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Abstract: International authorities classify ricin toxin present in castor seed as a potential agent
for use in bioterrorism. Therefore, the detection, identification, and characterization of ricin in
various sample matrices are considered necessary actions for risk assessment during a suspected
exposure. This study reports a portable electrochemical assay for detecting active ricin based on
the adenine electro-oxidation released from herring sperm DNA substrate by its catalytic action.
Also, kinetic parameters were calculated, and the values were Km of 3.14 µM and Kcat 2107 min−1. A
linear response was found in optimized experimental conditions for ricin concentrations ranging
from 8 to 120 ng/mL, and with a detection limit of 5.14 ng/mL. This proposed detection strategy
emphasizes the possibility of field detection of active ricin in food matrices and can be applied to
other endonucleolytic activities.
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Key Contribution: The data presented in this study demonstrates, for the first time, the use of square
wave voltammetry for the detection of ricin activity based on adenine released by catalytic action
in herring sperm DNA. Compared to other techniques, the method reported here to evaluate ricin
activity is simple, using screen printed electrodes, and can be easily portable for field detection.

1. Introduction

Ribosome-inactivating proteins (RIPs) are protein toxins extracted from bacteria or
plants that have a similar mechanism of action, inactivating ribosomes by catalytically
removing a specific adenine-4324 from the 28S rRNA subunit [1]. The RIPs can be classified
into type I, a single-chain catalytic polypeptide, or type II, a catalytic and cell-binding
chain [2,3]. The single-chain type III RIP has also been proposed, is synthesized as a
proenzyme, and requires the removal of an internal peptide bond to become active [4,5].
Members of the type II RIP family are divided into non-toxic (e.g., ebulin, nigrin and
pulchellin) and toxic (e.g., ricin, abrin, volkensin, stenodactylin, kirkiin and other plant
toxins and the bacterial Shiga and Shiga-like toxins) [6–9].

Ricin is a toxic protein found in the endosperm of castor seeds (Ricinus communis L.).
Ricin has gained recent attention from governments and the international scientific commu-
nity due to the possibility of its use in poisoning, with a lethal LD50 dose of only 5 µg/kg
in mice (inhalation), manifestations up to 4 h after inhalation, and irreversibility of the
lethal condition between 6 to 12 h [10,11]. Ricin is considered one of the most potent toxins
of plant origin, with an inactivating action on ribosomes. Studies have been reported an
estimated lethal dose around 5–10 µg/kg in humans, both inhaled or injected, and about
three orders of magnitude less toxic when taken orally [10]. Ricin is classified alongside
the botulinum toxin as a biological agent of risk class III by the Health Biosafety Commis-
sion/MS, and Category B as a bioterrorism agent by the Atlanta CDC (Center for Disease
Control and Prevention, GA, USA) [12,13], and is a controlled chemical under Schedule 1A
of the Chemical Weapons Convention (CWC) [14]. In this context, the toxin arouses the

Toxins 2021, 13, 238. https://doi.org/10.3390/toxins13040238 https://www.mdpi.com/journal/toxins

https://www.mdpi.com/journal/toxins
https://www.mdpi.com
https://orcid.org/0000-0002-9518-1283
https://doi.org/10.3390/toxins13040238
https://doi.org/10.3390/toxins13040238
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/toxins13040238
https://www.mdpi.com/journal/toxins
https://www.mdpi.com/2072-6651/13/4/238?type=check_update&version=1


Toxins 2021, 13, 238 2 of 11

interest of terrorist organizations, given the low cost of growing the plant, easy extraction
of the protein, and good stability of the protein [15]. Thus, early detection of the active
toxin is essential for developing appropriate countermeasures [16], justifying researchers’
efforts to obtain faster and more sensitive ricin detection tests [17].

Castor bean also has a broad spectrum of industrial uses and, in this sense, a fast
identification of ricin traces without an expensive setup should be pursued. Castor cake,
which is the remaining industrial by-product generated after the extraction of oil from
castor beans, is capable of causing intoxication and death due to the presence of ricin [18].
Castor by-products are present in the industry of plastic polymers and polyamides, mono
and diesters of fatty acids, biofertilizer, fungicide, pesticide, cosmetic, and pharmacological
industries (purgative, antineoplastic, anti-inflammatory, and anti-rheumatic). Furthermore,
a global market valued at US $1470 million [19] is expected for the biodiesel industry
that uses castor by-products and castor oils (ricinoleic acid) by 2025, strengthening the
importance of detecting and characterizing ricin activity traces.

Several approaches have been reported in the literature for detecting ricin and, accord-
ing to the classification proposed by Bozza et al. [16], the methods can be differentiated
from those that detect biologically active ricin and those that do not. Hence, it is of fun-
damental importance that a ricin detection method can distinguish between inactive and
active forms of ricin, and its potency for adequate emergency actions, forensic analysis,
and therapy [20].

Among the main analysis strategies unable to detect ricin activity, we highlight those
that combine sample enrichment steps (using specific antibodies to ricin, aptamers, or
sugar-conjugated materials) with improved detection technologies, such as surface plasmon
resonance [21–25], polymerase chain reaction (PCR) [26] or mass spectrometry (MS) [27,28].
These methods also present some drawbacks regarding the need for laboratory infrastruc-
ture, a high cost for the equipment setup, several compounds involved, and the difficulty
to allocate the equipment close to the site of the toxin exposure [4]. They may also involve
some additional effort prior the analysis, such as sample enrichment, modification or even
derivatization of the analyte [16].

Bioassays can measure the toxicity of ricin using laboratory animals [16] or by induced
cytotoxicity in cultured cells [29,30]. However, they demand a long incubation time, in
addition to the need for specific and costly infrastructure.

Although ricin’s N-glycosylase activity is commonly assessed with ribosomal inac-
tivation protocols, the phytotoxin can also be described as a polynucleotide: adenosine
N-glycosylase [31,32], due to the clearance of RNA and DNA substrates containing alterna-
tive adenosines [16]. Thus, monitoring the adenine released from the catalytic action of
ricin can provide a convenient means of evaluating the catalytic activity of ricin [2,3,33–35].
In our experiments, we have used herring sperm DNA (hsDNA) as a substrate due to its
simplicity of acquisition and use, besides its chemical stability and a significant low cost,
as compared to synthetic oligonucleotides. As first reported by Barbieri et al., 1997, and
later by Heisler et al., 2002, and Bevilacqua et al., 2010, hsDNA can be considered a good
substrate for ricin [3,32,34].

Some methods detecting ricin activity are limited by technical disadvantages such
as the analyte modification for spectroscopic detection, the derivatization of samples for
chromatographic measurements, and the specific infrastructure and high cost. Besides,
they present measurement difficulties in translucent media, such as in the presence of
ribosome suspensions or complex matrices (liquids, biological material, other suspen-
sions, or powdery extracts), without pre-purification of the sample before the detection of
the analyte.

In this sense, electrochemical techniques have been proposed as a promising alterna-
tive due to some advantages over other methods, such as low cost, quick response, the
relative simplicity of construction, small dimensions of the devices, small volume of the
test sample, and high sensitivity [36]. Electrochemical techniques have also demonstrated



Toxins 2021, 13, 238 3 of 11

outstanding potential for detecting and quantifying nitrogenous bases, especially those
that quantify adenine [37–41].

Here we report the electrochemical method of square wave voltammetry (SWV) to
the detection of adenine released by ricin enzymatic activity. The method is focused on
real-time traces of adenine released from hsDNA by oxidation of the analyte on the surface
of an unmodified commercial printed carbon electrode (screen printed electrodes, SPE), as
illustrated in Figure 1. The approach was centered on optimizing SWV parameters and
experimental conditions for trace detection of active ricin in solution. The results were
obtained both in pure and complex samples, the latter containing egg white or skimmed
milk. As far as we know, this is the first report of the detection of adenine released after
hsDNA depurination catalyzed by ricin by electroanalysis.
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Figure 1. Protocol for detecting active ricin using the herring sperm DNA (hsDNA) substrate.

2. Results
2.1. Square Wave Voltammetry Method for Adenine Detection

The detection and quantification of nitrogenous bases, especially the techniques that
quantify adenine, is frequently reported in the literature [36,38,40]. SWV was chosen in
this work due to its high selectivity and sensitivity for adenine determination [42]. Square
wave parameters were evaluated to obtain the highest signal-to-noise ratio for adenine
oxidation [43,44]. The dependence of the peak current on square wave parameters was
studied in the range of 10–100 mV of amplitude, 1–10 mV of step potential, and 5–100 Hz,
by fixing two of these parameters at a constant value while measuring the other. The
optimal values were 50 mV, 5 mV, and 100 Hz for amplitude, step potential, and frequency.

The influence of pH on the SWV current for adenine oxidation at SPE was studied in
acetate sodium buffer solution in the pH range from 4.2 to 6.6 (Figure 2a). Figure 2b shows
an oxidation peak current for adenine with increasing pH values from 4.2 to 4.6, followed
by a gradual decrease in faradaic currents for pH values ranging from 4.6 to 6.6. Therefore,
considering that the highest peak current was obtained at pH 4.6 in sodium acetate buffer
and that the value approaches the ideal pH of catalysis, this value was selected for the
reactions catalyzed by ricin in hsDNA [45].
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Figure 2. (a) Square wave voltammetry (SWV) for oxidation of 25 µM of adenine at different pH
values (4.2–6.6) at the screen printed electrodes (SPEs) in acetate buffer; (b) anodic peak current
obtained changing pH values.

Under the optimal conditions attained, an analytical curve was obtained by successive
additions of a standard adenine solution to the supporting electrolyte solution containing
hsDNA at 17 µM (Figure 3a). The peak currents for adenine doped in hsDNA solution
increased linearly with a concentration range of up to 80 µM, and a detection limit of
0.18 µM (S/N = 3, Figure 3b) was found. This relationship resulted in the following linear
equation: Ip (µA) = 0.492 ± 0.014 C (µM) + 0.003 ± 0.0002 (R2 = 0.996).

2.2. Detection of Active Ricin by Depurination of hsDNA

Apparent steady-state kinetics was investigated for ricin N-glycosylase activity at
varying hsDNA substrate concentrations (8–60 µM) (Figure 3c). In our experiments, we
used the hsDNA as this was previously reported as an alternative in ricin depurination
tests [3,32,34]. The kinetic parameters calculated by fitting initial rates to the Michaelis–
Menten model was characterized by a Km of 3.14 µM and a Vmax of 4.8 µM/min (Figure 3d).
The turnover frequency (kcat) was found to be 2107 min−1.
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The arrow represents increasing adenine concentrations; (b) analytical curve of adenine; (c) progres-
sive curve of adenine released after depurination reaction from hsDNA (8–60 µM) catalyzed by ricin
at 100 ng/mL; (d) kinetic curve fitted for ricin catalysis on the hsDNA substrate.

To verify that the depurination reaction and adenine release are related to the ricin
concentration, a calibration curve was tested between 0 and 120 ng/mL ricin on the hsDNA
substrate at a concentration of 17 µM (Figure 4a). A linear correlation was observed in a
range from 0 to 120 ng/mL of ricin concentrations, and the calibration curve was established
as ∆Ip (µA) = 0.114 ± 0.004 Cricin (ng/mL) + 0.2163 ± 0.067 (R2 = 0.995) (Figure 4b) with
the detection limit (LOD) estimated to be 5.14 ng/mL.
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Figure 4. (a) SWV voltamograms of hsDNA treated with increasing concentrations of active ricin
from 0 to 120 ng/mL; (b) released adenine after depurination from hsDNA catalyzed by different
ricin levels.

2.3. Analysis of Ricin in Spiked Samples

To evaluate the practical applicability of the proposed detection, active ricin was
detected in different samples of spiked food, and with concentrations of 10 and 60 ng/mL
of ricin. Considering that ricin may be ingested from contaminated beverages and foods,
drinking water, hen egg and skimmed milk samples were chosen as sample matrices.
Recovery values of spiked samples were determined from a calibration curve of ricin
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obtained in the assay buffer. Also, samples of drinking water, hen egg, and skimmed milk
without ricin were tested as controls. The results of the recovery experiments are shown in
Table 1.

Table 1. Determination of active ricin spiked in different matrices.

Sample Spike
(ng/mL)

Detected
(ng/mL)

Recovery
(%)

Drinking water 10.0 10.9 109.0
60.0 61.7 102.8

Skimmed milk
10.0 8.1 81.0
60.0 57.1 95.2

Hen egg 10.0 5.8 58.0
60.0 46.9 78.2

As shown in Table 1, the method can be applied effectively to several matrix samples,
and recoveries were calculated at 109.0% and 102.8% for drinking water, 81.0% and 95.2%
for milk, and 58.0% and 78.2% for egg in concentrations of 10.0 and 60.0 ng/mL of ricin,
respectively. Standard deviation values below 5% were found in the negative control,
showing low interference from the food matrix in the hsDNA depurination.

3. Discussion

In this study, we developed and validated a straightforward method with the potential
to be used in the field together with portable devices aiming to detect the glycosylase
activity of ricin and other RIPs. The method is based on the electro-oxidation of hsDNA as
the only added compound, and it was developed based on three basic criteria: speed for
delineating the catalytic activity, no further necessity for modification or pre-concentration
of the analyte, and the applicability for detection in complex matrices.

As shown in Table 1, the determination of active ricin based on hsDNA depurination
in all three enriched and complex samples (drinking water, hen egg, and skimmed milk)
showed acceptable results compared to those reported elsewhere [46]. The recovery values
for active ricin from complex samples were greater than 81% and 58% for milk and egg
samples, respectively. These results suggest that skimmed milk and hen egg samples may
contain components that interact with ricin, partially inhibiting its activity against the
hsDNA depurination [47]. However, the detected value for the active ricin was higher than
the detection limit found in the assays containing buffer only.

As compared to well-known techniques usually found for ricin activity, the electro-
chemical technique described has some advantages, including no requirement for radioac-
tive compounds [48], analyte modification for colorimetric detection [3], or derivatization
of samples, as needed in chromatographic processes [2]. Furthermore, the voltammetric
procedure does not require pre-purification before detection. It can realize direct mea-
surements, unlike luminescence techniques [33,49], and can be used in non-translucent
media, such as in the presence of ribosome suspensions, or a complex matrix. Besides, the
possibility of field measurements of ricin activity stands out as amperometric systems are
known to be easily miniaturized and customized [50].

Among the methods for measuring ricin activity, oligonucleotide depurination, flu-
orescence, molecular absorption, electrochemiluminescence, high-pressure liquid chro-
matography (HPLC), and mass spectrometry (MS) can be referenced [2,3,34,51]. The
approaches involving HPLC and MS, or both, are the most used for this purpose due their
high specificity and resolution [4,28,52]. As an advantage, they have a detection limit as
low as 0.6 ng/mL [35,53,54]. As an example, Wang et al., 2016, and Feldberg et al., 2021,
reported a HPLC–MS assay for ricin detection conjugated with polyclonal antibody [35]
or lectin affinity capturing of ricin by lactose-agarose beads [28] recently developed to
improve specificity and to offer more accurate quantification.
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As an alternative for the HPLC–MS procedure, new methods have been proposed,
improving the possibility for use on-site. The detection strategies involve measurement by
fluorescence or colorimetric, and surface-enhanced Raman spectroscopy (SERS) [4,46,55,56].
In a previous report, a specific nanoprobe involving nanoparticles and quantum dots
was designed to detect active ricin [55]. Its main advantage is the capture of ricin in
complex matrices by monoclonal antibodies, with a LOD of 7.46 ng/mL. It also involves
the immobilization of specific double-stranded oligodeoxynucleotide substrates to the
nanoparticles, and fluorescence suppression as a quantification technique. Similar to that
strategy, gold nanoparticles were conjugated with oligodeoxynucleotide consisting of
homoadenin, with subsequent formation of the homoadenin/coralyne complex as a result
of specific depurination of the poly (21dA) substrate, and with ricin detection by visual
inspection or UV-VIS absorbance [46]. From the same research group, the substrate poly
(21dA)-conjugated gold nanoparticles was used to constitute a specific chip for enhanced
surface Raman spectroscopy [56]. Although the methods mentioned above involve the
detection of ricin based on its N-glycosylase activity on oligonucleotides, all of them require
several steps that with analytical care, e.g., the magnetic removal of nanoparticles added to
the matrix to capture ricin before detection by biosensors, conjugation with nanoparticles,
or colorimetric indicators.

On the other hand, there are some RIPs with potential risks for bioterrorism that also
exhibit the same N-glycosylase activity as ricin [57], e.g., abrin and Shiga toxin [58]. There-
fore, the electrochemical assay described here for detecting ricin is not able to distinguish
between the different toxins that cause the release of adenine in nucleic substrates. Thus,
to achieve this goal, further steps must be added to verify specificity, e.g., the use of an
additional ricin capture approach. Even so, the procedure described could be useful for an
immediate screening test for ricin and other RIP toxins in emergencies.

Although some methods for ricin detection can be more specific due to the additional
step of its capture [4,28,35,46,55,56], the N-glycosylase activity of ricin by SWV comprises
both fewer steps and chemical compounds, and uses relatively low-cost equipment. In
this regard, the toxin can be detected in a broad range of instruments, from lab bench or
battery-powered potentiostats to interfaced mobile devices joined to commercially portable
instruments (WiFi, BlueTooth), or even microcontroller boards [59]. Besides, the possibility
of field measurements for ricin activity stands out as amperometric systems are known to
be easily miniaturized and customized [50].

Other advantages of the electrochemical approach comprise the use of inexpensive
unmodified carbon electrodes of paper or solid-phase base, and a short-time interval for
detection. In this respect, the SWV approach for ricin activity was able to be accomplished
in up to 10 min (Figure 3c), differing from other methods that take additional steps for
sample preparation and ricin capture (30 to 120 min), as reported above [28,35,55]. Hence,
these overall benefits of the SWV method are attractive for the rapid detection of active
ricin in suspected samples in practical situations, as in the castor oil industry, or in the
countermeasures involved in bioterrorism.

4. Conclusions

In this study, we have used square wave voltammetry to detect ricin by monitoring
the adenine released by ricin catalytic action in suspected samples. Compared to other
techniques, the method is simple, uses unmodified carbon paste or SPE electrodes, did not
require any sample preparation, efficiently detected ricin in a nanomolar range, and can be
easily portable for field detection.

5. Materials and Methods
5.1. Reagents and Solutions

All reagents were of analytical grade, and the solutions were prepared with Milli-Q
water. Adenine and herring sperm DNA (hsDNA) were obtained from Sigma-Aldrich
(St. Louis, MA, USA). A 50 mM sodium acetate buffer solution was prepared, adjusting
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the pH values either with 0.1 M NaOH or 0.1 M HCl. Graphite powder (99.95%, 325 mesh)
were obtained from Sigma-Aldrich. The denatured hsDNA was obtained following Bevilac-
qua et al. [34]. Briefly, native hsDNA was dissolved in acetate buffer (pH 4.6), heated in a
water bath at 95 ◦C for 5 min, followed by cooling on ice for another 5 min. Intact ricin was
obtained with a purity exceeding 95% by SDS-PAGE analysis after extraction from castor
beans following standard procedures [60].

All trials involving ricin were conducted by adopting techniques and working prac-
tices following the risk class [61].

5.2. Instrumentation and Data Analysis

All experiments were conducted with a portable potentiostat Sensit Smart (PalmSens,
GA, The Netherlands). The assays were conducted with a commercially printed carbon
electrode (screen printed electrodes, SPE), which consists of an arrangement containing
three electrodes deposited on the same ceramic alumina plate (AC1.W4.R1, by PalmSens).

For the electrochemical assay, square wave voltammetry (SWV) was employed in
acetate buffer (50 mM, pH 4.6) with experimental conditions from 50 Hz of frequency, a
potential window from +0.6 to +1.4 V, sweep increment (∆Es) of 5 mV, and amplitude of
50 mV.

Data were obtained at a minimum of triplicates and represented by mean ± standard
deviation. The results of the adjustments obtained with a p-value less than 0.05 were
accepted as significant after treatment of the data with the aid of the statistical package
of free distribution R (version 3.21). The quality of linear mathematical adjustments
was assessed by a simple comparison of Pearson’s correlation coefficient (R) values and
dispersion parameters. All the experiments were conducted in triplicate.

5.3. Detection of Ricin Activity

Adenine released during the depurination activity of holoricin on hsDNA was mea-
sured by SWV. For the activity assay, varying concentrations of denatured hsDNA solu-
bilized in 50 mM sodium acetate buffer, pH 4.6, were incubated with ricin (100 ng/mL)
under mixing, at a total reaction volume of 3 mL and 25 ◦C. At regular intervals, a 100 µL
aliquot was removed from the reaction system and added to the SPE for reading. The
apparent kinetic parameters were calculated based on the classical Michaelis–Menten equa-
tion ν = Vmax × [S]/(Km + [S]), where ν is the initial velocity, Vmax is the maximal reaction
velocity, [S] is the concentration of the substrate, and Km is the Michaelis–Menten constant.

5.4. Ricin Activity in Food Matrices

Some tests were carried out to verify the possibility of interference of compounds
inherent to the complex matrices, such as hen egg and skimmed milk, to detect ricin. To
minimize the effects of the food matrix on the assay’s performance, hen egg and skimmed
milk samples were diluted to 1:3 in sodium acetate buffer (50 mM, pH 4.6). In this assay,
ricin aliquots were added to liquid egg and skimmed milk samples and incubated for
10 min at 25 ◦C. Then, 400 µL of the mixture was added to a reaction system containing
17 µM of denatured hsDNA solubilized in the buffer, and under stirring for 30 min at 25 ◦C.
The ricin concentration detected (recovery) in each sample was calculated by comparing
the determined concentrations with the added one.
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