A RTl C L E W) Check for updates

Highly parallel and efficient single cell mRNA
sequencing with paired picoliter chambers
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ScRNA-seq has the ability to reveal accurate and precise cell types and states. Existing
scRNA-seq platforms utilize bead-based technologies uniquely barcoding individual cells,
facing practical challenges for precious samples with limited cell number. Here, we present a
scRNA-seq platform, named Paired-seq, with high cells/beads utilization efficiency, cell-free
RNAs removal capability, high gene detection ability and low cost. We utilize the differential
flow resistance principle to achieve single cell/barcoded bead pairing with high cell utilization
efficiency (95%). The integration of valves and pumps enables the complete removal of cell-
free RNAs, efficient cell lysis and mRNA capture, achieving highest mRNA detection accuracy
(R=0.955) and comparable sensitivity. Lower reaction volume and higher mRNA capture
and barcoding efficiency significantly reduce the cost of reagents and sequencing. The single-
cell expression profile of mES and drug treated cells reveal cell heterogeneity, demonstrating
the enormous potential of Paired-seq for cell biology, developmental biology and precision
medicine.
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any physiological functions of multicellular organisms are

reflected in the temporal and spatial changes in gene

expression between constituent cells!. Cellular hetero-
geneity presented by different gene expression profiles, functions
and morphologies occurs not only in different tissues but also even
within the same cell type. Transcriptomic profiling of individual
cells has emerged as an essential tool for characterizing cellular
diversities to have a complete catalog of cell types or their functions.
However, traditional single-cell analysis methods can monitor only
a few types of molecules for each cell>3. In 2009, single cell mRNA
sequencing (scRNA-seq) was first introduced by Tang to analyze
the whole transcriptome in single cells?. As one of the most pow-
erful tools to understand the heterogeneity of biology>~10, scRNA-
seq contributes to discovering the cellular and molecular driving
forces of biology, unveiling new biological insights about cell
types!1-16, which has a broad impact on diverse biology fields,
including development!”!8, immunology!®?°, neurobiology?’,
cancer®21-23, gene regulation?4, and epigenetics®2°.

For scRNA-seq, it comes first with the isolation of single cells
from their native environment, such as a culture dish or cell
suspension. Traditional methods, including limiting dilution®,
capillary picking?’, and laser capture microdissection (LCM)?28,
suffer from time and labor consumption, cell damage, and low
throughput. In recent years, microfluidic devices characterized by
their manipulation integration, low reagent consumption, size/
volume compatibility, and external contamination isolation have
demonstrated their capability in high-efficiency, high-viability,
and low-cost single-cell isolation. After single-cell isolation, each
cell must be processed and sequenced individually to obtain
transcriptome information, which is labor intensive and cost
prohibitive, especially when a large population of cells is needed
to be processed. To address this problem, several novel high-
throughput platforms have been reported, including Drop-seq!3,
inDrop!2, Seq-well!®, and Microwell-seq!4, etc., which used bar-
coded beads to label individual cells during reverse transcription
so that cDNAs from all the cells could be simultaneously pooled
for amplification and sequencing®®. By identifying the cell bar-
code and molecular index, the cell origin of cDNA could be
inferred and the amplification bias could be corrected.

Successful barcoding of individual cells relies on co-
encapsulation of a single cell and barcoded bead within a single
droplet or microwell’0. Current high throughput scRNA-seq
platforms utilize a limited dilution strategy for cell/bead encap-
sulation to ensure that there is no more than one cell or one bead
in each reaction compartment based on Poisson statistics.
Unfortunately, such a limiting dilution strategy for both cell and
bead is wasteful of reagents and causes loss of cells, which is
unacceptable when only a limited number of cells, such as stem
cells, neuron cells, or circulating tumor cells (CTCs) are avail-
able!0. Additionally, how to avoid the interference of cell-free
RNAs produced during the preparation of cell suspension to
achieve information about the true original cell is another chal-
lenge for scRNA-seq!3. For the preparation of solid tissues,
enzymatic digestion will destroy the extracellular matrix and
disrupt the cell-cell junctions, releasing RNAs into the extra-
cellular “soup”. Furthermore, cell death also results in the release
of cellular RNAs in both tissues and blood samples. These cell-
free RNAs would lead to noise in the data produced by scRNA-
seq experiments. Thus, it is difficult to evaluate how faithfully the
tissue and blood samples are represented by the scRNA-seq
analysis.

In order to realize both a parallel and an efficient processing for
a limited number of cells, it is very necessary to develop a high-
efficient single cell manipulation platform for scRNA-seq. Herein,
we present a scCRNA-seq platform, named Paired-seq, with high
cells/beads utilization efficiency?!, as well as excellent sequencing

accuracy and sensitivity by integrating barcoding technology for
cell tagging, droplet strategy for parallel compartmentalization,
hydrodynamic differential flow resistance based isolation for
single cell/bead, and micro-pumping structure for active fluidic
control. Our Paired-seq chip allows automatic isolation enabling
the pairing of single cell and single bead in a reaction unit with an
efficiency up to 95%. Thus, Paired-seq achieves efficient utiliza-
tion of precious cells. After cell/bead capture and pairing, for-
mation of picoliter droplets allows highly parallel processing of
dozens to thousands of cells. Integration of valves and pumps
enables the on-chip removal of cell-free RNAs in the cell cham-
bers, making it possible to identify the true composition of the
original sample. Cell lysis, mRNA capture and reversed tran-
scription can be efficiently carried out in the tiny droplet by virtue
of active pumping for fluid transportation and rapid mixing.
Analysis results of sequencing data for External RNA Controls
Consortium (ERCC) suggests that our method offers high accu-
racy (R=0.955) and comparable sensitivity compared to other
current scRNA-seq platforms. What is more, the lower reaction
volume and higher mRNA capture and barcoding efficiency sig-
nificantly reduce the cost of reagent and the sequencing cost.
Using Paired-seq, we analyze the single-cell expression profile of
mES cells and anti-cancer drug treated cells, revealing the het-
erogeneity of the cell population during differentiation and drug
treatment processes which show an enormous potential of our
platform for cell biology, developmental biology and precision
medicine.

Results

Workflow of Paired-seq. We designed and fabricated a micro-
fluidic chip (Fig. 1a and Supplementary Figs. 1-3) which con-
tained hundreds to thousands of reaction units (Fig. 1c and
Supplementary Fig. 2) for parallel single cell and single barcoded
bead pairing and sample processing (Supplementary Movie 1).
Each reaction unit is designed based on the hydrodynamic dif-
ferential flow resistance principle to allow no more than one bead
and cell to be captured in each bead capture chamber and cell
capture chamber, respectively (Fig. 1d, a). The cell-free RNAs can
be easily removed by injecting washing buffer while maintaining
the single cells in the chambers. After bead and cell isolation, gas
is introduced to form two droplets in each reaction unit con-
taining one cell and one bead, respectively (Fig. 1d, b). These two
droplets are then merged by turning off a separation valve located
in between, thus forming a larger picoliter droplet containing
exactly one bead and one cell (Fig. 1d, c). Because the bead-
loading solution contains cell lysis buffer, mixing of the bead
droplet with the cell droplet leads to cell lysis. The barcoded bead
contains cell label and molecular index for cell/molecular bar-
coding, poly-(dT)so for mRNA capture and universal primer for
cDNA amplification (Fig. 1b). Once released from the cell, poly
A-tail mRNAs are captured by poly-(dT);o on the beads and
reverse-transcribed to form the cDNAs (Fig. le). After sub-
sequent bead recovery, cDNA amplification, library preparation
and sequencing, the original information about the cell/molecule
can be inferred to achieve an expression matrix for dozens to
thousands of single cells (Fig. 1f, g).

Chip design for Paired-seq. The three-layer chip consists of a
capture channel layer, a valve/pump actuation control layer, and
an elastomeric membrane layer in between (Fig. 2a and Supple-
mentary Figs. 1-3). Each chip contains hundreds of reaction units
consisting of a cell flow channel and bead flow channel connected
by a connection channel (Fig. 2b). To break the limitation of
limiting dilution and avoid wasting precious cells, Paired-seq chip
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Fig. 1 Paired-seq: a Platform for DNA Barcoding scRNA-Seq. a Photograph of Paired-seq chip with a Quarter dollar coin. b Sequence of primers on the
barcoded beads. The primers on beads contain mRNA capture poly-(dT)so, molecule index, cell label, and universal primer. € Schematic diagram of cell and
barcoded bead pairing on Paired-seq chip. Scale bar is 200 pm. d Schematic of the basic workflow for single cell and bead parallel manipulation on Paired-
seq chip, including (a) capture and pairing of single cells and single beads (b) droplets generation to separate adjacent units (¢) cell lysis and mRNA

captured on barcoded beads. e After hybridizing to the primers on the barcoded beads, mRNAs are reverse-transcribed to produce cDNAs. All the cDNAs-
attached beads are recovered from the chip and (f) subsequently amplified for library preparation in bulk. g Data analysis to generate single cell expression
matrix. Millions of paired-end reads are generated from a Paired-seq library on a high-throughput sequencer. The reads are first aligned to a reference
genome to identify the gene of origin of the cDNA. Next, reads are grouped by their cell barcodes, and individual UMIs are counted for each gene in each
cell. The result is a “digital expression matrix” that each column corresponds to a cell, each row corresponds to a gene, and each entry is the integer

number of transcripts detected from that gene, in that cell.

is designed based on a paired differential flow resistance capture
principle, so that a single cell

and a single bead can be isolated and paired with high
efficiency. In the sample loading process, when a capture chamber
is empty, flow resistance along the straight channel is lower than
that in the long loop bypass channel, and the main stream flows
along the straight channel, leading to a single cell/bead in the flow
being trapped in the chamber (Fig. 2b, Trapping mode). The size
of the trapped cell/bead is larger than that of the orifice of the
capture chamber and thus will block the local flow and then
dramatically increase the flow resistance along the straight
channel. Consequently, the main flow redirects to the bypassing
channel and subsequent cells/beads will flow into the bypassing
stream, going to the next paired unit (Fig. 2¢c, Bypassing mode).
This capture mechanism ensures that there is no more than one
cell/bead captured in one chamber. Because the diameter of beads
(20-40 pm) is larger than that of cells, an asymmetrical paired
unit is designed with a wider channel for beads and a narrower
channel for cells.

To allow efficient cell lysis and mRNA capture to afford high
mRNA detection sensitivity, valves and pumps were integrated in
the Paired-seq chip. Firstly, to enable independent loading of cell
and bead solutions, a blocking valve is designed orthogonally
below the connection channel for each paired unit (Supplemen-
tary Movie 2). Secondly, as each chip consists of hundreds to
thousands of reaction units, to avoid cross-contamination, the
reaction unit is separated by air. This can be realized by reversely
introducing an air flow in the capture channel and extra solution
outside capture chamber is dispelled, forming water-in-air

droplets and effectively separating each individual reaction unit
(Fig. 2d, Droplets forming mode and Supplementary Movie 3).
Formation of droplets allows hundreds of cells to be processed in
parallel for high-throughput analysis. Finally, to facilitate the
exchange of reagents between the paired chambers droplets, there
is a driving pump below each capture chamber (Fig. 2a, e). By
alternately activating the driving pumps for the cells and the
beads, solutions in the two chambers can be easily transferred
back and forth, thus allowing efficient mixing of the paired
droplets.

To better understand the flow characteristics around the
microfluidic traps and to determine the optimal parameters for
microfluidic channel design, a computational fluid dynamics
(CED) analysis was carried out using COMSOL 4.3 (COMSOL
Multiphysics) to simulate the hydraulic resistance in the channel
of the paired unit in the mode of trapping, bypassing and droplets
forming, respectively (Fig. 2b-d).

High efficiency of single-cell assays on Paired-seq chip. In order
to demonstrate the feasibility of the chip design for scRNA-Seq, a
Paired-seq chip with 800 and 2000 units was first fabricated
(Fig. 2f-h and Supplementary Fig. 2). Based on the dimensions of
the fabricated chip, the total volume of each reaction unit was
calculated to be less than 400 picoliter.

To test the single cell/bead isolation and pairing efficiency of
the Paired-seq chip, barcoded beads and Calcein AM-strained
K562 cells were loaded. Supplementary Movie 4 and Movie 5
illustrate the dynamic process of single-bead and single-cell
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Fig. 2 Design criterion and structure characterization of Paired-seq chip. a The 3D cartoon diagram of the capture layer and the control layer of the chip.
b, d The simulation results of trapping mode (b), bypassing mode (¢) and droplets forming mode (d). e The cartoon diagram of cross section for one unit in
Paired-seq chip. f, g Structure characterization of Paired-seq chip. Top view image of a Paired-seq chip with 800 units (f) and one paired unit (g). h The 3D
surface profiling of SU8 silicon model of the flow layer for one paired unit by 3D laser scanning confocal microscopy.

trapping, confirming that the trapped cells/beads work as plugs to
block the local flow and prevent the incoming of subsequent cells/
beads. As expected, successful single cell/bead trapping and
pairing was observed with high efficiency (Fig. 3a and
Supplementary Fig. 4). Overall, the single-particle chamber
occupancy ratio was found to be as high as 97% (Fig. 3b). The
statistics of cell/bead occupancy rate and pairing rate are shown
in Fig. 3c. A pairing rate of about 95% was achieved, which is a
significant improvement compared to other scRNA-seq plat-
forms. Finally, with a high speed flow of solution in the reverse
direction, nearly 100% of the trapped barcoded beads could be
recovered for downstream processing (Fig. 3¢ and Supplementary
Fig. 5), which outperformed other platforms such as Drop-seq!?
The combination of high loading rate, high pairing rate and
remarkable recovery rate avoids loss of cell information.

In addition to the capacity of compartmentalization of single
cells/beads with high efficiency, Paired-seq chip was designed to
capture cells with minimum loss even with low-input cell
number. Different low numbers (40, 80, 100, 200, 300, 400,
500, 800) of input cells were injected, and the capture efficiency
(Fig. 3d) was calculated. The result showed that as high as 90% of

4

input cells could be captured. Such a high capture efficiency for a
low input number of cells will be of great significance in dealing
with precious cell samples.

Cell-free RNAs removal capability. Preparation of a single-cell
suspension sample remains one of the most difficult tasks for
scRNA-seq to generate meaningful biological representative data.
It is difficult to identify the true composition of the original
sample because of the presence of cell-free RNAs derived from
tissue digestion and cell death. Paired-seq chip allows indepen-
dent loading and washing of cells and beads independently which
can prevent the barcoded beads from being contaminated by cell-
free RNAs in the cell solution. To verify the capability of cell-free
RNAs removal on Paired-seq platform, TAMRA fluorescent dye
and PBS solutions were loaded into the cell capture channel and
bead capture channel, respectively. The connection channel was
kept blocked for 6h, and there was no observable increase of
fluorescence intensity in the bead capture channel (Supplemen-
tary Fig. 6A, B, Supplementary Movie 6), indicating the excellent
isolation effect of the blocking valve to avoid contamination from
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Fig. 3 Profiling of Paired-seq chip. a Image of Paired-seq chip loaded with single cells and single beads, which were compartmented in water-in-gas
droplets. b The occupation ratio of single particle in Paired-seq chip. Error bars, mean * s.d., n = 4. ¢ The statistical chart of bead and cell occupation ratio,
pairing ratio and bead recovery ratio. Error bars, mean = s.d., n = 3. d Single cell capture efficiency with different numbers of input cells. Error bars, mean
s.d., n = 3. e Change of cell chamber fluorescence intensity indication mixing efficiency of TAMRA dye solution in bead chamber with PBS in cell chamber
under conditions of free diffusion and pump driving. f Characterization of DNA hybridization on the surface of barcoded beads with target DNA and

random DNA. Source data are provided as a Source Data file.

cell-free RNAs during cell/bead solution loading. Considering the
low sensitivity of fluorescence imaging, a small number of RNA
molecules could also be amplified in the subsequent reactions,
such as PCR amplification and sequencing, which would affect
the experimental results seriously. Therefore, we also used the

sequencing method to further verify the isolation effect of the
blocking valve and the cleaning effect. Total RNAs extracted from
the same number of cells with a different species, considered as
cell-free RNAs, were doped into human/mouse cell loading
solution. Cells were captured in the chambers and washed with
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1 x DPBS as the blocking valves were still activated. In neither test
(mouse cells with human RNAs contamination or human cells
with mouse RNAs contamination) did we detect obvious cell-free
RNAs contamination from the other species (Supplementary
Fig. 6C, D). Our results verified the complete isolation achieved
by the blocking valve and the complete removal of background
cell-free mRNAs in the cell suspension after washing, which is a
significant advantage over other scRNA-seq platforms, such as
Drop-seq and Seq-well.

Rapid cell lysis and mRNA capture with active pumping. Other
challenges in the preparation of single-cell transcriptome
sequencing samples, such as the lengthy time for single-cell lysis
and poor mRNA capture efficiency, will affect the quality of the
sequencing library and further affect the accuracy and sensitivity
of the sequencing results. To evaluate the efficiency of mixing
between paired droplets on our Paired-seq chip, a paired-droplets
array was generated with one droplet containing TAMRA solu-
tion and PBS in the other. The blocking valve was then turned off
to allow mixing of solutions in the cell and bead chambers. A very
slow increase of fluoresce intensity was observed in the bead
capture chamber due to free diffusion. In contrast, immediately
after activating the two driving pumps, the fluorescence intensity
in the cell capture chamber increased sharply and reached
saturation in a few seconds, demonstrating rapid mixing between
paired droplets enabled by the driving pumps (Fig. 3e, Supple-
mentary Fig. 7, and Supplementary Movie 7). As a result, in the
picoliter reactor, a cell can be completely lysed within 2 min
(Supplementary Fig. 8 and Supplementary Movie 8) and FITC-
labeled poly(A) DNA can be pumped from the cell chamber to
the bead chamber and captured on beads within 20s (Fig. 3f),
indicating that the specific hybridization between mRNAs and
barcoded bead can be performed rapidly on Paired-seq chip. To
test the influence of shear forces on RNA quality or transcription,
we compared the gene detection ability reflecting RNA integrity
with different loading time. Our results suggested that at the
loading time of 15 min and 40 min, the number of detected genes
show no significant difference, suggesting that loading time does
not cause spurious/stress to transcription (Supplementary
Fig. 9A). We also analyzed the expression levels of 9 genes (ARFI,
CAST, CDK7, DBI, DDIT3, ENO2, ETF1, PLOD2, and RGS2)
reported to have correlations with mechanical stress2. Herein,
the nine genes were biologically well characterized in terms of
protein function, including cell communication, cell signaling,
cell cycle, stress response and calcium release. There were no
remarkable differences of the gene expression described above
between the samples with different loading time, indicating that
the shear force did no damage to the cells (Supplementary
Fig. 9B). Controllable, rapid, and efficient cell lysis and mRNA
capture in picoliter chambers enabled by active pumping is
essential for high sequencing accuracy and sensitivity.

Single-cell mRNA sequencing. To assess the feasibility of
scRNA-seq on this platform, we performed a mixed-species
experiment with cultured human (K562) and mouse (3T3) cells,
and the sequencing result of cell barcodes is shown in Supple-
mentary Fig. 10. By avoiding the limiting dilution of cell and
barcoded bead compartmentalization, 768 cell barcodes were
successfully harvested with high quality in an 800-array Paired-
seq chip, demonstrating very high efficiency on both the cells and
the barcoded beads utilization (Fig. 4a). The result of the human-
mouse experiment is shown in Fig. 4b, and each dot represents a
cell barcode and number of UMIs derived from the human/
mouse source. The closer the dots to the x-axis/y-axis, the higher
purity of the cell barcode for the corresponding single species.

Among all the 768 harvested cell barcodes, 386 were identified as
human species and 376 as mouse, yielding less than 0.8% mixed-
species dots (while 2.4% mixed-species dots with 2000-unit
Paired-seq chip)(Fig. 4b and Supplementary Fig. 2). Compared
with other available scRNA-seq platforms, our Paired-seq showed
a very low doublet rate (Supplementary Fig. 10B). The results
established excellent single-cell integrity for scRNA-seq and
indicate an obvious advantage in detection of transcripts and
genes of Paired-seq.

To test the reproducibility of Paired-seq, different numbers of
cells were harvested at different sequencing depths and culture
times. We collected 188 and 248 K562 cells at an average
sequencing depth of 18 x 103 and 39 x103 mapped reads per cell,
respectively. Technical replicates showed very high reproduci-
bility (Pearson correlation, R = 0.979, Fig. 4c). In addition, our
platform has the ability to evaluate the individual cell state
according to cell-cycle scores, which were calculated for each
human K562 cell based on previously reported phase-specific
genes and methods!3. Cells at different cell-cycle stages were
clearly separated based on their cell-cycle scores (Fig. 4d). In
general, Paired-seq presented high-efficient single-cell mRNA
sequencing with reliable reproducibility and detection ability.

Excellent sequencing accuracy and sensitivity with low cost.
Deeper sequencing depth can enhance the sensitivity of gene
detection, but it can also significantly increase the cost. In order
to balance sensitivity, accuracy, and cost, we analyzed the rela-
tionship between the sequencing depth and accuracy/sensitivity at
single cell level of different platforms at the same time. To esti-
mate the accuracy and sensitivity of Paired-seq, we compared the
results with recent scRNA-seq platforms using ERCC and mES
cells. About 100k molecules of ERCC and single mES cells were
compartmentalized in the cell capture chamber and paired with
individual barcoded beads to generate scRNA-seq libraries from
ERCC and mES cells. In order to further optimize the operation
on chip, we firstly compared the quality of sequencing data for
ERCC experiment by using Paired-seq with enzymatic process on
and off chip (in tube). The results showed that the percentages of
mapped reads for enzymatic process on chip were significantly
higher than that in tube. Most of the unmapped reads (due to too
short sequence) in off-chip sample could be traced back to primer
on the barcoded beads, which confirmed that the insufficient
enzymatic reaction brought in technical noise (Supplementary
Fig. 11). Then we followed the same protocol for subsequent
sample preparation on Paired-seq chip. A total of 55 ERCC
captured barcoded beads were sequenced at a depth of 1 million
reads per bead. The ERCC sequencing data were processed with
umis33 software based on the existing benchmark. Additionally,
70 mES cells were sequenced at a saturated sequencing depth
(over 0.5 million mapped reads per cell) and downsampled to a
normalized depth of 0.5 million mapped reads per cell. Then the
normalized data were randomly subsampled to reveal the corre-
sponding changes in accuracy and sensitivity for each platform.
The pipeline shown in Supplementary Fig. 12 was used to process
the data for accuracy/sensitivity comparison with other platforms.

The accuracy here is defined as the Pearson product-moment
correlation coefficient (R) between log-transformed detected
ERCC counts and input ERCC spike-in counts per droplet which
had been previously established?*. The high accuracy achieved
(R=0.973) indicates that Paired-seq is a reliable platform to
identify marker genes with low expression level (Fig. 4e and
Supplementary Fig. 12c). ERCC sequencing data from Paired-seq
were analyzed with established data analysis methods, with UMI
merging and without merging, yielding capture efficiencies of
16.8% and 50%, respectively. Both values are slightly higher than
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those of Drop-seq (12.8% and 47%), respectively!3. Considering a
global effect of sequencing depth, we also used a linear model,
including an individual corrected performance parameter for
each platform that could be ranked to account for the sequencing
depth®%. According to the model, we found that Paired-seq had
the highest accuracy (R=0.955) for ERCC detection (Fig. 4f)
among 16 different kinds of scRNA-seq platforms (Fig. 4f and

(Number of detected genes = 2000)

Supplementary Figs. 13 and 15). In addition, we compared the
accuracy of Paired-seq and a series of other scRNA-seq methods,
including CEL-seq2/C1, Drop-seq, MARS-seq, and SCRB-seq, at
the normalized sequencing depth (Fig. 4h) with data for mES
cells. The Pearson correlation coefficient (R) of reference gene
expression values for each cell and average expression of all the
cells were calculated and shown in the plot by different
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Fig. 4 Characterization of Paired-seq platform. a Plot of the cumulative fraction of reads vs barcodes accumulates which are arranged in decreasing order
of size (number of transcripts) for the human-mouse mixture experiment. b Human-mouse mixture experiment using Paired-seq. ¢ The technical repeats
from two independent experiments indicate high correlation of 0.979. d Cell-cycle state of K562 was measured by Paired-seq. The cells were ordered by
their phase scores. @ Accuracy and mRNA capture efficiency evaluated by ERCC sample. f, g Models of accuracy and sensitivity with a global dependency
on sequencing depth. Each model has 26 parameters and is fitted to n = 20,772 samples. Bulk data (pink triangles) are displayed only for context. Solid
curves show the predicted dependence on sequencing depth. f Accuracy is only marginally dependent on sequencing depth. Saturation occurs at 270,000
reads per cell in the model (dashed red line). Methods are ordered by performance on the basis of predicted correlation (R) at 1 million reads. g Sensitivity
is critically dependent on sequencing depth. Saturation occurs at 4.6 million reads per cell (dashed red line). The gain from 1to 4 million reads per sample
is marginal, whereas moving from 100,000 reads to 1 million reads corresponds to an order-of-magnitude gain in sensitivity (dashed black lines). Methods
are ordered by performance on the basis of predicted detection limit (#M, number of molecules at 1 million reads). h Accuracy of single-cell resolution for
mES cells. Each dot represents a cell and each box represents the median and first and third quartiles per replicate and method. 72, 77, 53, 38, and 70 cells
were used for Paired-seq, CEL-seq, Drop-seq, MARS-seq and SCRB-segq. i Fitted (solid line) and predicted (dashed line) curve of median genes detected for
single mES cell to varying mapped reads according to experiment results of five different platforms. Two-tailed F-test was performed to generate P-value to
assess the accuracy of the curve (P-value > 0.05). j The number of mapped reads for five different platforms when the detected number of genes were

2000. Source data are provided as a Source Data file.

methods!®. Paired-seq showed a very high accuracy (R=0.991)
possibly due to the small reaction volume, high mRNA capture
efficiency and noises reduction with on-chip enzymatic operation.
The results indicated that Paired-seq possessed superior perfor-
mances in quantification of transcripts in single cells.

Similarly, the sensitivity was compared with other platforms
using ERCC and data for mES cells (Supplementary Fig. 14)34.
According to the logistic regression model** with ERCC, we
achieved the detection limit of such as “10 molecules” for Drop-
seq, “5 molecules” for inDrop, and also “2 molecules” for Paired-
seq (Fig. 4g, Supplementary Fig. 15). The algorithm provided a
fair comparison and demonstrated that sensitivity of Paired-seq
was comparable to other modern single-cell approaches. In
addition, in data processing for mES cells, we downsampled reads
with normalized depth of each cell to varying lower mapped reads
for each method, and drew the fitted curve of median genes
detected for single mES cell versus different mapped reads
(Fig. 4I). Although conventional methods, including CEL-seq2/
C1 and SCRB-seq, have higher gene detection ability due to the
use of liquid barcoding primers, the large reagent consumption
greatly increases the cost and the complexity of manual
operations, thus it is unpractical for high-throughput single-cell
analysis. Compared with the high-throughput scRNA-seq plat-
form (Drop-seq), Paired-seq detected more genes per cell than
Drop-seq at different sequencing depths, which may be attributed
to the effective mixing of reagents and enzymatic process on
Paired-seq chip and the smaller reaction chamber. Most
importantly, based on the analyses of the sequencing depth
(mapped reads per cell) vs. the number of detected genes of mES
cells for five different sequencing platforms, only 2673 mapped
reads were needed for Paired-seq which was the lowest compared
with others when the number of detected genes is 2000 (Fig. 4i, j).
This result shows that the cost of sequencing for Paired-seq is the
lowest.

Heterogeneous cellular subpopulations. SCRNA-seq is a pro-
mising technology to identify and describe cellular subpopula-
tions from heterogeneous populations of cells. ES cells are derived
from a stage in which key early lineage specification events are
occurring. Specifically, upon Leukemia Inhibitory Factor (LIF)
withdrawal, ES cells will experience unguided differentiation and
generate various subpopulations®>. Compared to fully differ-
entiated cell types, ES cells in serum are relatively homogeneous,

with only some well-characterized fluctuations even in a short
time after LIF withdrawal. Study of heterogeneity information
from such relatively homogeneous cell populations poses a
challenge for single cell sequencing. For further verification, the
ability to distinguish such relatively weak heterogeneity by

Paired-seq, mES cells were collected and analyzed in nine batches
over 10 days after LIF withdrawal (Supplementary Figs. 16 and
17). Upon LIF withdrawal, the time series samples collected
at Day 0, 2, 4, 7, and 10, were assayed for the single-cell
transcriptomes using Paired-seq. Replicate experiments were
performed by different people on a few of the time points of this
study. In the comparison of the biological replicates (Day0_1/2,
Day7_1/2 and Dayl0_1/2), Paired-seq data makes their t-
Distributed Stochastic Neighbor Embedding (t-SNE) points go
together (Fig. 5a), suggesting the similar expression profiles of
these replicates.

Overall, the combined single-cell expression profiles of these
time points give five predominant cell clusters, which were readily
correlated to the post-LIF times (Fig. 5b). The pseudo-time
algorithm plots the trajectory that is concordant to the order of the
sampling time (Supplementary Fig. 18). Some of the clusters enrich
the markers of the differentiated cell types of expectation, such as
Cytokeratin and Otx2 etc, and reflects the fluctuation of
pluripotency factors, Zfp42, Pou5fl and Sox2 etc., which validate
the capability of Paired-seq®. (Fig. 5¢, d). In addition to those
well-known transcription factor and markers, 1594 genes of
fluctuated expressions were identified. These genes were differen-
tially expressed (p-value <0.05, Supplementary Table S3) among
the five cell populations. Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis (Fig. 5e) and
Gene Ontology (GO) enrichment analysis for biological process
(Fig. 5f) revealed that these genes were mainly involved in some
fundamental biological processes and pathways during cell
differentiation (p-value < 0.05). In summary, Paired-seq is able to
track down the population development and detect the fluctuated
expressions of the key markers in the differentiation process. This
is concordant to what has been described in inDrop!2.

Heterogeneity of drug treated cancer cells. To characterize the
drug resistance and disease recurrence after anti-cancer treat-
ments, Paired-seq was used to study the heterogeneity of anti-
cancer drug treated cancer cells. Nocodazole, an antineoplastic
agent and known as a cell cycle inhibitor that inhibits poly-
merization of microtubules?”, and possibly influences the differ-
ential mRNA transcription related to cell cycle, was used as a
model drug to study the drug response at single cell drug to study
the drug response at single cell level. SCRNA-seq samples of K562
cells before and after drug treatment were processed on Paired-
seq chip and the sequencing data were analyzed by t-SNE (Sup-
plementary Figs. 19 and 20). Default unsupervised clustering on
Seurat®® gives two putative clusters, which are readily associated
to the treatment response, indicating an obvious phenotypic
variability in response to the drug (Fig. 6A, B). As we can see, the
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Fig. 5 Heterogeneity of differentiated mouse ES cells. a t-SNE maps of mES samples from different days after LIF withdrawal. Different experimental batches
are labeled with different colors. b t-SNE maps of mES samples by unsupervised clustering ID. Five distinct clusters are labeled with different colors. ¢ Average
and d distribution of key pluripotent factors and differentiated markers of different time points after LIF withdrawal. e KEGG pathway enrichment analysis for five
clusters. f Biological process analysis of gene ontology enrichment for five clusters Source data are provided as a Source Data file.

untreated replicates share the same clusters whereas the treated
sample goes to a relatively segregated cluster indicating the
phenotypic change. We characterize total 1179 differential
expression genes (DEG) across the treatment conditions. Fig-
ure 6¢, d shows GO term enrichment analysis of the top 50 genes
that are elevated in the treated cluster. These terms guide us to the
genes that are correlated to the activated mitosis, such as ASPM,
AURKA, CENPF, KIF208, TOP1, RNF8, SEPT7, SMC3, TPX2, and
CENPE, which validates the accuracy of our single-cell RNA-seq
assay (Fig. 6e). All of these results consistent with previous
knowledge3® proved the heterogeneity of cancer cells in anti-
cancer ability and drug resistance. The results show that Paired-
seq can provide comprehensive genetic expression analysis of
individual cells to reveal the heterogeneity in anti-cancer drug
responses, thereby facilitating the development of optimized
clinical anti-cancer strategies.

Discussion
In summary, we proposed a high-throughput single-cell RNA
sequencing platform named Paired-seq with high cells/beads

utilization efficiency, cell-free RNAs removal capability, high gene
detection ability, and low cost. By using the differential flow
resistance principle, Paired-seq overcomes the waste of reagents
and loss of cells caused by traditional limiting dilution methods
and achieved utilization efficiency up to 95% in both single cell/
barcoded bead isolation and pairing. High-efficiency single cell/
bead paring is a promising technology for analysis of precious
and rare cells, such as stem cells, neuron cells, or CTCs. Fur-
thermore, Paired-seq allows real-time observation of single cells
that cannot be available in droplet-based platforms like Drop-seq
or InDrop. Integration of controllable valves and pumps enables
complete removal of cell-free RNAs, efficient cell lysis and mRNA
capture. The clear background without cell-free RNAs helps to
eliminate noise and faithfully reflects the true composition of the
original sample. The efficient cell lysis and mRNA capture endow
the highest mRNA detection accuracy (R = 0.955) and compar-
able sensitivity compared to other scRNA-seq platforms. The
high gene detection capacity allows lower sequencing costs
because it requires less sequencing depth to achieve the same
number of detected genes. By using Paired-seq to investigate the
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Fig. 6 Heterogeneity of Nocodazole treated cancer cells. a t-SNE visualization of K562 cells (RNA-seq) colored by Nocodazole treatment time or b
unsupervised clustering ID. ¢ Biological process and d cellular components analysis of gene ontology enrichment for the top 50 genes that are elevated in
the treated cluster. e t-SNE maps of Nocodazole treated and untreated K562 cells. Gene expression levels are indicated by shades of red. All the genes

shown in the map are correlated to the activated mitosis. Source data are

single-cell expression profile of mES cells and anti-cancer drug
treated cells, we verified the reproducibility and significant
detection ability for varying genetic expression, presenting great
potential for cell biology, developmental biology and precision
medicine.

Methods

Chip fabrication. The silicon mold for single cells and single beads manipulation
was fabricated by conventional photolithography. Mask fabrication with twice
overlay exposure was applied to produce three different heights of the flow layer.
First, SU-8 3010 photo-resist (MicroChem) was coated on a silica wafer to produce
the connection channel with 8 um height. Then, GM 1070 photo-resist (Gersteltec)

10

provided as a Source Data file.

was coated on the same wafer to produce the cell capture channel with 30 um
height. Next, the micro-sphere capture channel was produced with SU8 3050

photo-resist (MicroChem). The control layer was fabricated with one step exposure
using GM 1070 photo-resist. Finally, the mask was coated with 0.7% 1 H, 1 H, 2 H,
2H-perfluorooctyldimethyl-chlorosilane/GH-135 (v/v) solution and dried to make
the surface hydrophobic. The silica wafer with flow layer pattern was placed in a 60
mm plastic petri dish and PDMS precursor solution (10:1 of polydimethylsiloxane
and curing agent) was poured on the silica wafer and cured at 75 °C for 10 min to
the 80% repolymerization. The silicon wafer with control layer pattern was spun
with PDMS precursor solution (23:1 of polydimethylsiloxane and curing agent)
and then put on a horizontal heater at 48 °C for 7.5 min to the 80% repolymer-
ization. The flow layer and the control layer were perfectly aligned under the
microscope, and bound at 48 °C for 25 min for the complete bond between two
layers. Then the PDMS with flow layer and control layer pattern was peeled off,
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and punched for the inlets and outlets with a 1.0 mm puncher. The final chip was
fabricated by bonding the integrated PDMS with a 2.5 mm x 7.5 mm glass
immediately after oxygen plasma treatment.

Cell culture and preparation. Human K562 cells (ATCC CCL-243, purchased
from National Infrastructure of Cell Line Resource) and mouse 3T3 cells (ATCC
CRL-1658, purchased from National Infrastructure of Cell Line Resource) were
cultured in Dulbecco’s Modified Eagle Medium (DMEM, ThermoFisher) supple-
mented with 10% Fetal Bovine Serum (FBS, ThermoFisher) and 1% penicillin-
streptomycin (ThermoFisher) at 37 °C and 5% CO,. 3T3 cells were harvested by
0.25% trypsin-EDTA (Life Technologies) and re-suspended with 1 mL 1x DPBS in
a 1.5 mL centrifuge tube. Unlike 3T3 adherent cells, suspended K562 cells were
pipetted up and down gently several times and then directly pipetted out, followed
by centrifugation and suspension with 1 mL 1x DPBS in a 1.5 mL centrifuge tube.
For mixed-species experiments, human K562 cells and mouse 3T3 cells were mixed
in a 1:1 ratio with a final concentration of 0.2% Poloxamer 188 (F68, Thermo-
Fisher) and 4% FBS in 1x DPBS buffer.

The mouse embryonic stem (mES) cells were J1 mouse embryonic stem cell (J1
mES cell): derived from the mouse 129 s4/SvJae strains called J1. They were kindly
provided by Stem Cell Bank, Chinese Academy of Sciences. The culture flasks were
pre-treated with gelatin at 37 °C and 5% CO,. For the undifferentiated stage, mES
cells were cultured in DMEM supplemented with 15% FBS, 2mM L-glutamine,
0.1 mM non-essential amino acids (NEAA), 0.1 mM 2-mercaptoethnol and 1000 U
mL~! LIF. LIF was removed for unguided mES differentiation. We collected mES
cells on the Oth, 2nd, 4th, 7th, 10th days after LIF withdrawal for subsequent
experiments. Before injecting into the chip, the mES cells were washed and re-
suspended in 1x DPBS with a final concentration of 0.2% F68 and 4% FBS.

Preparation of barcoded. Commercial barcoded beads were purchased from
ChemGenes Company (Wilmington, Massachusetts, USA; cat. Macosko-2011-10
(V+)) described in Drop-seq!3. The oligo synthesis scale was 10 pmole. Subse-
quently commercial barcoded beads were washed twice with 30 mL of TE/TW (10
mM Tris pH 8.0, 1 mM EDTA, 0.01% Tween), re-suspended in 10 mL TE/TW and
passed through a 40 um strainer (PluriSelect) into a 50 mL Falcon tube. Then they
were placed at 4 °C for long-term storage. Before experiments, 1000 barcoded beads
were used and re-suspended in 10 pL 2% sodium alga acid solution with 0.2%
Triton X-100 for subsequent capture in the chip.

Paired-seq operation. All aqueous suspensions were loaded into 1 mL plastic
syringes. The blocking valve was turned on to disconnect the cell and bead
chambers, resulting in no fluid exchange between them. Barcoded beads suspended
in 2% sodium alga acid and 0.2% Triton X-100 were injected into the chip through
the bead inlet at a flow rate of 0.2 mL h~1, while 1 x DPBS was injected through the
cell inlet buffer inlet at a flow rate of 0.06 mL h~!. After finishing the bead capture,
the bead channel was washed with 1x DPBS to replace sodium alga acid and Triton
X-100 while the driving pump for bead was activated to prevent bead escape. Then,
the cell suspension and DPBS buffer were respectively injected into the chip
through the cell inlet at 0.015 mL h~!, with the speed of 0.03 mL h~! of 1x DPBS in
the bead channel. After finishing single cells capture, the cell driving pump for cell
was pressure-forced to prevent the cells from escaping, and then the cell channel
was washed with 1x DPBS to remove residual cells in the channel. Next, the buffer
in the bead channel was replaced with lysis buffer (160 mM Tris pH 7.5 (Ther-
moFisher), 0.16% Sarkosyl (Sigma), 16 mM EDTA, 0.5 U puL~! RNase Inhibitor
(TransGen Biotech), 0.12% F68). Then the cell and bead inlets were unplugged and
both bead and cell outlets were blocked. Gas was reversely injected into the
channels, generating water-in-gas droplets, which contained single beads and single
cells. Then the blocking valve was turned off to enable solution exchange between
the paired chambers. The whole procedure could be real-time monitored to ensure
complete lysis of cells. At the same time, the released mRNA molecules were
captured by the paired beads. By alternately activating the driving pump for cells
and the driving pump for beads, solutions in two chambers could be easily
transferred back and forth, thus allowing efficient cell lysis and mRNA capture.
After turning on the blocking valve, the cell channel and bead channel were washed
with 1x DPBS independently. The driving pump for barcoded beads was activated
to keep the trapping of mRNA captured beads, and the reverse transcription mix
(1x RT buffer (Fermentas), 1 mM dNTPs (TransGen Biotech), 1 U uL~! RNase
Inhibitor, 2.5 uM Template_Switch_Oligo (Life Technologies), and 10 U uL~!
Maxima H-RT (Fermentas)) was injected in both channels. The chip was incubated
at room temperature for 30 min followed by 42 °C for 90 min.

After reverse transcription, the beads were washed with TE-SDS (10 mM Tris
pH 8.0, 1 mM EDTA, 0.5% Sodium Dodecyl Sulfate (Sigma)), 20 uL TE/TW, and
20 uL TE (10 mM Tris pH 8.0), with driving pump activated to trap the barcoded
beads in the original position. Then 20 uL Exonuclease I mix (1x Exonuclease I
Buffer and 1 U pL~! Exonuclease I (NEB)) was injected into the chip to remove the
excess primers by incubating the chip at 37 °C for 45 min.

The channels were then washed with 10 uL TE/SDS, 10 uL TE/TW, 10 uL
ddH,O to remove Exonuclease I mix. After reducing the pressure of the bead
driving pump, a high speed of solution was introduced to push the advance of
beads, making them gather at the end of channel. With the help of water phase flow

and gas phase flow in the direction of bead outlet, the barcoded beads could be
collected from outlet into tubes without remnant.

Feasibility testing. Total RN As were extracted from human K562 and mouse 3T3
cells by using GeneJET RNA Purification Kit (Thermo Fisher) according to the
manuals and protocols. The products were quantified by NanoDrop ND-2000. The
RNAs released by 10° 3T3 cells were mixed with 10% K562 cells and injected into
the chip through the cell inlet, while the same amount of cell-free RNAs of K562
cells mixed with 10% 3T3 cells were injected into another chip. Cell capture con-
tinued 30 min, and then the cell channel was washed by 1x DPBS. The cleaning
process was also set at 30 min. Subsequent manipulation was the same as the
normal process. The sequencing data were aligned to hgl9_mm10 to test the
presence of cell-free mRNA information, which verified the capacity of the
blocking valve and cleaning effect.

ERCC experiment. External RNAs (ERCC RNA Spike-In Mix) were purchased
from ThermoFisher. The originating ERCCs were diluted to 1.2 x 10° uL~! with 1x
PBS+1 U pL~! RNase Inhibitor (Lucigen). After processing the ERCCs in a
Paired-seq chip, the theoretical number of ERCCs contained in each cell chamber
was about 10° molecules. In order to reduce low quality of ERCC reads by STAR,
sequencing reads were aligned to a dual ERCC-human reference, where human
sequences were used as “bait”.

cDNA amplification and library preparation. All the collected beads were ali-
quoted into one PCR tube for PCR amplification. The PCR program was as follows:
95 °C for 3 min; and then four cycles of: 98 °C for 20, 65 °C for 45, 72 °C for
3 min; then 10 cycles of 98 °C for 20's, 67 °C for 20's, 72 °C for 3 min; then a final
extension step of 5 min. The PCR products were purified using 0.6x VAHTS DNA
Clean Beads (Vazyme Biotech) according to the manual twice, and eluted in 11 uL
H,O. The concentration of the purified products was quantified by qubit3.0.

The 3’-end enriched sequencing library was prepared using a TruePrep DNA
Library Prep Kit V2 for Illumina (Vazyme Biotech), according to the
manufacturer’s instructions, except that the custom primer P5 was used in place of
the kit’s oligos. The samples were then amplified as follows: 72 °C for 3 min, 98 °C
for 30s; and 12 cycles of: 98 °C for 15, 55 °C for 30's, 72 °C for 30's; then a final
extension step of 5 min. The 3’-end enriched library products were purified using
0.6x VAHTS DNA Clean Beads (Vazyme Biotech), and eluted in 11 pL H,O. The
concentration was quantified by qubit3.0. The fragment size of the 3’-end enriched
sequencing library was analyzed by Qsep-100, and the average size was between
450 and 650 bp. The libraries were sequenced on the Illumina Nextseq 550
according to the manufacturer’s instructions, except that Custom read 1 was used
for priming of read 1. Read 1 was 21 bp; read 2 was 60 bp for all the experiments.

Single-cell responses to Nocodazole. Nocodazole was purchased from Selleck
(#S2775) and dissolved in DMSO at the concentration of 2 nM. Before the
experiment, K562 cells were cultured in DMEM supplemented with 10% Fetal
Bovine Serum, 1% Penicillin-streptomycin and 1 nM Nocodazole for 20 h. For flow
cytometry analysis, the medium containing Nocodazole was removed, and the cells
were re-suspended in 400 pL cold 1x PBS and 1100 pL cold fixing solution (100%
ethyl alcohol) and stored overnight at 4 °C. The next day cells were centrifuged to
remove the fixing solution, washed three times with 1x PBS and re-suspended in
500 uL 1x PBS. RNase A (ThermoFisher, 20 mg L~1) was introduced to remove the
interference of RNA at 37 °C for 1 h. Then the nuclear DNAs of K562 cells were
stained by PI (ThermoFisher, 50 mg L~!) in a dark place at 4 °C for 1 h. One
million K562 cells in total were detected by flow cytometry, with the obvious
fluorescence peak corresponding to 2n/4n DNAs, which represented the cell cycle
position. For Paired-seq, after removing the Nocodazole, K562 cells were washed
three times and re-suspended in DMEM supplemented with 0.2% F68 and 4% FBS.

Data sources. Raw read data from published studies were downloaded from either
ENA or SRA, as listed in Supplementary Table 5. We followed the same protocol of
the data analysis and confirmed with the authors about the details of the data
analysis process3.

Data analysis workflow for ERCC sample. ERCC sequencing data prepared on
the Paired-seq platform was processed with umis workflow to obtain a digital
expression matrix for performance estimation and comparison. The raw sequen-
cing data fastq files were first transformed to a single fastq file with “UMIs fastq
transform” using Drop-seq mode. Then pseudo-alignment was performed with
Rapmap to obtain the sam file. After that, a digital expression matrix was produced
by “UMIs tagcount”. For bulk RNA-seq and other scRNA-seq platforms, we used
the processed data provided by Svensson et al.33.

For each individual cell or sample, specific ERCC spike-in molecules were
proved to be detected with at least one copy observed. After discarding the
undetected ERCC spike-in types, we calculated the Pearson correlation coefficient
(R) between detected ERCC counts (UMI) and input ERCC counts from the
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equation below as the accuracy of each sample:
log,(UMI;) = a - log,, (Input;) +c. (1)
We can get the UMI efficiency (mRNA capture efficiency) of UMI based
protocols at the same time, namely f in the following equation:
UM, = B - [Input]”. (2)
When we model the relation between read depth and performance metrics for
individual protocols, we use a linear model with a quadratic term for read depth to
capture diminishing returns on investment. The model considers the read depth
effect to be global, and has a categorical performance parameter for each protocol:
metric = a® - log,(reads;) + b - log,,(reads;) + performance oo + & (3)
Here the performance metric will plateau and saturate when

b
32 (4)

For sensitivity calculation, we transformed the detected spike-in count into a
binary variable (detected (1) or undetected (0)). Then we built a logistic regression
model with Python scikit-learn package for each sample:

1
1 + e (ax log(M,)+b)

The sensitivity was calculated as the molecule count when the detection

probability equals to 0.5, namely:

log,,(reads;) =

p(detected;) = +e. (5)

detection limit = — Z. (6)

Processing of the Paired-seq data. For all the sequencing results, each dataset
was generated from one single chip. One single experiment was pooled to gener-
ated one data. Paired-seq sequencing libraries produce paired-end reads: Read 1
contained a cell barcode (12 bases) and a UMI (8 bases); Read 2 contained mRNA
information. The reads would be preprocessed with the following steps, correcting
bead, filtering low-quality reads, trimming read 2 including polyA, adapter and
primer, alignment, assigning gene tags, generating digital gene expressing. The
beads with the twenty-first base as A, C or G only were used in our experiments. If
the number of continuous T bases at the end of read 1 was less than or equal to 12,
we inserted “N” bases before T bases. Otherwise, the pair of reads was dropped.
Filtering low-quality reads was based on the base quality of the cell barcode and
UMI. Respectively, cell barcode and UMI should have only one base with quality
lower than 20 at most. Otherwise, the read pair was discarded. At least 5 con-
tiguous bases of TSO and at least 6 contiguous bases of A with no mismatch were
examined for read 2 and were hard clipped off the read. At least 6 contiguous bases
of primer with one mismatch allowed considered for read 2 and hard clipped off
read. The read pair was discarded, if the length of read 2 was less than 26 after
trimmed. STAR alignment tool was used to align read 2 with the reference genome.
For human and mouse mixed cells, we used hg19_mm10 mentioned in Drop-seq as
reference genome. This program from Drop-seq added a tag “GE”. We kept the
unique mapping with gene tags. Then unique UMISs for each gene of each cell were
counted to generate digital gene expression.

Theory supplement. Using the Darcy-Weisbach equation to determine pressure
difference in a microchannel and solve the continuity and momentum equations
for the Hagen-Poiseuille flow problem, we obtained the pressure difference
AP = fLpV2/2D, where f is the Darcy friction factor, L is the length of the channel,
p is the fluid density, V is the average velocity of the fluid, and D is the hydraulic
diameter, respectively. D can be further expressed as 4 A/R for a rectangular
channel, and V as Q/A, where A and R are the cross-sectional area and perimeter of
the channel, and Q is the volumetric flow rate. The Darcy friction factor, f, is
related to aspect ratio, a, and Reynolds number, Re = pVD/y, where p is the fluid
viscosity. The aspect ratio is defined as either height/width or width/height such
that 0 < a<1. The product of the Darcy friction factor and Reynolds number is a
constant that depends on the aspect ratio, i.e., f X Re = C(a), where C(a) denotes a
constant that is a function of the aspect ratio, a. After simplifications, by applying
the Darcy—Weisbach equation to a rectangular channel, we obtain the expression:
2
@/‘L@i , @)
32 mA

In the simplified circuit diagram of the trap., fluid can flow from junction a to b
(cto d) via path 1 or 3 (path 2 or 4) (Supplementary Fig. 21). Ignoring minor losses
due to bends, widening/narrowing, etc., Eq. (7) is applied separately for paths 1 and
3 (path 2 or 4), and because the pressure drop is the same for both paths, we equate
both expressions to yield

@ Ge) @G @ ew o
o (Ge) () G ) w0

AP =

and

where subscripts 1 and 3 denote paths 1 and 3, respectively. For path 1, the length,
L1, is assumed to be that of the narrow channel to simplify analysis. This is valid
because most of the pressure drop occurs along the narrow channel. For the trap to
work, the volumetric flow rate along path 1 must be greater than that of path 3, i.e.,
Q1> Q3. Using the relationships A = W x H and P = 2¢(W + H), where H is the
height of the channel, we arrive at

- (@) () G G-

Q _ (Cla)) (L), (WatHy\® (Wo\*
Q Clay) L, W, + Hy W, '
Cl = f>Re=96% (1 —1.3553 - &+ 1.9467 - o

—1.7012 - a® 4 0.9564 - a* — 0.2537 - &°).

Note that this final expression does not contain any fluid velocity term,
implying that a properly designed trap will work for all velocities in the laminar
flow regime.

(10)

and

(12)

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The sequencing data presented in this paper have been deposited in the Sequence Read
Archive (SRA) under BioProject accession number PRJNA578456 [https://trace.ncbi.
nlm.nih.gov/Traces/sra/?study=SRP226387]. SRA, PRINA305381; GEO: GSE75790, etc.
were referenced in the (supplementary dataset) manuscript. Source data are available in
the Source Data file. All other data are available from the authors upon reasonable
request.

Code availability
The same data processing packages were used as Dropseq!? to analyze the sequencing
data. The packages can be found at https://github.com/broadinstitute/Drop-seq/releases.
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