdown value. The generalization of MM-
estimators likewise fails to attain large breakdown values. A
direct method to robust regression is to use LTS analysis in
huge residuals. The LTS analysis discards outlying observa-
tions and then can run a standard OLS regression, proposed
in Rousseeuw [5]. However, removing too many data points
in the case of too many outlier observations turns the risk of
the final regression model not reflecting the association that
the econometrician wants to assess [1].

On the contrary, Doornik [9] and Johansen and Nielsen
[10] illustrate the impulse indicator saturation (IIS) as a
robust estimator. Similarly, Johansen and Nielsen [10]
describe and demonstrate that a split-sample estimator for
the indicator-saturated regression model is a one-step M-
estimator that is iterated twice. Doornik [9] illustrates that
robustified least squares and indicator saturation are more
efficient than least trimmed squares. When the covariates
are static and only outliers occur in the dependent variable’s
data, M estimation works effectively. The impulse indicator
saturation method was initially designed to detect unidenti-
fied numbers of outliers with indefinite magnitudes at uncer-
tain points in the sample, together with the start and end of
observations [11]. However, the step indicator saturation
(SIS) method is a modified version of IIS techniques for mul-
tiple break detection. Indicator saturation (IS) is used as a
border term that detects outlier (via IIS) and multiple break
shifts (via SIS) and simultaneously estimates the underlying
modeling [9-13].

As the IS method possesses the number of candidates
regressor more than the number of data points, the OLS esti-
mates fail to estimate the thriving model. However, Auto-
metrics handles such phenomena efficiently regardless of
candidate regressors exceeding the number of observations;
due to this reason, IS method is feasible to estimate via Auto-
metrics. Autometrics uses extending and contracting
multiple-path search algorithms with user-specified signifi-
cance levels through the model selection process. However,
the choice of the significance level is the trade-off between
the irrelevant and relevant dummy indicators or regressors,
with tight significance level (0.001) significant variable omit-
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ted in the final model whereas, with 0.05 significance level,
the model consists of irrelevant regressors [13-15].

Other than Autometrics, regularization techniques are
emerging techniques when the number of covariates excel
the number of data points (observations); some of these
popular techniques are Least Absolute Subset Selection
Operator (LASSO), Adaptive LASSO, Smoothly Clipped
Absolute Deviations (SCAD), and Minimax Concave Pen-
alty (MCP) [16-19]. However, every few studies compare
the computational efficiencies of Autometrics with regulari-
zation techniques [20] [21-23] for covariate selection and
forecasting under the normality assumption. They do not
consider outliers with the IIS setup. As it is challenging to
choose the level of significance for thriving models in Auto-
metrics, the regularization techniques can be used as an
alternative model selection method in this case. Up to date,
the prevailing studies do not compare the computational
efficiency of regularization techniques with Autometrics in
cross-sectional analysis with outlier in IIS setup. This study
is aimed at analyzing the computational efficiency of regu-
larization techniques with IIS setup in cross-sectional phe-
nomena. The computational proficiency of these methods
is evaluated with potency, gauge, and out-of-sample Root
Mean Square Error (RMSE) in the simulation experiment.
For the simulation experiment, the Data Generating Process
(DGP), we opt with the orthogonal regressors and possess
three scenarios 5%, 10%, and 20% outlying observations
with 4 and 6 standard deviation (SD). Meanwhile, in DGP,
we intake orthogonal cases for this purpose we use some
well-known orthogonal techniques of regularization like
LASSO, Adaptive LASSO, Smoothly Clipped Absolute Devi-
ation (SCAD), and Minimax Concave Penalty (MCP)
[16-19].

Outlier detection is a rapidly developing procedure in
the healthcare and medical data industries, and it is a signif-
icant source of concern. Hauskrecht et al. [24] study data-
driven outlier-based surveillance and forewarning system
that uses data from former patient cases. Wilson et al. [25]
used the outlier identification method for hypoglycemia
safety in patients, calculating a flair outlier value within a
year, comparator group, and Alc threshold while consider-
ing at hazard population proportions. Jyothi et al. [26] used
outlier detection in healthcare data, a key source of concern
for health insurers. The development of a Supervised Outlier
Detection Approach in Healthcare Claims (SODAC) and
carried out in two parts. Noma et al. [27] offer optimal effect
measures for network meta-analysis models with mislaid
outcomes and appropriate degree of freedom adjustments.
The real data application of the IIS method in healthcare
and medicine with outliers for cross-sectional analysis does
not exist in the current literature [24-30]. To probe the effi-
cacy of the IIS method estimated via regularization tech-
niques for real data techniques, we use COVID-19 cross-
sectional surveillance data, which has been collected from
July 2021 to 30 September 2021 in Isolation Hospital and
Infectious Treatment Center (IHITC) Islamabad. We aim
to analyze the factors associated with prolonging the length
of hospital stay of COVID-19 patients in the capital territory
of Islamabad.
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2. Outlier Detection and Model
Selection Techniques

2.1. Impulse Indicator Saturation. Impulse indicator satura-
tion is a popular method of outlier detection as it already
dominates the existing outlier selection techniques like least
trimmed squares (LTS), M-estimator, and MM-estimator [9,
10]. Usually, in multivariate regression, we assume that error
is normally distributed, which is usually violated in real data
analysis. In the equation below, we assume that error is not
normally distrusted, and « is the intercept of the model, y
is the continuous dependent variable, and x;; is the orthogo-

nal regressors, where j=1,2,3, -+, k number of orthogonal
regressors and i =1, 2,3, -+, n observations.

k
yi=a+ Zﬁjxji"'ei' (1)
=i

As in equation (1), the error is not normally distributed
due to the presence of an outlier; in this case, the IIS method
introduces an impulse dummy indicator to each of the data
points, and the above equation would be

where
[1 0 0 0]
0 1 0 0
I=[l0 0 1 0 (3)
1
[0 0 0 0 1|

Here, I is an identity matrix of each corresponding
observation in the above equation. I} =(1,0,0,--- - 0),
1,=(0,1,0,0,--- - ,0), and I;=(0,0,0,--- - ,1). The
OLS estimate is not feasible to estimate the above General-
ized Unrestricted Model (GUM). Estimating the above equa-
tion is possible because Autometrics (created on general-to-
specific modeling) is used to detect the outlier and estimate
the model instantaneously. In the general-to-specific meth-
odology, each observation would have one dummy variable,
and additional exogenous variables can be considered that
possibly distress the dependent variable [10, 12].

2.2. Model Selection Methods. There are two main fields of
model selection methods when covariates are higher than
the number of data points: the regularization technique
and the classical (general-to-specific, Autometrics)
approach. The classical method (Autometrics) is initiated
by a saturated model and uses the multipath search process
to eliminate insignificant covariates. The model selection is
primarily dependent on the preset significance threshold.
On the other hand, the regularization approach applies spar-

sity to the p-dimensional vector of parameters, resulting in
numerous parameters of covariates equal to zero. This
approach resolves the issues that arise in high dimensional-
ity. We go through each of these methods further; however,
we only looked at orthogonal regularization approaches.

2.2.1. Autometrics. The general-to-specific model procedure,
presented by Hoover et al. [31], combines several compo-
nents of Krolzig and Hendry [32]. PcGets is a second-
generation extension of general-to-specific method; it
extends and clarifies Hoover and Perez’s methodology [32,
33]. Modifying the existing techniques, Doornik [9] intro-
duced Autometrics which is based on the same concept of
general to specialized (gets) modeling. Autometrics is a
third-generation algorithm based on the same concept of
PcGets.

Autometrics employs a tree path search that includes
multistep simplifications along several pathways. The
GUM contains all covariates at first and estimates them
using the OLS technique, removing statistically insignificant
covariates; the compact model’s reliability is tested at each
individual stage to guarantee consistency with the test diag-
nostics. Autometrics employs a tree-path exploration strat-
egy that involves multiple multistep simplifications. The
ultimate models are constructed that used a tree-path
approach and assessed using screening procedures; the
parameters are automatically eliminated if the parameter
estimates are statistically irrelevant. Autometrics retests their
union once a high number of terminal models are discov-
ered. A novel GUM is formed once the “surviving” terminal
models are merged, permitting another tree-path search rep-
etition. The whole search procedure is completed by reexa-
mining the terminal models and their consolidations. If a
large number of models pass all of the tests, the final deci-
sion is made on specified information criteria.

The test diagnostics are being used to ensure the simple
models, whereas inclusive tests are used to resolve several
terminal models. Epprecht et al. [20] argue that Autometrics
is a kind of black box technique. While developing modeling
techniques, the user can select among 1-cut and tight signif-
icance level and nominal significance level. The multipath
technique in Autometrics identifies multiple breaks/outliers
more effectively and has reduced estimator variance [34].
The multipath technique eliminates path reliance by
employing a tree structure and alike stepwise sequential
backward, an integral function of the gets package in R soft-
ware [15].

2.2.2. Regularization Techniques. Other than Autometrics,
regularization approaches manage saturated models with
irrelevant variables even if the amount of regressors excel
the quantity of data points (observations), shrinking the
irrelevant parameters to zero with a nearly biased estimate.
The Least Absolute Shrinkage and Selection Operator
(LASSO) was introduced by Tibshirani [17]. It is a standard
estimation method in a linear regression framework due to
its decreased computing cost. The LASSO does not hold an
oracle property; Zou [19] proposed Adaptive LASSO. The



regularization penalty is defined in

?j:argmin?;nl:(yi—a— gﬁjxﬁ_)’i1> +/\P<‘YjD- (4)

In the above equation, y is a continuous dependent var-
iable, x is an orthogonal covariate, and I is the impulse
dummy for outliers. The following regularization techniques
contemplate different choices for the penalty function,
which is summarized in Table 1.

(tasso)p, (|;|) =yl (5)

The “L1 penalty” for the LASSO estimator is the subse-
quent term in the preceding equation, and it primes to a
sparse solution with a very precise set of parameters exactly
equivalent to zero through a particular level of bias. The
choice of A determines the quantity of reduction, and it var-
ies from 0 < A < co.

Zou [19] revealed that the LASSO method violated the
oracle property and proposed the Adaptive LASSO as a
modest and effective alternative. On the other hand, the
coeflicients in LASSO are altogether penalized similarly in
the “L1 penalty.” Nevertheless, in the AdaLASSO method,
individual parameter is assigned its own weight. Zou [19]
demonstrated that if the weights are data-dependent and
correctly set, the AdaLASSO may have the best outcomes
and exhibit the oracle property.

=T

(Adaptive Lasso)p% (’y}’) =Aw;ly|,  wherew; = ‘?]

(6)

;=1 W]*|T, 7>0, and ?]* is a preliminary parameter
estimate. The weights of irrelevant parameters approach
infinity as the sample increases, whereas relevant parameters
approach a finite constant. Zou [19] suggested using the OLS
technique to estimate ?]* On the other hand, the OLS
approach does not work as soon as the amount of candidate
regressors excel the quantity of data points (observations). A
ridge estimate might be used as a preliminary estimator in
this scenario.

Fan and Li [16] introduced a new approach that satisfied
the condition of unbiased, sparsity, and continuity known as
Smoothly Clipped Absolute Deviation (SCAD).

[ylif [y[ <A,

(y2 —2al|y| + Az)
2(a+1)A

SCAD=\{ ~ if A<|y| <adland

1
E(a+ DAif |y| =z ak

(7)

Distinct to LASSO, SCAD uses two tuning parameters o
and A; P(y | A, a) of SCAD method is known as folded con-
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TaBLE 1: Regularization penalties.

Method Penalty function
k
LASSO 0= 20, (In])
AdaLASSO P(.)= /‘i@j‘%‘ .
=
k
SCAD P()= jzzlpj(‘yj Asa)
k
MCP P() = lequ)zj ;/\;rx>

py. () is a function denoted as penalty function, and A; is the function
J
parameter.

cave penalty that depends on A in a nonmultiplicative way;
hence, AP(«) =P(a| A). In addition, the tuning parameter
(M) affects the penalty’s concavity. The objective function’s
intensification is determined by A and a, A being chosen
via cross-validation and « is fixed equal to 3.7 [16].

Zhang [18] proposed the Minimax Concave Penalty
(MCP), a nonconvex regularization approach that uses
spares zone up to a specified choice of threshold to produce
an unbiased estimate.

vl .
— = sign if |y| < aA
MCP - 1 ( ;. Sisn ()it Jy| . (8)

0if [y > al

MCP employs the p;(|y;|; A; a) regularization pathway,
which is constructed on a family of nonconvex penalty func-
tions through two tuning parameters A and «, whereas « is
constant and A is chosen by cross-validation. The A tuning
parameter regulates the degree of penalty shrinking and con-
cavity. Because the maximum concavity is minimized, MCP
minimizes the convexity of the spares to a greater extent
[18]. SCAD and MCP estimates fall to the folded concave
penalty family since the P() penalty function is neither con-
vex nor concave.

2.2.3. Selection Criteria for Tuning Parameter. The selection
of tuning parameter is critical since it determines the com-
plication of the chosen model. The selection of the suitable
tuning parameters results in a compact model with accurate
forecast performance. In order to achieve prediction opti-
mality, the tuning parameter is commonly selected by a
cross-validation technique. The aim is to retrieve the pri-
mary collection of sparse covariates. Covariate selection typ-
ically needs a more substantial penalty parameter than
optimum prediction [35]. The information criteria like
Akaike Information Criteria (AIC) or Bayesian Information
Criteria (BIC) are used as another approach for penalizing
the likelihood through the degrees of freedom of the fitted
model. Degrees of freedom are frequently used to measure
the complication of a model fit, and we can use them to
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TaBLE 2: Simulated results with different percentages of outliers

TaBLE 3: Simulated results with different percentages of outliers

with 6 SD. with 4 SD.

20% outliers 20% outliers

Gauge Potency Gauge Potency

SCAD 0.222 0.367 SCAD 0.222 1.000
MCP 0.222 0.367 MCP 0.144 1.000
LASSO 0.611 0.767 LASSO 0.611 0.967
AdaLASSO 0.333 0.433 AdaLASSO 0.189 0.933
Auto(0.05) 0.011 0.100 Auto(0.05) 0.000 0.367
Auto(0.01) 0.011 0.100 Auto(0.01) 0.011 0.367

10% outliers 10% outliers
SCAD 0.100 0.500 SCAD 0.230 0.600
MCP 0.140 0.550 MCP 0.150 0.550
LASSO 0.650 0.850 LASSO 0.650 0.850
AdaLASSO 0.220 0.600 AdaLASSO 0.360 0.700
Auto(0.05) 0.010 0.200 Auto(0.05) 0.000 0.500
Auto(0.01) 0.000 0.200 Auto(0.01) 0.000 0.500

5% outliers 5% outliers
SCAD 0.048 0.600 SCAD 0.114 0.667
MCP 0.048 0.600 MCP 0.095 0.667
LASSO 0.591 0.933 LASSO 0.657 0.867
AdaLASSO 0.124 0.667 AdaLASSO 0.352 0.667
Auto(0.05) 0.000 0.534 Auto(0.05) 0.000 0.667
Auto(0.01) 0.000 0.534 Auto(0.01) 0.000 0.667

decide how much regularization to utilize. Meanwhile, in
terms of covariate selection and out-of-sample forecast,
WLAdaLASSO with a BIC-based tuning parameter pos-
sesses optimal results [23, 36].

BIC = n log (32) +log () +df (y), (9)

whereas 6°=n"'Y" (y,~7,)" and df(y) signifies the
degrees of freedom of the fitted model. The BIC-based tun-
ing parameter, on the other hand, is superior to cross-
validation for covariate selection, although there is no theo-
retical justification [35]. Henceforth, the BIC-based tuning
parameter is used for outlier and covariate selection in sim-
ulation and real data analysis.

2.3. Theoretical Assessment. The study is aimed at evaluating
the out-of-sample forecasting performance of regularization
methods in the presence of an outlier in the IIS setup. How-
ever, other than out-of-sample RMSE, we also emphasize the
average gauge and potency in the simulation study. Gauge is
defined as the empirical null retention frequency of how
insignificant variables/outliers are reserved, whereas potency
is identified as correct covariate/outlier identifications. The
assessment of regularization methods and Automatics was
evaluated via an accurate zero identification taken as
potency and improper zero identification denoted as gauge
[37]. If the considered techniques appropriately classify the
model, the evaluations of the subsequent parameters should
be expected:

(1) The gauge is getting close to the significance level
(0.05) or the tight significance level (0.01 or 0.001)

E(l;) — (10)

(2) When estimating techniques are used to estimate the
exact model efficiently, potency approaches 1

e
E|-= 1. 11
(krd) —> ( )

For out-of-sample RMSE, we randomly trained our
model on 90% of observations, and 10% of observations
were discarded to test the model’s accuracy in terms of
RMSE [23]. The RMSE of regularization techniques, even
in an outlier, is expected to be smaller than Autometrics.
However, LASSO will retain more regressor variables than
SCAD, MCP, and Autometrics.

3. Data Generating Process and Simulation
Experiment Result

The Data Generating Process (DG) in this section has opted
from [9] where the models consist of irrelevant regressors
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AdaLLASSO Auto (0.05) Auto (0.01)

FIGURE 1: Average RMSE with less than 5% outliers.

and outliers. We assumed well scatter outlier among DGP
with 5%, 10%, and 20% observations, which is different from
Doornik [9], as it has been illustrated 20% outlier at the end
of observations with magnitude coefficients equal to 6 in the
static DGP, where the DGP can be defined as

k
y,=0.1+ Zﬁjxﬁ +6(1) + ¢, (12)
j=1

where ;= -+ = B,, = 1 whereas k" is equal to 10 and
the rest of the other beta coefficients equal zero, and k =20
with i=1,2,---,100 observations. The regressors Xji~ IID(

0,1) and & ~IID(0, 1), whereas the outlying observations (
7) are equal to 5%, 10%, and 20% with 6 SD and 4 SD of
error term. To estimate the above DGP, we use the General-
ized Unrestricted Model (GUM) and introduce an impulse
dummy indicator for each observation in the model. The
experiment is repeated 1000 times.

3.1. Simulation Experiment Result. The comparison is
assessed under scenarios with 5%, 10%, and 20% scattered
outliers with 6 SD and 4 SD. The glmnet package for R soft-
ware is used to estimate LASSO and AdaLASSO. For MCP
and SCAD estimation, we use the ncvreg package of R; the
ncvreg package uses a coordinate descent algorithm, while
for Autometrics we use the gets package of R. To achieve
our study objective, we use a static DGP with orthogonal
covariates and dummy indicator saturation opts from
Doornik [9]. It provides a convenient base for comparing

regularization techniques with Autometrics in the presences
of outliers. Outcomes of the simulated scenarios are obtain-
able in Table 2. Table 2 illustrates the average gauge and
potency Autometrics and regularization techniques; how-
ever, the RMSE error of the out-of-sample forecast has been
presented below. We use Auto as an acronym of Auto-
metrics in the tables and figures, and the computational
efficiency of Autometrics is assessed with 0.05 and 0.01
significance levels.

Table 2 demonstrates the results of regularization tech-
niques with Autometrics for covariate selection and outlier
detection in potency and gauge. The result indicates that
with a 20% and 6 SD outlier, Autometrics performs worse
in average potency among all existing techniques. On the
contrary, LASSO possesses the highest gauge and potency
among regularization techniques. Meanwhile, SCAD and
MCP accomplish similar performance in both average
gauge and potency. The simulation result specifies that as
the outlier percentage decreases to 10%, the performance
of considered methods increases in average potency. How-
ever, the performance of SCAD and MCP improved with
both gauge and potency. With 5% outlying observation,
the considered techniques improved further. The SCAD
and MCP estimate retains 60% average potency with an
average gauge equal 5%.

In Table 3, the result indicates that with 20% and 4 SD
outliers, Autometrics performs worse among all existing
techniques in average potency; however, the average potency
of SCAD and MCP drastically increased compared to out-
liers with 6 SD. Meanwhile, significant improvement in the
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FIGURE 2: Average RMSE with 10% outliers.
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SCAD MCP LASSO AdaLASSO Auto (0.05) Auto (0.01)

. Outlier with 45D
[l Outlier with 6SD

F1GURE 3: Average RMSE with 20% outliers.

average potency of the regularization technique with 4 SD
outlier has been observed over 6 SD, whereas the perfor-
mance of the average gauge remains the same in both
seniors. On the contrary, LASSO possesses the highest gauge
and potency among regularization techniques, similar to
outliers with 6 SD. Compared to LASSO and SCAD, MCP
performs significantly in gauge equal to 0.095 and 0.114 of
SCAD with a 5% outlier. The simulation result shows that
as the outlier percentage decreases to 10%, the performance
of considered regularization methods decreases in average
potency, whereas the average gauge remains similar to 20%
outliers.

Overall, the simulation result indicates that outliers with
4 SD and 5% outlying observation regularization techniques
perform better than 6 SD outliers in terms of average

potency, whereas the average gauge of regularization tech-
niques with 6 SD is lower than 4 SD outliers. The Auto-
metrics possesses the least average gauge in all scenarios
(5%, 10%, and 20%, 6 SD and 4 SD) at the rate of the smal-
lest average potency among all considered techniques. In
contrast, LASSO possesses the highest potency and gauge
of all other methods.

Figures 1-3 represent the out-of-sample forecasting per-
formance of the considered methods. The graphs illustrate
that the average RMSE error of LASSO with 20% and 10%
outlier observations is the least among all considered tech-
niques. The result aligns with existing literature as LASSO
possesses the least forecasting error and selects a more irrel-
evant regressor (which can be observed from Table 1) [38].
However, with less than 5% outlier observations, the SCAD
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and MCP possess the least RMSE 3.03 than all other tech-
niques, even less than Autometrics. We observed that Auto-
metrics with 5% outliers possesses the least gauge but retain
higher RMSE than SCAD and MCP. Autometrics with 0.05
level of significance possesses the least RMSE than 0.01 level
of significance, the fact that Autometrics with 0.01 level of
significance omits relevant regressors which increases the
average RMSE.

There is a significant improvement in average RMSE
with 4 SD with 5% and 20% outliers compared to 6 SD with
5% and 20% outliers. This difference can be justified as with
5% and 4 SD outliers, the average potency is higher (means
that method correctly identified the correct variables/
dummy indicator) compared to 6 SD, which ultimately
impact the out-of-sample RMSE, and the same pattern can
be observed with 20% outliers and 6 SD the average potency
is least due to this reason the out-of-sample RMSE increases.
However, the average potency of 20% outliers with 4 SD is
close to 1 for regularization techniques; due to this, the
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FIGURE 6: Residual box plot of linear regression.

TaBLE 4: Real data analysis with covariate selection and number of
selected outliers.

SCAD number of selected outliers (28)

Variable  Gender  CRP level Oth.er. .
comorbidities
Coefficient 0.24463 0.00083 0.20533
MCP number of selected outliers (31)
Variable  Gender  CRP level Oth‘er. .
comorbidities
Coefficient 0.22493 0.0004 0.2585

LASSO number of selected outliers (204)

Variable Age Gender CRP level Oth'er' .
comorbidities
Coefficient 0.00225 0.55747 0.00282 1.3966

Auto(0.05) number of selected outliers (14)

CRP Other
level comorbidities

Coefficient 0.00766 0.9653

Variable

out-of-sample RMSE of regularization techniques is the least
compared to 6 SD, as shown in Figure 3. On the contrary, as
10% and 4 SD and 10% and 6 SD outliers, the performance
of considered methods is aligned in average potency, and
consequently, the average RMSE are almost similar observed
in Figure 2.

4. Real Data Analysis

Coronavirus disease 2019 (COVID-19) is a global outbreak
triggered by coronavirus 2, which origins severe acute respira-
tory illness (SARS-CoV-2). The World Health Organization
declared COVID-19 a pandemic in March 2020. Meanwhile,
the confirmed number of cases around the globe has been
reported as 504,079,039, with 6,204,155 fatalities as of April
20, 2022 (https://covid19.who.int). However, Pakistan is not
among the nations with the uppermost number of COVID-
19 cases and fatalities. The initial case of COVID-19 was iden-
tified in Pakistan on February 25, 2020. Up to April 20, 2022,
1,527,411 COVID cases had been reported, with 30,364 fatal-
ities (https://covid19.who.int/region/emro/country/pk).


https://covid19.who.int
https://covid19.who.int/region/emro/country/pk
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FIGURE 7: Out-of-sample RMSE of real data analysis.

Coronavirus pneumonia (COVID-19) is a worldwide
health emergency because of its quick transmission and high
death rate [39]. The clinical and physiological characteristics
of SARS-CoV-2, as well as diagnostic approaches, have been
studied all over the world [40]. During this pandemic, scien-
tists and physicians face a global challenge in patient care
and suitable treatment techniques, including creating an
effective vaccine. Different diagnostic indicators have played
a significant role in diagnosing and controlling the status of
SARS-CoV-2 patients [41]. C-reactive protein (CRP) levels
can be used as a biomarker to help diagnose pneumonia
early, and individuals with severe lung infections have
increased CRP levels [42]. Patients with COVID-19 have
higher serum C-reactive protein (CRP) levels, which are
used to help classify, diagnose, and make a prognosis of
the disease [43]. This analysis is aimed at investigating the
relationship between the length of hospital stay and CRP
level, gender, age, diabetes, patient discharge status, and
other comorbidities with permission of hospital authorities
and consent of patient’s privacy. The data was gathered from
Isolation Hospital and Infectious Treatment Center (IHITC)
in Islamabad from July 2021 to 30 September 2021. A total
of 275 patients agreed to join in the study between July
and September. All the patients admitted they belonged to
Rawalpindi and Islamabad regions. We extracted informa-
tion for each individual, including age, gender, diabetic sta-
tus, comorbidities, length of hospital stay, CRP level, and
patient discharge status. Figure 4 illustrates the correlation
graph of considered variables; this indicates the positive cor-
relation between the hospital stay and CRP level with corre-
lation equals 0.2 and negative correlation with other
comorbidities with -0.1. However, patients’ survival and
age are positively associated with hospital stay with a corre-
lation equal 0.2 and 0.1, respectively. Figure 5 illustrates the
box plot of the hospital stay. It indicates that the minimum
length of hospital stay equals 1 and maximum 41, as the hos-
pital stay is the dependent variable and contains an outlier,
as shown in Figure 5. Furthermore, the residual plot of linear

regression presented in Figure 6 confirms outliers in model
residuals. For the out-of-sample forecast, we randomly train
the model on 90% of observations (233) and validate 10% of
observations (26) [23, 44, 45].

After the confirmation of outlier in the data set, the esti-
mated model with the IIS method is defined

Hospital stay = B, + 3, gender + 3,age + 3, diabetes + 3, CRP

+ Bssurvival + B other comorbidities
233
+ Z yl; +€;.

i=1

(13)

Table 4 indicates that SCAD and MCP perform similarly
in covariate selection, as gender, CRP level, and other
comorbidities are significant variables which increase the
length of hospital stay. However, SCAD selected 28 outliers,
and MCP selected 31 slightly higher than SCAD.

The real data analysis confirms that the LASSO estimates
more covariates and outliers than other regularization tech-
niques, aligned with our simulation findings. LASSO selects
four more than covariates selected via SCAD and MCP.
Autometrics with a 5% significance chooses two covariates
and 14 outliers. AdaLASSO and Autometrics with a 1% sig-
nificance do not select any covariate, only retain outliers.
Opverall, real data analysis indicates that gender, CRP level,
and other comorbidities are significant covariates. These
indicator dummies can be interpreted as an observed hetero-
geneity of individuals, which prolonged hospital stay length.
We report the RMSE of regularization techniques in
Figure 7.

The above figure indicates that SCAD and MCP outper-
form out-of-sample RMSE compared to all other considered
techniques. As expected, the LASSO selected more indicator
dummies and retained higher RMSE than SCAD and MCP.
With 0.01 (level of significance), Autometrics holds the



10

highest RMSE compared to all other techniques because it
dropped relevant covariate simulation finding aligned with
existing studies of [20, 23]. Autometrics with tight signifi-
cance levels omits relevant variables due to this RMSE
increase (as observed from the simulation graph and table).
In contrast, with a nominal significance level (0.05), Auto-
metrics possesses higher RMSE than regularization
techniques.

5. Conclusion

In cross-sectional data analysis, outlier occurred most fre-
quently than the time series analysis, although outlier
detection is a quick operation in healthcare and medical
data, which is a significant cause of concern. Overall anal-
ysis indicates that regularization techniques perform more
significantly than Autometrics in out-of-sample forecasting
and covariate selection in simulation and real data analy-
sis. However, the IIS method estimated via SCAD and
MCP compromises promising covariate selection and fore-
casting results among regularization techniques. Regulari-
zation techniques with 20% and 4 SD outliers possess a
higher average gauge than 20% and 6 SD. Conversely,
5% and 4 SD outlier’s regularization technique possesses
a higher average gauge than 5% and 4 SD outliers. Overall,
with 4 SD outliers, the out-of-sample RMSE is optimal
than 6 SD.

On the contrary, the LASSO estimates more outliers and
covariates in simulation experiments and real data analysis
than other regularization techniques. The real data analysis
confirms the simulation findings, as the SCAD and MCP
possess a minimum out-of-sample RMSE than Autometrics
and LASSO. The real data analysis indicates that SCAD
and MCP select three covariates, gender, CRP level, and
other comorbidities, and possess the least RMSE. The real
result is aligned with simulation findings as SCAD and
MCP retain the highest potency and least RMSE compared
to Autometrics. In contrast, LASSO possesses the highest
gauge in simulation study compared to all considered tech-
niques; the finding is aligned with real analysis as it retained
the highest outliers. The concept of the IS method for outlier
detection in the cross-sectional analysis would help to pre-
serve unobserved heterogeneity in cross-sectional analysis,
which simultaneously declines the RMSE of the estimated
model. Our study proves that the IIS method for outlier
detection and covariate selection estimated via SCAD and
MCP gives more precise results than Autometrics in orthog-
onal covariates and outlier presences.
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