
Bladder Cancer 8 (2022) 101–112
DOI 10.3233/BLC-211609
IOS Press

101

Review

Role of Chromatin Modifying Complexes
and Therapeutic Opportunities in Bladder
Cancer

Khyati Meghania,b, Lauren Folgosa Cooleya,b, Andrea Piuntib and Joshua J. Meeksa,b,c,∗
aDepartment of Urology, Feinberg School of Medicine, Chicago, IL, USA
bDepartment of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
cJesse Brown VA Medical Center, Chicago IL, USA

Received 11 September 2021
Accepted 14 February 2022
Pre-press 28 February 2022
Published 3 June 2022

Abstract.
BACKGROUND: Chromatin modifying enzymes, mainly through post translational modifications, regulate chromatin archi-
tecture and by extension the underlying transcriptional kinetics in normal and malignant cells. Muscle invasive bladder cancer
(MIBC) has a high frequency of alterations in chromatin modifiers, with 76% of tumors exhibiting mutation in at least one
chromatin modifying enzyme [1]. Additionally, clonal expansion of cells with inactivating mutations in chromatin modi-
fiers has been identified in the normal urothelium, pointing to a currently unknown role of these proteins in normal bladder
homeostasis.
OBJECTIVE: To review current knowledge of chromatin modifications and enzymes regulating these processes in Bladder
cancer (BCa).
METHODS: By reviewing current literature, we summarize our present knowledge of external stimuli that trigger loss of
equilibrium in the chromatin accessibility landscape and emerging therapeutic interventions for targeting these processes.
RESULTS: Genetic lesions in BCa lead to altered function of chromatin modifying enzymes, resulting in coordinated
dysregulation of epigenetic processes with disease progression.
CONCLUSION: Mutations in chromatin modifying enzymes are wide-spread in BCa and several promising therapeutic
targets for modulating activity of these genes are currently in clinical trials. Further research into understanding how the
epigenetic landscape evolves as the disease progresses, could help identify patients who might benefit the most from these
targeted therapies.
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INTRODUCTION

Bladder cancer (BCa) is the fourth most common
cancer in men and the sixth most common cancer
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overall, with an average age of diagnosis around
73 years [2, 3]. Most BCa (∼90%) develops from
the uninterrupted proliferation of cells in the strat-
ified urothelium, a specialized epithelial layer that
lines the urinary tract [4–7]. Next generation sequenc-
ing of BCas has identified a heterogeneous somatic
mutation landscape, with one of the highest mutation
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burdens, estimated at 8.2 mutations per MB (median)
[8–12].

In the 2017 Cancer Genome Atlas (TCGA) MIBC
cohort, after the TP53/RB tumor suppressor pathway,
chromatin modifier genes are the second most fre-
quently mutated class of genes [11]. Recent studies
investigating early events in bladder tumorigenesis
have identified the clonal expansion of cells with
widespread somatic mutations in chromatin regu-
latory genes within normal urothelium [13, 14].
Identification of a high frequency of mutations
in chromatin modifying enzymes in independent
cohorts has heightened the need to understand the
function of these gene alterations in influencing
disease aggressiveness and predicting treatment out-
comes in BCa patients [11, 15–22].

REGULATION OF CHROMATIN
STRUCTURE

The core nucleosome structure consists of 146
bp of DNA wrapped around a histone octamer con-
taining two molecules of H2A, H2B, H3 and H4
(Fig. 1) [23–25]. Tail-like structures protruding from
the core-histones are prime sites for post-translational
modifications (PTMs) that regulate chromatin struc-
ture. Chromatin packaging and accessibility is a
determining factor for all cellular events from cell
division during organism development to uncon-
trolled cell division during neoplastic transformation
[26–28].

Enzymatic processes that regulate chromatin orga-
nization are targets of dysregulation in cancer.
Unlike tumor suppressors or oncogenes, loss of func-
tion mutations in chromatin regulatory genes may
have unique effects on the transcriptional landscape

depending on the cell type. More importantly, in
a manner unique to cell-of-origin, epigenetic sta-
tus impacts chromatin packaging which regulates the
genomic mutational landscape [29, 30].

The distorted genetic and epigenetic landscape of
cancer cells supports tumor evolution by amplify-
ing cellular signals that allow for uninhibited tumor
growth [31–33]. During carcinogenesis, tumor cells
create their own micro-environmental niche, that is
distinctive in its metabolic requirements and sig-
naling pathways [31]. Each of these adaptations
helps the tumor gain a survival advantage while
evading the immune system. The fast pace of mod-
ifying chromatin compaction is frequently exploited
by cancer cells to achieve an altered transcriptional
landscape [34]. Over the decades, pathologists have
observed hyper-chromatic nuclei in malignant cells,
likely a reflection of the massive number of orga-
nizational changes that take place during neoplastic
transformation [35, 36]. With development of high
sensitivity assays, the effect of chromatin packing
on transcriptional plasticity and its influence on
tumor heterogeneity and therapeutic outcome is bet-
ter appreciated [37, 38].

Chromatin modifying proteins include chromatin
remodeling complexes and DNA and histone mod-
ifying proteins. Chromatin remodeling complexes,
using the energy from ATP hydrolysis, reposition
nucleosomes to increase accessibility of DNA bind-
ing proteins to DNA whereas histone modifying
proteins edit post-translational modifications (PTMs)
on histone tails [39, 40]. Histone PTMs are a mini-
malistic way to control transcription at specific loci.
DNA can also be directly epigenetically modified
with repercussions on the transcriptional output at any
specific locus (Fig. 2). PTMs and DNA modifications

Fig. 1. Overview of chromatin organization in a nucleus.
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Fig. 2. Overview of chromatin regulatory processes and the enzymes that regulate these in mammalian cells.

can weaken or strengthen non-covalent interactions
between histones and DNA and local chromatin com-
position, thereby allowing or restricting access to
selected sections of DNA. Densely packed hete-
rochromatin is largely inaccessible to transcription
machinery, while euchromatin, which is more loosely
packed, contains accessible sections of the genome
with a high transcriptional output. Analogous to other
signaling pathways, chromatin organization is coor-
dinated by chromatin modifying enzymes in response
to external cues such as developmental stimuli [28,
41, 42].

Chromatin modifying enzymes can be readers,
writers, or erasers, aptly classified by their unique
actions. Readers interpret the covalent modifications
present on chromatin, writers add chromatin marks
and erasers remove post translational modifications
from the chromatin. Each of these enzymes lay
down unique post-translational modifications such
as methylation (Me), acetylation (Ac), phosphory-
lation (P), and ubiquitination (Ub) that inimitably
modulate chromatin structure (Fig. 2). In this review,
we highlight the state of epigenetic dysregulation in
BCa focusing on current knowledge and therapeutic
opportunities available to target chromatin modifiers.

DNA METHYLATION

Overview

Methylation is a dynamic, reversible, and non-
sequence altering means of DNA modification that

determines accessibility and transcription of DNA
[43, 44]. Commonly found near gene promoters,
DNA methylation is associated with transcriptional
silencing. Cytosines found in palindromic CpG
dinucleotide repeats are prime sites for DNA methy-
lation. Promoters containing CpG islands, generally
unmethylated, can be targeted by aberrant DNA
methylation during cellular transformation, which
is associated with transcriptional silencing of tumor
suppressor genes. In a metastable phenomenon, DNA
methylation patterns established at the time of tis-
sue patterning and differentiation are passed on as
epigenetic traits across cell generations [45]. Studies
have identified silencing of genes by DNA methyla-
tion to be as common as loss-of-function mutations,
if not a more prevalent mechanism of transcriptional
repression in cancer [46, 47].

Regulators of DNA methylation

DNA methylation landscape is the output
of DNA methyltransferases (DNMT1, DNMT3A,
DNMT3B) and demethylase (TET1, TET2, TET3)
activity [48, 49]. DNA methyltransferases add
methyl groups at carbon-5 position of cytosine
(5mC) while TET enzymes oxidize 5mC to 5-
hydroxymethylcytosine (5hmC), 5-formylcytosine
(5fc) and 5-carboxylcytosine (5caC) [50]. Mutations
in DNA methyltransferases are found in 6% of MIBC
tumors and 10% of MIBC cases harbor mutations
in DNA demethylases. While several studies have
explored DNA methylation status as a prognostic
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Fig. 3. Carcinogen exposure leads to promoter hypermethylation in BCa.

marker for BCa staging, subtyping, diagnosis or ther-
apy outcome, the role of genes most affected by
aberrant DNA methylation in triggering carcinogen-
esis remains unclear.

Causes of derailed DNA methylation in BCa

Epidemiological studies have identified a correla-
tion between smoking and the risk of developing Bca
[51–53]. Studies analyzing DNA methylation pat-
terns in urothelial carcinomas have identified a CpG
island hyper methylator phenotype to be associated
with the intensity of cigarette smoking (Fig. 3).

Furthermore, this increase in methylation was
associated with silencing of tumor suppressor genes
in high grade invasive bladder tumors [1, 54–57].

Additionally, an increase in methylated metabo-
lites is observed in high grade tumors from smokers.
Overall, there is strong evidence to suggest that
external stimuli (such as smoking) can alter DNA
methylation landscape in BCa [49, 55, 58]. In-depth
analysis of variation in local DNA methylation levels
between normal and disease state in larger cohorts
can help establish prognostic biomarkers for early
diagnosis of BCa.

Insights from clinical trials with DNA
methylation inhibitors

Given the multidimensional effects of DNA methy-
lation, inhibition of this process has wide ranging
outcomes from inhibition of proliferation to induction
of an anti-viral state manifested by de-repression of
genes involved in antigen presentation and inflamma-
tory responses [59]. Inhibition of DNA methylation
has been explored as a therapeutic strategy in blood
cancers and solid tumors. Cytidine analogues, azacy-
tidine and decitabine have been approved for patient

use in acute myeloid leukemia and myelodysplastic
syndrome [60].

With the goal of targeting the altered DNA methy-
lation landscape, S110, a derivative of decitabine
showed tumor regression in mouse xenograft models
[61]. DNMT1 inhibitors are currently in clinical trials
for advanced BCa (NCT00030615, NCT02030067,
NCT01478685) [62–64]. Results from a phase I trial
designed to test the efficacy of 5-azacytidine combi-
nation with sodium phenylbutyrate failed to identify
any clinical benefit associated with the combina-
tion in a cohort of patients with refractory solid
tumors [65]. In-vitro studies in BCa cells exposed
to decitabine point to enhanced expression of tumor
antigens such as cancer testis antigens (CTA) leading
to activation of immune-regulatory pathways. This
opens up the avenue for utilizing immunotherapy to
enhance the efficacy of DNMT inhibitors [66, 67].

REGULATION OF TRANSCRIPTIONAL
STATE BY HISTONE MODIFICATIONS

Overview

Charged histone tails extending from nucleosome
cores are prime sites for post-translational mod-
ifications. Several histone modifications such as
deamination, citrullination, ADP-ribosylation, and
O-GlcNAcylation play critical roles in regulation of
chromatin structure during diverse cellular processes.
Among these the most widely studied histone mod-
ifications are acetylation and methylation which are
reviewed here [68].

Histone acetylation and deacetylation

Altered state of histone acetylation has been iden-
tified as a distinguishing feature of human tumors
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[69]. Relaxation of chromatin allows transcription
machinery to access DNA thereby increasing tran-
scriptional output from the locus. Acetyl marks added
to positively charged lysine residues on histone tails
neutralize electrostatic interactions, thereby allowing
for localized unwrapping of chromatin. Acetylation
is often associated with open chromatin, occurring
mostly at promoter and enhancer elements and is
regulated by activity of writers: histone acetyltrans-
ferases (also referred to as lysine acetyltransferases,
HAT) and erasers: histone deacetylases (HDAC).

HATs belong to two major subgroups classified
based on their functions: nuclear type-A HATs and
cytoplasmic type-B HATs. Nuclear type-A HATs are
comprised of three protein families: GNAT (KAT2A,
KAT2B), MYST (KAT5, KAT6A, KAT6B, KAT7,
KAT8) and p300/CBP (KAT3A, KAT3B) each with
unique substrate specificity that regulates acetylation
events leading to gene expression [70]. Cytoplas-
mic type-B HATs coordinate acetylation activities on
newly formed histones prior to nucleosome assem-
bly. Approximately 36% of MIBC tumors in TCGA
cohort have a mutation in one or more HAT enzymes
[11].

To date, 18 enzymes with histone deacetylase
activity have been identified. Depending on struc-
tural homology and function, these enzymes are
broadly classified into four classes: Class I (HDAC
1-3 and HDAC8), Class II (HDAC 4-7, HDAC9
and HDAC10), Class III (SIRT 1-7) and Class IV
(HDAC11) [71].

Elevated expression levels of HDAC-1, HDAC-
2 and HDAC-3 are noted in high grade urothelial
tumors, however a definitive function of these pro-
teins in bladder carcinogenesis remains unclear [72].
Silencing of histone deacetylases has been shown to
inhibit cell growth in-vitro [73]. Additionally, stud-
ies investigating the usefulness of HDAC inhibitors
in in-vitro models and animal studies have observed
a decrease in cellular proliferation and a reduction in
tumor volumes [74]. However, despite the encourag-
ing pre-clinical results, HDAC inhibitors have failed
to show efficacy in BCa patients (NCT02236195,
NCT00363883) [75–78].

Histone methylation and demethylation

Histone methylation mainly occurs on the posi-
tively charged tails of histones H3 and H4 at sites
of lysine and arginine residues [79]. The location
of the methylated residue in the sidechain and the
number of methyl-groups present on the amino-acid

residue determine the effect of the modification on
chromatin conformation and hence transcriptional
state of the locus. Methylation at H3K4, H3K36
and H3K79 is associated with transcriptional activa-
tion whereas H3K9 and H3K27 are transcriptional
repressor marks. H3K4me1 is highly enriched at
enhancers while H3K4me3 is predominantly present
at active promoters [80]. Histone methylation is coor-
dinated by activity of histone methyltransferases and
demethylases. More than 30 genes function as writers
of histone methylation and approximately 18 genes
belong to the KDM family of lysine demethylases
[81].

Key players in histone methylation

The most well-studied proteins for their role in
regulating transcription through histone methyla-
tion are the Polycomb (PcG) and Trithorax (TrxG)
group of proteins [82, 83]. PcG and TrxG group
of proteins play contrasting roles in regulating tran-
scription. PcG proteins which encompass two major
complexes, PRC1 and PRC2, repress transcrip-
tion through histone methylation at H3K27 (PRC2)
and ubiquitination (PRC1). TrxG proteins made up
of COMPASS and COMPASS-like protein com-
plexes behave as histone methyltransferases. SET1A
(KMT2F), SET1B (KMT2G) and MLL1 (KMT2A),
MLL2 (KMT2D), MLL3 (KMT2C), MLL4 (KMT2B)
make up the catalytic subunits of distinct multi-
subunit COMPASS complexes, each with discrete
functions. Furthermore, KDM6A, a histone H3K27
demethylase, has also been identified as a member of
the COMPASS complex [84]. Proteins within these
structures regulate assembly, stability, and activity
of the enzymatic complex [85]. Each of these enzy-
matic complexes regulates H3K4 methyltransferase
in a unique manner impacting different functions. For
example, SET1 is responsible for H3K4me3 at pro-
moters of housekeeping genes, MLL1/2 complexes
deposit H3K4me2/me3 at promoters of Hox genes
and are hence crucial for the gene expression pattern
of developmental genes and MLL3/4 protein com-
plexes facilitate H3K4me1 marks at transcriptional
enhancers.

Consequence of dysregulated histone
methylation in BCa

Analysis of 11,000 tumors from 33 different types
of cancer identified alterations in methyltransferases
in 49% and alterations in demethylases in 30% of
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MIBC tumors [86]. In BCa, alterations in one or
more histone methyltransferases and demethylases
were identified in 48% and 36% of MIBC cases,
respectively [11].

Role of H3K4 methyltransferases in BCa

Somatic mutations in the MLL genes occur in 46%
of MIBC tumors [87]. The enzymatic SET domain
within the MLL (KMT) family members confers
histone methyltransferase activity to this group of
proteins. While a relatively small fraction of MIBC
tumors have mutations in the SET domain of these
genes, a significantly large fraction of tumors harbor
nonsense mutations or truncating deletions resulting
in a non-functional protein.

Given the crucial role of MLL gene family dur-
ing development and hematopoiesis, studying the
role of MLL genes in cancer using mouse models
has been a difficult task [88, 89]. While deletion
of Mll1 is embryonic lethal, targeted deletion of
Mll1 SET domain is sufficient to rescue viability, but
mice exhibit visible developmental defects [89, 90].
Dependent on the developmental stage at which Mll2
is deleted, embryos are either non-viable or develop
into mice with developmental defects [91].

Mll3 deletion is embryonically lethal and like
Mll1, deletion of Mll3 SET domain has been shown
to rescue viability in these mice, however, ureteral
epithelial tumors were observed in nearly 50% of
mice carrying a homozygous deletion of Mll3 SET
domain. In a p53 + /- background, this phenotype
was exacerbated with 100% of mice exhibiting accel-
erated carcinogenesis with formation of aggressive
tumors [92–94]. Downregulation of MLL3 has been
demonstrated to influence expression of DNA dam-
age response and repair genes, with higher genome
instability observed in cells with low levels of MLL3
[95]. Levels of MLL2 are lower in carcinomas com-
pared to adjacent normal tissues, in addition, loss of
MLL2 has been associated with a decrease in expres-
sion of tumor suppressors PTEN, P53 [96].

It is important to note that mutations in MLL3
are found in patients with Kleefstra syndrome, an
intellectual disability disorder, de novo mutations
in MLL2 are found in patients with Kabuki syn-
drome and heterozygous loss of function mutations
in MLL1 are detected in patients with Wiedemann-
Steiner syndrome [97–101]. While a small frequency
of patients with Kabuki syndrome have developed
cancer, further research is needed to determine
whether mutations in MLL2 predispose to cancer

[102]. Future mechanistic studies will be cru-
cial to determine whether loss-of-function of MLL
methyltransferases is sufficient to drive bladder car-
cinogenesis or if epigenetic reorganization caused
due to loss of MLL activity creates an accommodating
environment to accelerate oncogenic transforma-
tion in cases with synchronized loss of tumor
suppressor genes.

Role of H3K9 and H3K27 methyltransferases in
BCa

A unique multi-regional epigenetic silencing
phenotype driven by variable H3K9 and H3K27
methylation levels was found to be associated with
the carcinoma in-situ expression signature in MIBC
[103]. Studies have identified a correlation between
global H4K20 trimethylation levels and stage of BCa,
with lower levels of H4K20me1/2/3 observed with
progression to higher stage cancer [104]. In an inde-
pendent cohort, a decrease in H3K9 and H3K27
methylation levels was observed in cancer tissue com-
pared to normal controls and a further decrease in
these levels was observed with disease stage [105].
Studies have identified a basal and luminal sub-type
specific H3K4me1 peak pattern in MIBC tumors
[106, 107]. Overall, evidence from multiple stud-
ies points to a decrease in transcriptional repressive
marks with an increase in stage and invasiveness of
BCa.

E2F1 has been identified as a regulator of EZH2
and SUZ12 expression levels and a high expression of
the E2F1-EZH2-SUZ12 pathway is associated with
aggressive Bca [108]. BRD4 has also been identified
as an indirect transcriptional regulator of EZH2 [109].
Several studies have shown an increase in expression
of EZH2 to be associated with more aggressive dis-
ease [110–113]. Ramakrishnan et al. have noted an
EZH2 dependency in SWI/SNF mutated BCa cell-
lines. Furthermore, using cell-line derived xenograft
models, they demonstrated combination treatment
with EZH2i and cisplatin to be an effective therapy for
tumors with SWI/SNF mutations, and hypothesized
EZH2i cell death in animal models to be dependent
on immune responses via natural killer (NK) cell sig-
naling [114]. A recent study identified a role for the
PRC2 complex in evading immune surveillance by
suppression of MHC-I antigen processing genes and
a consequent increase in anti-tumor immunity upon
pharmacological inhibition of this complex [115].

Methylation at H3K9 is associated with transcrip-
tional repression. G9a, a H3K9 methyltransferase
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is over-expressed in BCa and its inhibition has
been shown to impact cell survival by inducing
autophagy [116–119]. Crosstalk between G9a and
DNA methyltransferase DNMT1 has been shown to
induce transcriptional silencing of target genes [120].
High levels of G9a and EZH2 have been detected
in tumors from BCa patients who do not respond to
anti-PD-1 immunotherapy [121].

Targeting histone methylation

Inhibition of hyperactive EZH2 has been explored
as a therapeutic avenue in several different cancers
[122]. EZH2 has two pockets for binding to S-
adenosyl methionine (SAM), the methyl group donor
for methylation reactions. Most EZH2 inhibitors
currently in development target this SAM binding
site within the SET domain [122]. Tazemostat, a
SAM competitive inhibitor of EZH2 has recently
been approved for treatment of advanced epithelioid
sarcoma and refractory follicular lymphoma [123].
Several other inhibitors that function like tazemo-
stat through competitive inhibition with SAM are
currently in clinical trials [122]. Few studies have
identified a role for EZH2 in epigenetic silenc-
ing of tumor immune signaling pathways [124,
125]. Pharmacological inhibition of EZH2 could
enhance immunogenicity and sensitize tumors to
immune checkpoint blockade approaches. Clinical
trials investigating EZH2 inhibition along with anti-
PD-1 immunotherapy (pembrolizumab) are currently
ongoing (NCT03854474) [126]. Combinatorial inhi-
bition of G9a and DNMT using the recently described
dual G9a/DNMT inhibitor CM-272 has also been
shown to effectively kill BCa cells in-vitro and in vivo
in an immunocompetent transgenic mouse model of
metastatic MIBC [121]. High levels of G9a and EZH2
have been detected in tumors from BCa patients who
do not respond to anti-PD-1 immunotherapy. Com-
binatorial treatment with CM-272 and anti-PD-L1
was shown to decrease incidence of tumor as well as
metastasis in a genetically engineered mouse model
of MIBC.

Key players in histone demethylation

The process of demethylation in eukaryotes is car-
ried out by two families of histone demethylases:
Lysine specific demethylases (LSD) and Jumonji C
domain (JMJC) containing proteins [127]. Each of
these proteins differs in their substrate specificity
[128]. KDM6 removes methyl groups at H3K27 site

and KDM5 family of proteins remove methyl groups
at H3K4 site.

Role of demethylases in BCa

The KDM5 family is altered in 9% of MIBC cases
and KDM6A mutations are found in 26% of patients
in TCGA MIBC cohort. A large fraction of these
mutations have been identified to be loss-of-function
mutations.

KDM6A (UTX) is a lysine demethylase located
on the X-chromosome. Mutations in KDM6A are
found at a higher frequency in low-grade NMIBC
tumors (52%) in comparison to high grade tumors
(24%) [129]. Additionally, a higher frequency of
KDM6A mutations are detected in non-invasive blad-
der tumors from females compared to males [130].
In a mouse model, loss of KDM6A has been shown
to increase risk of BCa incidence in female mice
[131]. Ahn et al have proposed a compensatory role
for KDM6A homolog UTY in KDM6A deficient cells
[132]. It remains to be determined if combinatorial
loss of KDM6A and UTY is a requirement for initi-
ation of bladder carcinogenesis in males. Kobatake
et al described activation of inflammatory pathways
in KDM6A deficient mice and a cooperative effect
between KDM6A and p53 on bladder tumorigene-
sis [133]. EZH2 hyper-dependence has been noted in
tumors with loss-of-function alterations in KDM6A
[134]. Given the high frequency of KDM6A mutations
in BCa, this opens up the avenue for EZH2 inhibitors
in treatment of KDM6A mutated BCa [135]. How-
ever, further research will be needed to determine if
all KDM6A mutations will create epigenetic suscep-
tibility to EZH2i.

In addition to KDM6A, several other histone
demethylases have been studied in BCa. For example,
JMJD1A (KDM3A) expression is elevated in BCa
and has been associated with metabolic reprogram-
ming that contributes to BCa progression [136–138].
High levels of KDM5B are detected in BCa tissues
and have been shown to regulate expression of E2F1,
thereby impacting cell proliferation [139]. High lev-
els of KDM7A have been associated with increased
proliferative capacity of BCa cells and cisplatin resis-
tance in vitro [140].

Given the high frequency of loss-of-function muta-
tions in chromatin modifying genes, the function of
these proteins has been classified as oncogenic driver
or tumor suppressive in BCa. However, high fre-
quency of mutations in this group (in particular MLL2
and KDM6A) have also been identified in nonmalig-
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nant bladder urothelium. These results suggest that
while clonal expansion of cells with mutations in
chromatin modifiers is high in the normal urothelium,
these cells are non-malignant and require additional
events to trigger the process of carcinogenesis [13,
14]. For example, FGFR3 activation and KDM6A
loss-of-function mutations commonly co-occur in
MIBC. Recently, KDM6A loss of function mutations
have been demonstrated to create a more permissive
environment for FGFR3 activating mutations to drive
bladder tumorigenesis [141]. While further work is
needed to understand the mechanisms that drive this
cooperativity, these results are encouraging and point
to new roles for chromatin modifying enzymes in
BCa.

Conclusions and future outlook

Dysregulation of the epigenomic landscape results
in aberrant gene expression and is associated with a
wide spectrum of diseases from developmental dis-
orders to cancer [142–144]. Endeavors dedicated to
sequencing tumors at different stages have identified
genetic and epigenetic changes that define the evolv-
ing landscape of BCa [1, 11, 15]. While our review
is focused primarily on DNA and histone methyla-
tion and histone acetylation, chromatin remodeling
proteins are also frequently mutated in BCa and
provide additional opportunities for therapeutic inter-
vention [145, 146]. More mechanistic questions of
epigenetic regulators require further investigation, it
remains clear that chromatin modifying enzymes play
a crucial role in maintaining bladder homeostasis.
Even prior to malignant transformation, mutations
in chromatin modifying enzymes are found at a
high frequency in the urothelium, pointing to a cur-
rently unidentified role that these enzymes play in
non-malignant urothelium [13, 14]. Further research
dedicated to identifying dependencies specific to
chromatin modifying enzymes in a BCa model may
improve the range of therapeutic strategies that can
be used to target this subset of tumors.
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